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A B S T R A C T

Improvement of process-based crop models is needed to achieve high fidelity forecasts of regional energy, water,
and carbon exchanges. However, most state-of-the-art Land Surface Models (LSMs) assessed in the fifth phase of
the Coupled Model Inter-comparison project (CMIP5) simulated crops as unmanaged C3 or C4 grasses. This study
evaluated the crop-enabled version of one of the most widely used LSMs, the Community Land Model (CLM4-
Crop), for simulating corn and soybean agro-ecosystems at relatively long-time scales (up to 11 years) using 54
site-years of data. We found that CLM4-Crop had a biased phenology during the early growing season and that
carbon emissions from corn and soybean were underestimated. The model adopts universal physiological
parameters for all crop types neglecting the fact that different crops have different specific leaf area, leaf ni-
trogen content and vcmax25, etc. As a result, model performance varied considerably according to crop type.
Overall, the energy and carbon exchange of corn systems were better simulated than soybean systems. Long-term
simulations at multiple sites showed that gross primary production (GPP) was consistently over-estimated at
soybean sites leading to very large short and long-term biases. A modified model, CLM4-CropM’, with optimized
phenology and calibrated crop physiological parameters yielded significantly better simulations of gross primary
production (GPP), ecosystem respiration (ER) and leaf area index (LAI) at both short (hourly) and long-term
(annual to decadal) timescales for both soybean and corn.

1. Introduction

Land surface models (LSMs) serve as important tools for studying
the interactions between the atmosphere and ecosystems, under-
standing biophysical feedback processes, and predicting future climate.
Most state-of-the-art LSMs assessed in the fifth phase of the Coupled
Model Inter-comparison project (CMIP5), however, did not include
process-based crop models with comprehensive physiology and phe-
nology. The first attempt to incorporate explicit crop simulations into a
land surface model was made early this century by Tsvetsinskaya et al.
(2001), in which the Biosphere-Atmosphere Transfer Scheme (BATS)
was modified to include plant growth functions for corn. The modified
model showed improved simulation of seasonal phenology and sig-
nificant changes in surface sensible (20%–35%) and latent (30%–45%)
heat fluxes, especially during dry years in central and eastern Nebraska

and eastern Kansas. Since then, the development and evaluation of land
surface models (LSMs) with prognostic agricultural schemes became an
active and important topic of inquiry (Tsvetsinskaya et al., 2001;
Kucharik, 2003; Bondeau et al., 2007; Osborne et al., 2007; Stehfest
et al., 2007; Gervois et al., 2008; Lokupitiya et al., 2009; Levis et al.,
2012; Song et al., 2013; Wu et al., 2015; Chen et al., 2015).

Kucharik and Brye (2003) incorporated phenology, carbon alloca-
tion, and a corn-specific parameterization into the Integrated Biosphere
Simulator (IBIS). The model was further developed to include other
crops such as soybean, winter and spring wheat and was renamed Agro-
IBIS. Its ability to simulate crop yields, water and energy balances, and
impacts of climate change on agro-ecosystems in the United States were
investigated at multiple sites and scales (Donner and Kucharik, 2003;
Kucharik and Twine, 2007; Kucharik, 2003; Twine et al., 2013, 2004;
Twine and Kucharik, 2009; Webler et al., 2012; Xu et al., 2016).
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Recently, the Community Land Model (CLM), which is the land com-
ponent of the widely used Community Earth System Model (CESM)
(Oleson et al., 2010) adopted the prognostic crop scheme from Agro-
IBIS into CLM (called CLM4-Crop). CLM4-Crop has the potential to
provide better spatial and temporal information on climate-crop inter-
actions and improved weather and climate prediction (Levis et al.,
2012). For example, when CLM4-Crop was coupled to an atmospheric
model (i.e. the Community Atmosphere Model, version 4 [CAM4.0]
(Neale et al., 2010)), forecasted precipitation during the peak growing
season was significantly improved over Midwestern North America.
However, recent efforts have examined the phenology and the season-
ality of net ecosystem CO2 exchange (NEE) related to cropping systems
over multiple years at three AmeriFlux sites and demonstrated high
sensitivity of energy balance and carbon simulations to biases in phe-
nology (Levis et al., 2012; Chen et al., 2015). Further improvements in
CLM4-Crop to advance its carbon forecast capability are therefore ur-
gently needed.

While LSMs that incorporate prognostic crop schemes are important
for achieving realistic simulations of weather and climate and in-
creasing our capacity to develop sound policies regarding the impacts of
climate change on agricultural systems and the potential impacts of
land management on climate (Levis et al., 2012), few studies have
quantified the accuracy of the simulations at multiple sites and over
relatively long time scales (> 10 years). Factors like plant biophysical
properties, soil properties and climate vary considerably among sites
(Fulton et al., 1996; Mzuku et al., 2005; Loescher et al., 2014;
Mourtzinis et al., 2015). An important consideration, therefore, is the
evaluation of these models across a broad range of sites to determine if
the parameterizations are sufficiently general, while also providing
acceptable performance across space and time. Evaluation of models
over relatively long timescales can be used to help identify model de-
ficiencies. For example, the ability of models to capture long-term
variations in plant phenology and energy and carbon fluxes remains an
important challenge (Piao et al., 2013; Richardson et al., 2007;
Schwalm et al., 2010; Wang et al., 2012). Depending on the inter-an-
nual variation of climate, it is suggested that 10–20 years of

meteorological forcing data are generally necessary for reliable esti-
mates of mean yield potential of crops and its inter-annual variability
(Van Wart et al., 2015). Flux observations from networks such as
AmeriFlux are just now providing long-term records approaching these
important timescales and provide an opportunity for decadal-scale
model assessment.

Here, we examine the performance of two versions of CLM4-Crop
(CLM4-Crop and CLM4-CropM) at 9 agricultural sites with a focus on
the ability of the model to capture seasonal and inter-annual variations
in leaf area index (LAI), NEE, ER, and GPP. We use a total of 54 site-
years of data to diagnose some of the key model deficiencies in CLM4-
Crop and address the following questions:

1 Is the new phenology scheme able to simulate inter-annual varia-
tions in early growing season crop phenology at multiple sites across
a climate gradient?

2 Are biases in simulated phenology across sites random, or are there
systematic deficiencies that can be addressed with model calibra-
tion?

3 How well do the models perform under different climate conditions
and does the new phenology scheme improve simulations for certain
climate conditions?

4 Do the models adequately capture the long-term (>10 years) dy-
namics of NEE for cropland?

2. Methods

2.1. Meteorology and biological data

The models were evaluated at nine AmeriFlux sites in the US Corn
Belt located within latitude and longitude ranges of 40–45 °N and
88–97 °W, respectively (Fig. 1). These sites represent cropland systems
in the northern (US-Ro1, US-Ro3), western (US-Ne1, US-Ne3), southern
(US-Bo1, US-Bo2) and central (US-IB1, US-Br1, US-Br3) US Corn Belt.
Climate and cropping information for these sites are provided in
Table 1.

Fig. 1. Nine AmeriFlux crop sites within the US Corn Belt.
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Carbon and energy fluxes measured using the eddy covariance (EC)
technique as well as meteorological data were obtained from AmeriFlux
level 2 gap-filled data products for the longest available time series at
each site. The biological data included LAI and harvested grain carbon

(Level 1 AmeriFlux data). The US-Bo1, US-Ne1 and US-Ne3 sites have
the longest available time series of LAI and were thus chosen for the LAI
evaluation. The yield/harvest grain data were converted to gCm−2 y−1

to compare with model simulations, assuming grain carbon content is

Table 1
AmeriFlux crop sites.

