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a b s t r a c t

All-black thermopile pyranometers are commonly used to measure solar radiation. Ensuring that the sen-
sors are stable and free of drift is critical to accurately measure small variations in global solar irradiance
at the Earth’s surface (K↓), which is a potential driver of changes in surface temperature. We demonstrate
that the decreased responsivities of Eppley PSP pyranometers of −1.5% y−1, or −0.38% (GJ m−2)−1, were
accompanied by a change in its spectral response owing to a discoloration of the sensing element. These
observations motivated further work to develop routines to detect probable pyranometer drift in his-
torical time-series. The temporal trends in the following ratios were used to detect pyranometer sensor
drift: photosynthetically active radiation (PAR) to K↓, K↓ to KEX (extraterrestrial radiation at the top of
the atmosphere) and PAR to KEX. Data from 8 AmeriFlux sites spanning latitudes from ∼32 to 54◦N were
examined in this analysis. Probable drift in either a pyranometer or PAR sensor was identified at 5 of the
8 sites. The magnitude of the drift represented changes of 0.15–0.85% y−1, which is sufficient to obscure
actual trends in K↓, although these should be considered conservative low end drift estimates, given that
we were not making comparisons to co-located higher grade instruments. Deployment exposure errors
caused by sensor shading were also discovered by comparing the daily correlations between (i) K↓ and
KEX and (ii) PAR and KEX. Sensors drifting at rates similar to our defective PSP over a 5 year period would
contribute to an underestimation of available energy of ∼70 W m−2, which is non-trivial in the context of
assessing eddy covariance energy balance closure, employing Penman-Monteith or Bowen ratio methods
or calculating albedo radiative forcings. Given that probable drift was identified at multiple AmeriFlux
sites, we recommend enhancing network access to calibration services that are traceable to a high quality
gold standard.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Solar radiation, sometimes referred to as shortwave radiation,
is the primary input of energy to the climate system. The sur-
face shortwave radiative fluxes – incoming (K↓) and outgoing (K↑)
– are important drivers of available energy (net radiation, Rn),
and are of interest in the context of understanding variations in
evapotranspiration (ET) and atmospheric circulation. Therefore, K↓
is a key forcing variable in global climate and regional weather
forecasting models, while Rn is used for assessing energy bud-
get closure for eddy flux QA/QC (Leuning et al., 2012), and as an
input for estimating ET by the Penman-Monteith or Bowen ratio
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methods. In addition, the shortwave spectrum contains the entire
photosynthetically active radiation (PAR) band, which is a critical
variable controlling gross primary production. Furthermore, there
has been growing interest in evaluating the radiative forcings asso-
ciated with land-use changes that modulate surface albedos and
net ecosystem CO2 exchange (NEE) (Arora and Montenegro, 2011;
Betts, 2000; Georgescu et al., 2011). Accurate records of shortwave
radiative fluxes at the surface are thus needed to support a wide
range of research activities.

The most common sensor deployed to measure hemispherical,
broadband solar radiative fluxes is the thermopile pyranometer
(Stanhill and Cohen, 2001), which is currently available from a
variety of manufacturers. The availability and relative simplicity
of these sensors belies the fact that making accurate K↓ and K↑
solar radiation measurements is a non-trivial exercise. Beyond
errors induced by improper deployment and maintenance (e.g.,
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leveling, dome cleaning or clearing and shading from other tower
components), known issues with thermopile pyranometers include
thermal offsets (Bush et al., 2000; Philipona, 2002) and directional
response errors (Myers et al., 2002). Applying corrections (Dutton
et al., 2001; Ji, 2007), custom sensor modifications (Bush et al.,
2000; Haeffelin et al., 2001; Ji and Tsay, 2010; Ji et al., 2011),
conditioning with heated ventilation (Philipona, 2002) or deploy-
ing more recently developed pyranometers can effectively control
these errors. However, a significant challenge that remains is long-
term sensor stability, something that can only be mitigated by
regular and frequent calibrations.

The contamination of solar radiation time-series with calibra-
tion drift makes it impossible to accurately track long-term trends
that have been estimated to be on the order of −0.5 W m−2 per year
from the 1960s through the late 1980s (Stanhill and Cohen, 2001),
with updated analyses suggesting brightening of a similar magni-
tude during the 1990s (Wild et al., 2005). Practices are thus needed
to prevent sensor drift from contaminating long time-series of radi-
ation data. For the highest measurement accuracy, manufacturers
recommend 1–2 year intervals between calibrations, although high
quality networks generally require calibration at least once per
year if not more. Although calibrations correct responsivity drift,
these procedures do not fully account for physical changes to the
sensing element. Calibrations are typically performed by match-
ing the response of a field deployed pyranometer to a reference
sensor under controlled indoor or ambient outdoor conditions (ISO
9847:1992). Unfortunately, this procedure will be unable to ade-
quately correct for drift that is due to changes in spectral response
caused by physical changes to the sensing element, such as fading
of the black paint (Riihimaki and Vignola, 2008).