ID Site Name Site Description State Latitude Longitude Elevation Mean Annual
Temp (°C)

Mean Annual
Precip. (mm)

Years Corn phase Soybean
phase

1 US-Ro1 Rosemount MN 44.7143 −93.0898 260m 6.86 °C 806mm 2007–2010 odd years even years
2 US-Ro3 Rosemount alternative

management
MN 44.7217 −93.0893 260m 6.86 °C 806mm 2007–2010 2007, 2008,

2010
2009

3 US-Bo1 Bondville IL 40.0062 −88.2904 219m 11.02 °C 991mm 1997-2007 odd years even years
4 US-Bo2 Bondville Companion Site IL 40.0061 −88.2918 219m 11.02 °C 991mm 2005–2006 even years odd years
5 US-IB1 Fermi Agricultural IL 41.8593 −88.2227 225m 9.18 °C 929mm 2006–2008 even years odd years
6 US-Br1 Brooks Field Site 10 IA 41.9749 −93.6914 275m 8.95 °C 842mm 2007–2010 odd years even years
7 US-Br3 Brooks Field Site 11 IA 41.9747 −93.6936 314m 8.95 °C 842mm 2007–2010 even years odd years
8 US-Ne1 Mead Irrigated NE 41.1650 −96.4766 361m 10.07 °C 784mm 2002–2012 continuous NA
9 US-Ne3 Mead Rainfed NE 41.1797 −96.4396 363m 10.11 °C 784mm 2002–2012 odd years even years

Fig. 2. Evaluation of the simulated phenology for corn (white background) and soybean (red background) at AmeriFlux site Bondville (US-Bo1). The blue line
represents default CLM4-Crop simulation and the red dashed line represents CLM4-CropM with modified phenology according to Eq. (2) (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article).
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45% for corn and 54% for soybean based on laboratory measured mean
values (Baker and Griffis, 2005). In order to close the annual carbon
budget for cropping systems we have estimated the Net Biome Pro-
ductivity (NBP) by adding the harvested grain carbon (a carbon loss) to
the EC measured annual NEE:

= − = + CCarbon budget NBP NEE grain (1)

where Cgrain is the harvested grain carbon calculated from the yield data
at the sites (Baker and Griffis, 2005; Chen et al., 2015; Suyker and
Verma, 2010). In Eq. (1), a positive carbon budget is defined as a net
transfer of carbon from the land to the atmosphere.

2.2. CLM4-Crop and CLM4-CropM

CLM is the land surface component of CESM (Bonan and Oleson,
2002; Dai et al., 2003; Dickinson and Oleson, 2006; Oleson et al., 2010,
2008; Zeng et al., 2002). CLM simulates biophysical and biochemical
processes between soil, plant, and the atmosphere. In this study, the
fourth version of CLM with the crop scheme activated (CLM4-Crop) was

used (Levis et al., 2012).
The crop algorithms in CLM4-Crop originated from the Agro-IBIS

model (Levis et al., 2012). The crop types simulated in CLM4-crop in-
clude corn, soybean, and temperate cereals. Here we evaluate the si-
mulation of corn and soybean since they represent the dominant crops
in the United States Corn Belt. CLM4-Crop simulates three phenological
phases: 1) planting to emergence, 2) leaf emergence to the beginning of
grain fill, and 3) from the beginning of grain fill until harvest.

CLM4-Crop is known to overestimate LAI during early growing
season (Chen et al., 2015; Levis et al., 2012). Planting occurs when
three thresholds are met in CLM4-Crop: a 20-year averaged growing
degree day (GDD; base temperature 8 °C) threshold, a threshold of 10-
day running mean of air temperature and a threshold of daily minimum
air temperature (Levis et al., 2012). Since the 20-year averaged GDD
changes very slowly from year to year and the threshold is very low
(50 ° days), the actual planting date is determined by the two tem-
perature terms, which are also met very early in the year. Thus, when
we compare the phenology simulated by CLM4-Crop to observation, the
simulated growing season is always biased early. To improve the early

Fig. 3. Evaluation of the simulated phenology for corn (white background) and soybean (red background) at a rainfed AmeriFlux site Mead (US-Ne3). The blue line
represents default CLM4-Crop simulation and the red dashed line represents CLM4-CropM with modified phenology according to Eq. (2) (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article).
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growing season phenology simulated in CLM4-Crop, we modified the
model and simulated the planting date using growing degree time
(GDT):

∫= − ⋅ >GDT T T dt when T T( ) ,air ref air ref (2)

whereTair is the air temperature at 2m,Tref is the reference temperature
(8 °C), and dt is the model time step. The GDT thresholds are 450 for
corn and 400 for soybean as specified in Chen et al. (2015). The
modified model is called CLM4-CropM.

2.3. Model parameterization

There are more than 80 plant physiological parameters in CLM4.
Here, only some of the key parameters that were determined from
previous sensitivity analyses to control carbon sequestration of crop
PFTs are discussed (Bilionis et al., 2015; Sargsyan et al., 2014). CLM4
uses a PFT-dependent water stress factor to describe the soil water
constraint on the transpiration and photosynthetic rate. This water
stress factor is calculated as:

∑=β w rt
i

i i
(3)

where wi is a plant wilting factor for layer i and ri is the fraction of roots
in layer i. The water stress factor βt in CLM4-Crop was multiplied by
1.25 for increased drought tolerance of soybean (Levis et al., 2012).

To calculate the optical depth of the canopy as well as the fraction of
sunlit and shaded leaves in the canopy, a leaf angle distribution factor
(χl) is used in the model. Here χl =−1 indicates vertically distributed
leaves; χl=1 indicates horizontally distributed leaves and χl = 0 in-
dicates a random distribution. This parameter ranges from −0.4 to 0.6
in CLM. The default leaf angle distribution factor for corn and soybean
was −0.4. Theoretically, a more planophile canopy will reflect more
short-wave radiation upward, and thus has less fraction of sunlit leaf.
With the two-big-leaf approximation in CLM, the reduced fraction of
sunlit leaf will reduce the canopy photosynthesis rate. Further sensi-
tivity tests are discussed in Section 3.4.

The maximum carboxylation rate of rubisco at 25 °C (Vcmax25) was
set to 100.7 μmolm−2 s−1 in CLM4-Crop for both corn and soybean
(Bonan et al., 2012; Kattge et al., 2009; Levis et al., 2012). This value is

Fig. 4. Evaluation of the simulated phenology for corn at an irrigated AmeriFlux site Mead (US-Ne1). The blue line represents default CLM4-Crop simulation and the
red dashed line represents CLM4-CropM with modified phenology according to Eq. (2) (For interpretation of the references to colour in this figure legend, the reader
is referred to the web version of this article).

M. Chen et al. Agricultural and Forest Meteorology 256–257 (2018) 315–333

319



the mean Vcmax25 derived for C3 crops using a plant trait database
(https://www.try-db.org/TryWeb/Home.php). Here we note that the
Vcmax25 value for C3 crops has a relatively large standard deviation of
36.6 μmol m−2 s−1.

2.4. Model simulation and evaluation

The models were forced by hourly meteorological data (solar ra-
diation, air temperature, precipitation, air humidity, air pressure and
wind speed) observed at each site (Table 1). Mineral soil texture data

were extracted from a global data set (Oleson et al., 2010). To ensure
that model soil carbon pools were at steady state, each model was spun
up for 1000 years by re-cycling the available site meteorological data
(Thornton and Rosenbloom, 2005). Afterwards, the models were forced
by the meteorological data at the site for the available years and the
hourly output of results was evaluated against measurements.

The model was run in single site mode so that there is one PFT that
matches the land cover type in which the flux tower is located (Chen
et al., 2015; Stöckli et al., 2008; Yuan and Liang, 2011). The metrics
used for evaluating the simulated energy and carbon fluxes includes the

Fig. 5. Cross-site evaluation of the hourly energy fluxes and NEE simulation. Results are shown in Taylor diagrams. The standard deviations are normalized by the
standard deviations of the observed values. The blue colored variables are the default CLM4-Crop simulations. The red colored variables are CLM4-CropM simulations
(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article).
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Pearson correlation coefficient, standard deviation and root mean
square error. These three statistics were summarized and plotted as
Taylor diagrams (Taylor, 2001).

We also used a refined index of agreement (Willmott et al., 2012) to
quantify the degree to which observed LAI were captured by the
models:
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where Pi stands for predictions and Oi is the pair-wise-matched ob-
servations. The range of refined index of agreement dr is from −1 to 1.
A dr of 1 indicates perfect agreement between model and observation,
and a dr of −1 indicates either lack of agreement between the model

and observation or insufficient variation in observations to test the
model adequately.

3. Results and discussion

3.1. Simulation of phenology across sites

Our assessment of simulated crop phenology was restricted to
comparisons with observations from sites with the longest and most
complete LAI records (> 10 years): US-Bo1, US-Ne1 and US-Ne3
(Figs. 2–4), representing different geographic regions and climate in the
Corn Belt (Table 1). The hydrologic cycle differs markedly among sites,
and includes co-located fields where one is irrigated (US-Ne1) and the
other rainfed (US-Ne3). Therefore, these sites constitute good bound-
aries on parameter space with respect to the coupled carbon cycle,
hydrologic cycle and the interactions with climate.

The planting date simulated by CLM4-Crop was systematically
biased early, with an average bias of −14 ± 3 days for corn and
-18 ± 4 days for soybean. The emergence simulated by CLM4-Crop
was also biased early, ranging from 30 to 50 days. CLM4-Crop early
growing season LAI bias was similar at all sites, but somewhat larger at
the two Mead sites (US-Ne1 and US-Ne3), with slightly colder climate
condition than the Bondville site (US-Bo1). In a previous global scale
study, CLM4-Crop simulated 20-year averaged monthly LAI at the grid
cell where US-Bo1 was located (other PFTs coexisted in the grid cell)
and it also showed an over-estimated LAI during the first half of the
growing season and an over-estimated length of growing season (Levis
et al., 2012). Our multi-site-year comparison confirmed that the agri-
cultural system contributed to this bias. In contrast, the GDT method
implemented in CLM4-CropM delayed the leaf emergence date and
reduced the mean bias of emergence date across sites to −2 ± 3 days.

The simulated inter-annual variability in early growing season
phenology based on CLM4-CropM also showed a notable improvement.
For instance, for US-Bo1 in some years when CLM4-Crop simulated
emergence times were close to the observations, CLM4-CropM did si-
milarly well (e.g., 1997, 2000, 2004). In other years when CLM4-Crop
estimated earlier emergence, CLM4-CropM gave better estimations
(e.g., 1998–1999, 2001–2003, 2005–2007). This indicates that the
CLM4-CropM phenology scheme is more sensitive to early spring tem-
perature variation and has greater skill at capturing the observed inter-
annual variability of the onset of the growing season compared to
CLM4-Crop.

One point to note is that Agro-IBIS, which used the same mechanism
to simulate crop phenology, did not show earlier onset of growing
season or overestimated LAI during the early growing season (Twine
et al., 2013; Webler et al., 2012). Twine et al. (2013) used a group of
soybean specific physiological parameters other than the previous
Agro-IBIS parameters which were collected firstly for corn and found

Table 2
Correlation coefficients of the simulated and observed hourly energy and NEE
fluxes.

Model Rn H LE G NEE

US-Bo1
CLM4-Crop 0.95 0.64 0.77 0.63 0.58
CLM4-CropM 0.95 0.67 0.77 0.65 0.62
US-Bo2
CLM4-Crop 0.84 0.51 0.60 0.22 0.45
CLM4-CropM 0.85 0.59 0.65 0.24 0.51
US-Br1
CLM4-Crop 0.96 0.62 0.83 0.59 0.50
CLM4-CropM 0.95 0.67 0.82 0.63 0.56
US-Br3
CLM4-Crop 0.96 0.62 0.78 0.56 0.52
CLM4-CropM 0.96 0.67 0.77 0.62 0.58
US-Ne1
CLM4-Crop 0.98 0.57 0.80 0.68 0.58
CLM4-CropM 0.98 0.60 0.83 0.75 0.74
US-Ne3
CLM4-Crop 0.98 0.60 0.83 0.75 0.74
CLM4-CropM 0.98 0.67 0.83 0.70 0.66
US-Ro1
CLM4-Crop 0.93 0.64 0.74 0.72 0.50
CLM4-CropM 0.93 0.68 0.75 0.75 0.53
US-Ro3
CLM4-Crop 0.93 0.55 0.70 0.45 0.50
CLM4-CropM 0.93 0.59 0.72 0.47 0.57
US-IB1
CLM4-Crop 0.97 0.65 0.80 0.64 0.66
CLM4-CropM 0.97 0.73 0.83 0.67 0.76
Average
CLM4-Crop 0.94 0.60 0.76 0.57 0.54
CLM4-CropM 0.94 0.65 0.77 0.61 0.62

All P values≤ 0.01.

Fig. 6. Cross-site comparison of the
GDD and GDT methods simulated an-
nual carbon budgets (-NBP) at the nine
AmeriFlux sites. The error bars re-
present the standard deviation of the
annual mean NBP. At the sites US-Ro1,
US-Ro3, US-Bo1, US-Ne1 and US-Ne3,
yield data are available. Thus at those
sites the measured annual carbon bud-
gets were shown to be compred with the
modeled values.
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improvements in phenology at a soybean free air concentration en-
richment site (SoyFACE) with the new scheme. However, in their stu-
dies the planting dates were prescribed inputs. In future predictions
with a changing climate, a prognostic crop scheme is desired.

Soybean displayed lower growth rates compared to corn between
leaf emergence and grain filling. However, both models simulated si-
milar growth rates for both crops, which was too high for soybean in
the early growth phase, causing LAI to quickly reach the maximum
constraint of 6 m2 m−2. This resulted in an overestimated LAI for
soybean during the early growing season for both models, especially at
the drier site US-Ne3. Multiple factors contribute to the model esti-
mation of LAI including photosynthetic rate, canopy structure, and al-
location of assimilated carbon to leaves. The sensitivity of LAI to the
parameters used in these processes was explored further in Section 3.4.

The maximum LAI assumptions in CLM4 of 5m2m−2 for corn and
6m2m−2 for soybean worked well for seven years out of the eleven at
US-Bo1 (1997, 2001–2002, 2004–2007). However for the other years,
the maximum LAI threshold was either underestimated for corn (1999,
2003) and soybean (1998) or overestimated (2000). The maximum
soybean LAI threshold of 6m2m−2 was biased high by about 30% for
the water-limited Mead site US-Ne3. At the irrigated Mead site US-Ne1,

the maximum LAI constraint of 5m2m−2 for corn in the models con-
tributed to an underestimation of maximum LAI for seven years out of
the eleven (e.g., 2002–2003, 2007–2009, 2010–2011) and damped the
inter-annual LAI variability. Thus, there is still a need to improve the
photosynthesis and carbon allocation processes in the model to elim-
inate the need for an upper LAI threshold, and to make the model fully
prognostic so that it can capture the inter-annual variability in LAI.

The timing of grain fill and harvest time were well simulated by
both models at all four sites (Figs. 2–4). Grainfill is usually initiated
when the maximum LAI is reached, unless there is a disturbance event.
This model behavior is consistent with a previous study at Rosemount,
Minnesota (Chen et al., 2015). Although CLM4-Crop did not simulate
the first half of the growing season well, the model captured the timing
of grain fill at all sites.

Biases in the growing season dynamics of LAI simulations were
closely coupled with water availability. During periods of probable
water deficit and stress (i.e., annual average evaporative fraction
(EF)< 0.5), both models showed large overestimation of LAI relative to
observations. This was most prevalent at the rainfed US-Ne3 site. US-
Ne3 is rainfed with corn and soybean rotation, and has the lowest an-
nual precipitation (784mm) among the nine sites (Table 1). The EF

Fig. 7. Long-term carbon budget simulation at site US-Bo1. The green line represents carbon fluxes calculated using the eddy covariance measured carbon fluxes. The
black line is the eddy covariance measured carbon fluxes plus annual yield grain carbon from the field. The blue line is the default CLM4-Crop simulation and the red
line is CLM4-CropM simulation (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article).
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revealed significant periods of potential water stress for soybean during
the vegetative and reproductive growth phase in 2002. For corn, major
dry periods occurred during silking and/or reproductive stages in 2003
and during vegetative/silking growth stages in 2005 (Suyker and
Verma, 2012). In all cases, maximum simulated LAI was higher than
observations, revealing an inadequacy in water stress limitations on
phenological and/or physiological processes. Similar model behavior
was rarely observed at US-Bo1, where rainfall was more plentiful, or at
the irrigated US-Ne1 site.

While US-Ne1 did not display water deficit induced biases, there
were years where both models underestimated seasonal LAI maxima.
The US-Ne1 site is an irrigated cornfield. Irrigation at this site provided
about 40–50% of the total water received (Suyker and Verma, 2010).
Due to irrigation, the maximum LAI of corn at this site was higher than
the rainfed US-Ne3 site, with some years reaching about 6m2m−2

(Fig. 4). Since CLM4-Crop and CLM4-CropM do not simulate irrigation,
we expected a lower simulated LAI (i.e. similar to the value of 5m2m−2

at the rainfed site US-Ne3) in the model estimation. The biases asso-
ciated with simulating phenology are expected to propagate into the
energy and NEE flux simulations (Chen et al., 2015).

3.2. Evaluation of energy fluxes and NEE

The simulated hourly energy and NEE fluxes were evaluated against
site observations and presented as Taylor diagrams (Fig. 5) with sum-
mary statistics provided in Table 2. Note that these evaluations were
performed using the default generic corn and soybean physiological
parameterization in CLM4-Crop. The only difference between CLM4-
Crop and CLM4-CropM is the timing of planting date. The models were
not tuned to any site-specific observations to optimize the results.

Among the energy fluxes, Rn was the best-simulated variable
(Fig. 5). The averaged correlation coefficient was 0.94 for the nine sites
(54 site-years) for both models. For sites US-Ro1 and US-Ro3, the cor-
relation coefficients were comparatively lower (0.93 for both sites and
both models). The correlation coefficients of Rn were lower at these two
sites because during winter, a small bias in the precipitation forcing
data followed by an underestimation of snow cover caused a large
change in ground albedo, which affected the Rn simulation. In a pre-
vious study, Rn during growing season was evaluated at these two sites
and the correlation coefficient was from 0.98 to 0.99 for the same years
(Chen et al., 2015).

The simulated latent heat flux (LE) had a standard deviation that

Fig. 8. Long-term carbon budget simulation at site US-Ne1. The green line represents carbon fluxes calculated using the eddy covariance measured carbon fluxes. The
black line is the eddy covariance measured carbon fluxes plus annual yield grain carbon from the field. The blue line is the default CLM4-Crop simulation and the red
line is CLM4-CropM simulation (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article).
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was closer to the observations and a higher correlation coefficient
(r= 0.76 for CLM4-Crop and r= 0.77 for CLM4-CropM) compared to
the observed sensible heat flux (H) for all sites (r= 0.60 for CLM4-Crop
and r= 0.65 for CLM4-CropM) (Fig. 5). This was also found in a pre-
vious study when CLM3.5-simulated daily mean energy fluxes were
evaluated at 15 AmeriFlux sites (Yuan and Liang, 2011). In their study,
simulated LE had a higher correlation with the observations compared
to simulated H at 11 sites, including 2 crop sites. The simulated H
generally had less variation (standard deviation) than the observations
among all sites (Fig. 5). Ground heat flux (G), as an energy balance
residual (Oleson et al., 2010), had a standard deviation 2 or more times
greater than the standard deviation of the observed ground heat flux
(Fig. 5). This was consistent among all sites. This bias has been reported
for other process based models which calculate G as a residual (Webler
et al., 2012). The skill of both models when simulating hourly energy
fluxes were similar, however, CLM4-CropM generally had higher cor-
relation coefficients and lower RMSDs with the observations when
compared to CLM4-Crop. The modified phenological scheme improved
the sensible heat flux simulations notably, because the improved early
growing season phenology resulted in more realistic canopy tempera-
ture, which helped reduce the H bias during this period.

The model performance in simulating NEE was similar among sites
(Fig. 5). Compared to the energy fluxes, the simulated hourly NEE was
generally less correlated with the observations (r= 0.54 for CLM4-Crop
and r= 0.62 for CLM4-CropM). There are two reasons for this phe-
nomenon. First, compared to the simulation of the energy fluxes, more
nonlinear processes are encompassed in the simulation of the carbon
cycle. Second, the CLM4-Crop model assumes the harvested biomass is
decomposed on site following harvest in order to close the carbon
budget at crop sites (Chen et al., 2015; Levis et al., 2012). This results in
an unrealistic carbon flux from the field into the atmosphere after
harvest, which lowered the correlation coefficient of simulated and
observed NEE. The correlation coefficients of the hourly NEE simulated
by CLM4-Crop ranged from 0.45 (US-Bo2) to 0.66 (US-IB1) for the nine
sites. The correlation coefficients of NEE simulated by CLM4-CropM
ranged from 0.51 (US-Bo2) to 0.76 (US-IB1). The standard deviation of
the simulated NEE is close to the observations, indicating the amplitude
of NEE was well simulated by both models. CLM4-Crop generally had
higher standard deviation than the observations (relevant SD from 1.04
at US-Ro1 to 1.22 at US-Br1), except for the site US-Ne1 (0.98). The
standard deviation of the simulated NEE was lower for CLM4-CropM
compared to CLM4-Crop across all sites. This lower standard deviation

Fig. 9. Long-term carbon budget simulation at site US-Ne3. The green line represents carbon fluxes calculated using the eddy covariance measured carbon fluxes. The
black line is the eddy covariance measured carbon fluxes plus annual yield grain carbon from the field. The blue line is the default CLM4-Crop simulation and the red
line is CLM4-CropM simulation (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article).
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simulated by CLM4-CropM was in better agreement with the observa-
tions (i.e. from 1.00 at US-Ro1 to 1.12 at US-Br1).

At the five sites where yield data were available (US-Ro1, US-Ro3,
US-Bo1, US-Ne1 and US-Ne3), the mean annual carbon budgets (Eq.
(1)) were positive, indicating those agro-ecosystems were carbon
sources (Fig. 6). However, there was substantial inter-annual variation
(shown in the figure as standard deviation) in both observed and si-
mulated values of carbon budget. For seven of the nine sites, the carbon
budget was positive (C source) in both models. On average, CLM4-
CropM gave more positive annual carbon budget values. There are two
sites out of the nine (US-IB1 and US-Br3) that were estimated as carbon
sinks in both models.

In general, CLM4-CropM improved the NEE simulation, with in-
creased correlation coefficient and standard deviation closer to ob-
servations. Since the photosynthetic parameterization is the same in
both models, the improved NEE skill is directly linked to the simula-
tions of phenology.

3.3. Long-term carbon budget

The long-term carbon budget was evaluated for over 10 years at site
US-Bo1, and over 11 years at US-Ne1 and US-Ne3. The measured and
modeled accumulated carbon budgets at these three sites are shown in
Figs. 7–9, respectively.

3.4. US-Bo1

From 1997 to 2006, measured cumulative NEE was −3026 gCm−2

(Fig. 7). After accounting for crop yields, the total carbon budget was
1543 gCm−2 (Eq. (1)), indicating a net carbon emission rate of
154.3 gCm−2 yr−1 over the 10-year period. Here we assumed that
grain carbon is the only carbon taken from the field and that the above
ground biomass remains as residue. At this site, CLM4-Crop estimated a
cumulative carbon source of 86 gCm−2 with the carbon emission rate
of 8.6 gCm−2 yr−1. CLM4-CropM predicted a carbon source of
516 gCm−2 - a carbon emission rate of 51.6 gCm−2 yr−1- still under-
estimated relative to the measured value, but substantially better than
CLM4-Crop.

To better understand what contributes to the underestimated carbon
emissions at US-Bo1, the 10-year accumulative GPP and ER1 simula-
tions were also examined (Fig. 7). GPP and ER were substantially
overestimated by 10,902 and 9431 gCm−2, respectively, using CLM4-
Crop. CLM4-CropM also overestimated both GPP and ER, but the bias
was reduced for GPP and ER by 17% and 16%, respectively. The si-
mulated GPP and ER for soybean were biased higher compared to corn.
This was partly attributed to the fact that early growing season LAI of
soybean was substantially overestimated compared to corn (Fig. 2). The
GPP bias of the 5 soybean years contributed to 68% and 75% of the
total GPP bias from CLM4-Crop and CLM4-CropM, respectively. ER bias
for the 5 soybean years contributed to 58% and 64% of the total ER bias
from CLM4-Crop and CLM4-CropM, respectively. Overall, due to the
larger bias in simulated GPP compared to ER, the NEE values estimated
by both models were more negative compared to the flux tower derived

Fig. 10. Multi-year-averaged weekly GPP simulation for Corn and Soybean years respectively across sites. White background indicates corn years and red back-
ground indicates soybean years (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article).

1 Here the yield carbon was added to the ecosystem respiration term to account for the
total carbon released from the agro-ecosystem.
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values.

3.5. US-Ne1

From 2002 to 2012, observed NEE at site US-Ne1 showed a carbon
sink of −3860 gCm−2 (Fig. 8). However, after accounting for the
harvested grain carbon, this site was actually a carbon source of

1009 gCm−2 over the 11 years, an average carbon emission rate of
91.7 gCm−2 per year. The CLM4-Crop simulated carbon budget for the
11 years was 69 gCm−2, a carbon emission rate of 6.3 gCm−2 yr−1.
CLM4-CropM simulated carbon budget was 897 gCm−2, or an annual
carbon emission rate of 81.5 gCm−2 yr−1, in closer agreement with the
observations, largely because CLM4-CropM simulated a more realistic
growing season length.

Table 3
Sensitivity tests for soybean simulations across sites. There are 5 years at US-Bo1, 6 years at US-Ne3, 2 years at US-Ro1 and 1 year at US-Ro3. The values of the
parameters showed in the table are the default values. The left 4 columns and the right 4 columns showed the model responses after 20% increase and decrease of the
parameter, respectively. Here xl is leaf angle distribution factor; slatop is specific leaf area at top of the canopy (m2 gC−1); feafi is a dimensionless parameter for
calculating initial carbon allocation to leaf; Vcmax25 is the maximum carboxylation rate of rubisco (μmolm−2 s−1); GDDmat is the growing degree days required to
reach plant maturity, i.e.- crop harvest.

−20% +20%

Δ NEE Δ GPP Δ ER Δ LAI Δ NEE Δ GPP Δ ER Δ LAI

xl=0
US-Bo1 1.0% −0.1% 0.0% −0.3% 1.1% −0.6% −0.4% 0.1%
US-Ne3 −13.9% 1.1% 0.8% 0.3% 26.1% −1.8% −1.2% −0.6%
US-Ro1 −50.1% 1.4% 0.8% −0.1% 19.1% −1.3% −1.1% −0.1%
US-Ro3 4.4% 0.6% 0.8% 0.1% 0.7% −0.7% −0.6% −0.1%
slatop=0.07
US-Bo1 9.1% −3.7% −2.3% −5.4% −5.1% 2.1% 1.4% 3.2%
US-Ne3 47.6% −4.2% −3.1% −8.5% −26.7% 2.2% 1.6% 3.8%
US-Ro1 116.3% −4.1% −2.7% −4.8% −97.5% 2.7% 1.6% 2.9%
US-Ro3 11.2% −2.6% −1.8% −5.6% −4.0% 1.4% 1.0% 3.0%
fleafi=0.85
US-Bo1 6.2% −2.7% −1.7% −4.3% −3.7% 1.7% 1.1% 2.6%
US-Ne3 28.7% −3.0% −2.4% −6.5% −19.3% 1.8% 1.3% 3.1%
US-Ro1 73.4% −2.9% −2.1% −3.8% −71.2% 2.0% 1.2% 2.3%
US-Ro3 8.1% −2.0% −1.4% −4.3% −3.3% 1.0% 0.8% 2.5%
Vcmax25=100
US-Bo1 13.0% −8.0% −5.7% −2.8% −4.7% 4.3% 3.3% 1.4%
US-Ne3 130.1% −10.9% −8.0% −5.3% −66.9% 5.6% 4.1% 2.2%
US-Ro1 279.6% −12.4% −9.1% −3.2% −208.9% 7.8% 5.3% 1.5%
US-Ro3 20.7% −8.7% −6.9% −3.6% −2.9% 5.0% 4.6% 0.9%
GDDmat (dynamic)
US-Bo1 −2.3% −9.6% −8.9% −26.3% −2.5% 2.0% 1.5% 7.6%
US-Ne3 343.5% −20.0% −12.4% −29.7% −52.4% 2.9% 1.8% 9.8%
US-Ro1 −43.6% 0.7% 0.2% −0.9% 11.6% −0.8% −0.7% −0.4%
US-Ro3 5.7% 0.9% 1.1% −2.5% 5.7% −0.8% −0.4% −0.6%

Table 4
Calibration of soybean simulation, part one. Numbers in the table are correlation coefficients and bias (μmolm−2 s−1, in parenthesis) of the simulated weekly leaf
area index (LAI), net ecosystem exchange (NEE), gross primary production (GPP), and ecosystem respiration (ER).

Model run LAI NEE GPP ER

Control run: gddmat= default vcmx=100 slatop= 0.07 fleafi=0.85
Control 1:
US-Bo1(1998,2000) 0.85 (0.89) 0.51 (−98.70) 0.77 (1117.50) 0.55 (961.70)
US-Ne3(2002,2004,2006) 0.77 (1.40) 0.55 (−178.38) 0.72 (784.47) 0.67 (605.04)
US-Ro1(2008,2010) 0.62 (1.34) 0.79 (−196.21) 0.88 (822.78) 0.78 (625.72)
Control 1 average 0.75 (1.24) 0.61 (−160.71) 0.78 (890.57) 0.67 (712.85)
Control 2:
US-Bo1(2002,2004,2006) 0.78 (1.18) 0.64 (53.11) 0.84 (577.65) 0.68 (629.94)
US-Ne3(2008,2010,2012) 0.72 (1.46) 0.47 (−125.23) 0.71 (936.9) 0.7 (809.69)
US-Ro3(2009) 0.67 (1.28) 0.52 (61.34) 0.73 (538.78) 0.49 (598.02)
Control 2 average 0.74 (1.32) 0.55 (−22.15) 0.77 (726.06) 0.66 (702.42)
Total site-year average 0.75 (1.28) 0.58 (−91.43) 0.78 (808.32) 0.66 (707.63)
Calibration run: gddmat*0.8, jday*0.8 vcmx=80 slatop=0.06 fleafi=0.68
Calibration:
US-Bo1(1998,2000) 0.97 (−0.08) 0.83 (−46.72) 0.86 (534.36) 0.67 (484.44)
US-Ne3(2002,2004,2006) 0.91 (0.10) 0.62 (123.45) 0.83 (-99.7) 0.85 (23.57)
US-Ro1(2008,2010) 0.69 (0.15) 0.81 (−38.34) 0.9 (238.25) 0.76 (199.87)
Calibration average 0.87 (0.06) 0.74 (28.61) 0.86 (178.02) 0.77 (205.62)
Validation:
US-Bo1(2002,2004,2006) 0.95 (0.11) 0.93 (137.09) 0.97 (120.16) 0.86 (255.13)
US-Ne3(2008,2010,2012) 0.8 (0.10) 0.65 (87.62) 0.86 (-23.87) 0.85 (62.75)
US-Ro3(2009) 0.86 (0.04) 0.75 (113.65) 0.91 (197.80) 0.7 (311.04)
Validation average 0.87 (0.10) 0.78 (112.54) 0.91 (69.52) 0.83 (180.67)
Total site-year average 0.87 (0.08) 0.76 (70.57) 0.89 (123.77) 0.8 (193.15)
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Again, the 11-year accumulative GPP and ER were overestimated by
both models (Fig. 9). However, the biases were smaller compared to US-
Bo1 (Fig. 6). GPP and ER were overestimated by 6325 and 5470 gCm−2

(575 and 497 gCm−2 yr−1) using CLM4-Crop. CLM4-CropM with better
phenology simulation reduced the bias of GPP by 67% and reduced the
bias of ER by 63%.

3.6. US-Ne3

The EC measured NEE showed that US-Ne3 was a carbon sink of
−2468 gCm−2 in the 11 years analyzed (2002-2012). However, after
accounting for the yield carbon, US-Ne3 was a moderate carbon source
for the 11 years with a net carbon emission of 504 gCm−2. The average
carbon emission rate of 45.8 gCm−2 yr−1 was about half of the irri-
gated Mead site US-Ne1 and one third of the Bondville site US-Bo1.
CLM4-Crop estimated the 11-year carbon budget to be 244 gCm−2,
with a carbon emission rate of 22.2 gCm−2 yr−1, while CLM4-CropM
predicted a mean carbon emission rate of 57.8 gCm−2 yr−1.

Similar to the sites US-Bo1 and US-Ne1, both GPP and ER were
overestimated at US-Ne3 (Fig. 8). GPP and ER were overestimated by
12,176 and 11,933 gCm−2 (1107 and 1085 gCm−2 yr−1) using CLM4-
Crop. CLM4-CropM reduced the overestimations of GPP by 51% and
13% for corn and soybean, respectively, while the overestimations of
ER were reduced by 39% and 12% for corn and soybean, respectively.

The average carbon budget of the three sites under consideration
equated to a carbon source of 97.3 ± 54.5 gCm−2 yr−1 (the reported
uncertainty is the standard error). This value is comparable with a
European study over seven crop sites from 2004 to 2007 (Kutsch et al.,
2010), which estimated an annual carbon loss of 95 ± 87 gCm−2 yr−1

from the seven European sites. The CLM4-Crop mean value was
12.4 ± 8.6 and the CLM4-CropM value was 63.6 ± 15.8 gCm−2 yr−1.
The modified model CLM4-CropM improved the carbon budget esti-
mation and the estimated value is within the range of the measured
values.

The response of ecosystems to regionally heterogeneous stimuli
such as historical land use, or rainfall and temperature anomalies and
their effects on carbon fluxes is an important aspect for estimating large
scale carbon sinks and sources (Schimel et al., 2001). In this case,
comparing the three sites we can see large differences in the mean
annual carbon budgets. It also emphasizes the importance of evaluating
a model across different sites before applying it to the region.

Table 5
Calibration of soybean simulation, part two. Numbers in the table are corre-
lation coefficients and bias (μmolm−2 s−1, in parenthesis) of the simulated
weekly net radiation (Rn), sensible heat flux (H) and latent heat flux (LE).

Model run Rn H LE

Control run: gddmat= default vcmx=100 slatop= 0.07 fleafi=0.85
Control 1:
US-Bo1(1998,2000) 0.98 (−5.92) 0.43 (−0.55) 0.92 (−4.71)
US-Ne3(2002,2004,2006) 0.97 (−5.92) 0.23 (4.19) 0.85 (−0.57)
US-Ro1(2008,2010) 0.94 (−34.71) 0.51 (−18.40) 0.9 (2.37)
Control 1 average 0.97 (−14.15) 0.36 (−3.62) 0.88 (−0.91)
Control 2:
US-Bo1(2002,2004,2006) 0.9 (−2.83) 0.33 (5.45) 0.9 (−3.11)
US-Ne3(2008,2010,2012) 0.98 (−3.62) 0.2 (7.51) 0.88 (1.15)
US-Ro3(2009) 0.93 (−17.8) 0.63 (−13.97) 0.87 (1.28)
Control 2 average 0.94 (−5.31) 0.32 (3.56) 0.89 (−0.66)
Total site-year average 0.95 (−9.73) 0.34 (−0.03) 0.89 (−0.78)
Calibration run: gddmat*0.8, jday*0.8 vcmx=80 slatop=0.06 fleafi=0.68
Calibration:
US-Bo1(1998,2000) 0.98 (−9.94) 0.49 (1.36) 0.91 (−10.44)
US-Ne3(2002,2004,2006) 0.98 (−13.87) 0.48 (7.35) 0.91 (−11.60)
US-Ro1(2008,2010) 0.95 (−39.19) 0.56 (−16.81) 0.88 (−4.06)
Calibration average 0.97 (−19.98) 0.5 (−1.26) 0.9 (−9.12)
Validation:
US-Bo1(2002,2004,2006) 0.9 (−7.05) 0.5 (5.88) 0.95 (−7.59)
US-Ne3(2008,2010,2012) 0.98 (−11.35) 0.41 (10.33) 0.91 (−9.26)
US-Ro3(2009) 0.93 (−21.01) 0.72 (−14.72) 0.93 (−1.26)
Validation average 0.94 (−10.89) 0.49 (4.85) 0.93 (−7.40)
Total site-year average 0.96 (−15.43) 0.5 (1.79) 0.91 (−8.26)

Fig. 11. Calibration of the model CLM4-CropM for soybean. Weekly averaged simulated soybean LAI, NEE, GPP and ER were compared with observations over 14
site years. The blue dotted line represents results for the uncalibrated CLM4-CropM and the red dotted line represents results for the calibrated model CLM4-CropM’.
Parameters used in the control run and the calibration run can be found in table 3.5(For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article).
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3.7. Sensitivity tests and model calibration

The results above indicate that the over-estimated GPP is one of the
major model deficiencies that needs to be resolved in order to perform
reliable long-term simulations. The model simulated ER is intimately
connected to the GPP simulation because plant maintenance respiration
(MR) is simulated proportional to plant biomass. Growth respiration is
currently simulated as 30% of the available GPP (GPP-MR), and het-
erotrophic respiration is proportional to litter and soil carbon pools,
which are also related to plant biomass. Thus, our sensitivity tests focus
on the simulated GPP. First, we compared the model simulated GPP for
corn and soybean across sites (Fig. 10). The poor simulation of soybean
GPP is consistent across sites and contributed to the overall bias in the
cumulative integrals. The model-observation mismatch in soybean GPP
can be separated into two categories. The first category is site/year
specific errors. For example, we observed unrealistic variations in si-
mulated GPP during the 2008 growing season at US-Ro1 and during the
2009 growing season at US-Ro3. This error was eliminated by reverting
to the original calculation of βt (Eq. (3), i.e. by eliminating the 1.25
soybean drought tolerance factor). This factor was recently introduced

to increase soybean drought tolerance (Levis et al., 2012).
The second category is systematic bias across all sites. For example,

the soybean leaf growth rate during the early growing season was
overestimated across all sites. The estimated harvest time was also
biased late, resulting in a longer growing season for soybean across all
sites. Further, accumulative GPP and ER for soybean were consistently
over-estimated at all sites. In this section, we aimed to improve the
model by reducing the systematic bias across sites to provide more
reliable carbon simulations for corn-soybean systems.

In order to diagnose the potential factors that contributed to the
high bias of GPP simulation for soybean, as well as to diagnose the most
sensitive parameters to carbon flux simulations across sites, a series of
sensitivity tests were carried out across sites. Previously, global sensi-
tivity analyses have been carried out for CLM in which 80 parameters
were investigated with respect to their influence on LAI and carbon
simulations (Sargsyan et al., 2014). However, for crop PFTs in CLM4,
the nitrogen limitation has been turned off, therefore, previous sensi-
tivity tests will differ from those carried out here.

Based on previous analyses of CLM model physiological parameters
(Bilionis et al., 2015; Sargsyan et al., 2014), five parameters were

Fig. 12. Long-term carbon budget simulation at site US-Bo1 (after calibration). The red line is the calibrated CLM4-CropM’ simulation. The green line represents
carbon fluxes calculated using the eddy covariance measured carbon fluxes. The black line is the eddy covariance measured carbon fluxes plus annual yield grain
carbon from the field. The blue line is the default CLM4-Crop simulation (For interpretation of the references to colour in this figure legend, the reader is referred to
the web version of this article).

M. Chen et al. Agricultural and Forest Meteorology 256–257 (2018) 315–333

328



chosen for the sensitivity tests because of their large impact on the si-
mulation of LAI, GPP, and ER. Note here the leaf nitrogen related
parameters were not tested because this version of the model assumes
no nitrogen limitation for cropping systems. The parameters included:
leaf angle distribution factor (χl), specific leaf area at the top of plant
canopy (slatop), initial carbon allocation to leaf (fleafi), the maximum
carboxylation rate of rubisco at 25 °C (Vcmax25), and growing degree
days required to reach plant maturity (GDDmat). Each parameter value
was increased and decreased by 20% (except χl, which was 0 in the
control run. It was increased and decreased by 0.2). The corresponding
changes in LAI, and the carbon fluxes compared to the control run are
shown in Table 3.

The sensitivity tests revealed that among the five parameters,
Vcmax25, slatop and fleafi are the parameters to which LAI, GPP and ER
are most sensitive. This is consistent among the four sites (US-Bo1, US-
Ne3, US-Ro1 and US-Ro3). The sensitivity of NEE to those parameters
varies greatly (Table 3) because NEE is the very small difference be-
tween the large opposing fluxes of GPP and ER. Thus, when describing
model sensitivity to changing parameter values we refer to the gross
fluxes.

The sensitivity of simulated soybean phenology to GDDmat varies
among sites. A 20% reduction of GDDmat at US-Bo1 and US-Ne3 shor-
tened the length of the growing season and therefore had a substantial
influence on LAI, GPP and ER simulations. However, at the two
Rosemount sites, a 20% reduction in GDDmat had very little impact on
LAI or the carbon fluxes. This is because at Rosemount, the model
reached another important threshold (the number of days past planting)
before GDDmat was reached. This indicates that the current use of a
universal GDDmat is not sufficiently general across site locations. For
example, at higher latitudes, soybean cultivars were selected to better
adapt to cooler temperatures and thus require less GDD to reach plant
maturity. Currently most of the crop models use static maximum
growing degree days to estimate harvest time. However, a dynamic
GDDmat that changes with annual mean temperature could represent
this cultivar selection at different latitudes and better predict the har-
vest time. Selecting crop cultivars for better adaptation to local en-
vironment and climate is a process similar to acclimation, but on a
shorter time scale. When simulating crops at the global scale, it is im-
possible to parameterize each crop cultivar, thus a dynamic para-
meterization scheme that considers the cultivar selection will provide

Fig. 13. Long-term carbon budget simulation at site US-Ne3 (after calibration). The red line is the calibrated CLM4-CropM’ simulation. The green line represents
carbon fluxes calculated using the eddy covariance measured carbon fluxes. The black line is the eddy covariance measured carbon fluxes plus annual yield grain
carbon from the field. The blue line is the default CLM4-Crop simulation (For interpretation of the references to colour in this figure legend, the reader is referred to
the web version of this article).

M. Chen et al. Agricultural and Forest Meteorology 256–257 (2018) 315–333

329



more reasonable estimations of the crop phenology and regional carbon
budget.

Following the sensitivity tests, the model was calibrated and vali-
dated using the site-years that have yield information available (for the

purpose of evaluating ER. see Tables 4 and 5). Half of the site-years
were used to calibrate the model and the other half were used to va-
lidate the model. Based on a previous CLM4-Crop model calibration
study (Bilionis et al., 2015), the specific leaf area at top of the canopy

Fig. 14. Linear relationships of soybean
LAI bias (model – observation, a–c) and
climate factors and linear relationships
of Index of agreement of LAI (d–f) and
climate factors at site US-Bo1. The cli-
mate factors are difference of pre-
cipitation and evapotranspiration
during growing season (mm, a,d),
averaged air temperature during
growing season (oC, b,e) and averaged
surface solar radiation during growing
season (Wm−2, c,f). (For interpretation
of the references to colour in this figure
legend, the reader is referred to the web
version of this article).

Fig. 15. Linear relationships of soybean
GPP bias (model – observation, a, b, c)
and climate factors and linear relation-
ships of Index of agreement of GPP
(d,e,f) and climate factors at site US-
Bo1. The climate factors are difference
of precipitation and evapotranspiration
during growing season (mm, a,d),
averaged air temperature during
growing season (oC, b,e) and averaged
surface solar radiation during growing
season (Wm−2, c,f). (For interpretation
of the references to colour in this figure
legend, the reader is referred to the web
version of this article).
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(slatop) was reduced from 0.07 to 0.06 m2 gC−1. The initial fraction of
carbon allocated to leaves (fleafi) was reduced from 0.85 to 0.68 (The
range of this parameter in previous literature is from 0.85 (Levis et al.,
2012) to 0.47 (Twine et al., 2013)). GDDmat was reduced to 80% of the
calculated value. The threshold of days past planting, which is a second
constraint on harvest time, was also reduced by 80%, in order to im-
prove the simulation at sites located at higher latitudes, like Rose-
mount.

Finally, the Vcmax25 was reduced by one half of its observed standard
deviation from 100.7 μmolm−2 s−1 to 80 μmol m−2 s−1(see Section
2.3). There are two reasons for this downward adjustment. First, di-
rectly implementing leaf trait Vcmax25 values into big leaf models like
CLM has been shown to cause overestimated canopy level GPP (Bonan
and Oleson, 2002). Second, most estimates of Vcmax25 ignore the im-
portance of mesophyll resistance assume that the intercellular CO2

concentration is equal to CO2 concentration at the sites of carboxyla-
tion. This can lead to an overestimation of Vcmax by up to 20% (June,
2011; Long and Bernacchi, 2003). We refer to this calibrated version of
the model as CLM4-CropM’.

The calibrated CLM4-CropM’ simulations of LAI, NEE, GPP and ER
over the 14 soybean years across sites were compared with the default
CLM4-CropM results in Fig. 11. After calibration the simulated seasonal
variation and magnitude of those variables was greatly improved. The
correlation coefficients and biases of modeled and observed weekly LAI,
NEE, GPP and ER values are shown in Table 4. Based on this calibration,
the average correlation coefficient of LAI across 14 site-years for soy-
bean increased from 0.75 to 0.87 while the bias of LAI reduced from
1.28 to 0.08m2m−2. Further, the simulations of the gross carbon fluxes
GPP and ER were also improved with increased correlation coefficients
and reduced bias across site years (Table 4). The correlation coefficient
of NEE increased from 0.58 to 0.76. The bias of NEE remained about the
same magnitude before and after the calibration. Again, this is because
NEE is a small difference between two much larger gross carbon fluxes
acting in opposite directions. The CLM4-CropM’ predicted carbon
budget for US-Bo1 between 1997 and 2006 was 1391.8 gCm−2, much
closer to the observed 1543.2 gCm−2 and the bias was reduced by
89.6% (Fig. 12). The site US-Ne3 from 2002 to 2012 was estimated by
CLM4-CropM’ to be a carbon source of 1825.2 gCm−2, in the same
direction but higher than the observed value of 504.9 gCm−2 (Fig. 13).

Overall, with the phenology improvement and across-site calibra-
tion, CLM4-CropM’ was able to significantly improve LAI, energy fluxes
and carbon fluxes simulations across 9 sites.

3.8. Model performance and climate

After calibration, the two models’ biases as well as the new index of
agreement of simulated LAI and GPP were regressed with three climate
factors: the difference between precipitation and evapotranspiration
during growing season (calculated as April to September), mean
growing season temperature, and the mean growing season net radia-
tion (Figs. 14 and 15). The difference of modeled corn and soybean
response to climate conditions are quite large, thus we analyzed the
corn years and soybean years separately (for corn years see Figs. S1 and
S2).

Overall, CLM4-CropM’ has lower biases and higher indices of
agreement with observations than CLM4-Crop for both soybean and
corn for almost all climate conditions. CLM4-Crop overestimated both
LAI and GPP at US-Bo1. For LAI, CLM4-Crop performs better in wetter
(Fig. 14a, d) and warmer (Fig. 14c, e) years, while in the drier year
2000 (soybean) and 2001 (corn) when the growing season water budget
is negative, CLM4-Crop largely overestimated LAI. CLM4-CropM’ sig-
nificantly improves LAI simulation in drier climate condition with
lower bias and index of agreement closer to 1. Although the overall
improvement was obvious, CLM4-CropM’ underestimated LAI in two
warmer years, 1998 and 2002, compared to overestimated LAI in the
default model in those two years, indicating a higher model LAI

simulation sensitivity to higher temperature. While both CLM4-Crop
and CLM4-CropM’ provides better simulation of GPP in colder years,
CLM4-CropM’ provides higher index of agreement and lower bias for all
soybean years (Fig. 15).

4. Conclusions

This study used data from nine AmeriFlux sites (54 site-years) to
examine the performance of two versions of CLM4-Crop (CLM4-Crop
and CLM4-CropM) in capturing seasonal variations in leaf area index
(LAI), NEE, ER, and GPP, as well as long term carbon budgets for agro-
ecosystems. Some key parameters were analyzed and the model was
calibrated across sites for soybean simulations. Our analyses indicate
that:

1 Biases in CLM4-Crop simulated early growing season LAI were
consistent across the 40 site years where LAI data were available.
Evaluation of results showed that compared to the default crop
phenology algorithm currently used in CLM4-Crop, the GDT ap-
proach improved the early growing season phenology, with better
timing of leaf emergence and better representation of inter-annual
variations across all sites. The high bias in early growing season LAI
that was found in CLM4-Crop simulations has been largely reduced
using the GDT approach and this is consistent across sites. However,
in both models, soybean LAI was generally overestimated, especially
in drier conditions.

2 LE was better simulated than H by both models (r= 0.76 and 0.77
for CLM4-Crop and CLM4-CropM, respectively) (r= 0.60 and 0.65
for CLM4-Crop and CLM4-CropM, respectively) at all sites. The GDT
method notably improved sensible heat flux simulation.

3 Consistent overestimation of the carbon sink strength in CLM4-Crop
accumulated in the long-term carbon analysis and resulted in a near-
neutral carbon budget instead of a carbon source for most of the
sites (except US-Ne3 where it estimated a carbon sink). After phe-
nology improvement, NBP, GPP and ER were well estimated for corn
years in CLM4-CropM. For soybean, the NBP budgets were reason-
ably estimated in CLM4-CropM but GPP and ER were overestimated.
This was consistent across all sites.

4 Sensitivity tests show that Vcmax25, slatop and fleafi were the para-
meters that LAI, GPP and ER are mostly sensitive to. GDDmat largely
affects the length of the simulated growing season at lower latitude
sites but did not affect the LAI simulation at the more northerly
Rosemount sites. The calibrated model CLM4-CropM’ generally had
shorter growing season, reduced GPP and ER than CLM4-Crop, and
also gave more positive carbon budgets, which were closer to the
observations. The overestimation of annual GPP and ER for soybean
was reduced by 84.7% and 72.7%, respectively, in the calibrated
CLM4-CropM’ model.

5 CLM4-Crop LAI simulation was better in wetter and warmer years,
while the model largely overestimated LAI in drier years. For GPP
simulation, CLM4-Crop did better in colder years, and overestimated
LAI in warmer years. CLM4-CropM’ improved LAI and GPP simu-
lation in almost all climate conditions. However, in very warm
growing seasons the model underestimated LAI.

In general, the calibrated CLM4-CropM’ showed robust estimation
of crop phenology, energy and carbon fluxes at all the sites. Although it
still has some deficiencies (i.e., slight overestimation of the early
growing season GPP), we expect it to give reasonable estimations over
the US Corn Belt.
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