Frequent sensor calibration remains the best practice to
ensure that high quality data are collected, and is the standard
operating procedure in radiation monitoring networks such as
SURFRAD (Surface Radiation Network; (Augustine et al., 2005))
or BSRN (Baseline Surface Radiation Network; (Ohmura et al.,
1998)). The challenge is that sites belonging to the highest quality
radiation monitoring networks remain sparsely distributed in
space. For example, there are currently seven sites distributed
across the conterminous United States in the SURFRAD network
(http://www.esrl.noaa.gov/gmd/grad/surfrad/sitepage.html)
and 51 sites providing global coverage in BSRN
(http://bsrn.awi.de/stations/maps.html). In order to improve spa-
tial coverage for regional or ecosystem scale studies, researchers
may therefore, be forced to use data from stations where the
calibration history is either not known, or it is known that the
calibration frequency is less than ideal.

Developing approaches that researchers can use to screen short-
wave radiation data to detect probable calibration drift is thus
warranted from the standpoint of increasing spatial data cover-
age while attempting to minimize sacrifices in accuracy. This tool
would be of value from the perspective of maintaining sensors at
active sites, as well as for post-hoc screening of long-term datasets
when performing site syntheses. We hypothesize that drift and step
changes in responsivity will be more easily detectable in time-
series of the ratios of different radiative fluxes than in the raw
time-series of the individual sensors.

Here, we highlight the decay in responsivities of all-black ther-
mopile pyranometers from observations where we have co-located
stable measurements. We show that this decay was accompanied
by a change in the spectral response of the sensing element, and dis-
cuss implications for long-term monitoring campaigns. A method
to detect calibration drift and step changes in K↓ time-series based
on examining the ratios of: (i) K↓ to KEX, (extraterrestrial radia-
tion at the top of the atmosphere), (ii) photosynthetically active
radiation (PAR) to K↓, and (iii) PAR to KEX will be presented and
evaluated.

2. Materials and methods

2.1. Calibration drift due to radiation exposure

This analysis uses historical data collected at Rosemount MN,
USA, as well as results from a sensor inter-comparison performed
where four all-black thermopile pyranometers (model PSP, The
Eppley Lab Inc., Newport RI) that were initially deployed in 2002
were evaluated. Two had been deployed facing upwards to measure
K↓ and the other two facing downwards to measure K↑. Systematic
differences of ∼10% between the two upward facing PSPs had been
observed in the past, which was unexpected because the sensors
were deployed within 1 km of one another. Therefore, an inter-
comparison was initiated to evaluate the performance of the PSPs.
In autumn 2013, the four PSPs were co-located with one black and
white (BW) pyranometer (model 8-48, The Eppley Lab Inc.) that
had not been field-deployed and was thus presumed to be free of
radiation exposure induced calibration drift.

The pyranometers were deployed from September 20 through
September 30 on a flat surface at a height of 1.5 m. Measure-
ments were taken every 30 s, and half-hourly averages recorded
using a datalogger (model 21X, Campbell Scientific Inc., Logan,
UT). In order to better understand the findings from the inter-
comparison, historical data from 2006 to 2010 were revisited. In
presenting and discussing the results, we differentiate between the
PSPs based on their deployment history – G21 or I10 refers to the
most recent fields in which sensors were located, while ‘upwards’ or
‘downwards’ describes the orientation of the pyranometers during
historical deployment, and not the orientation during the inter-
comparison, for which they were all facing up.

2.1.1. Data processing
To minimize the effects of cosine response errors, solar radiation

data were discarded when the solar zenith angle was >70◦. When
checking the sensors one morning, we noticed that condensation
had formed on the outer surface of the domes on all pyranome-
ters. This problem can be minimized with heating or ventilation
(Phillipona, 2002), which we routinely employ for upward-facing
instruments. In this case, there were not enough ventilators for all
instruments. Therefore, more stringent filtering was implemented,
whereby all data with timestamps of 1100 h (LST) and earlier were
discarded. Data obtained during rainfall events were also discarded
to prevent artifacts associated with variable condensation on the
domes from affecting the comparison. All regression analyses were
performed using the robustfit.m algorithm in MATLAB (The Math-
works Inc., Natick, MA), using the default ‘bisquares’ weighting
function. In most cases two linear models were considered, one
forced through the origin while the other included an intercept
term. From a sensor physics perspective, the model forced through
the origin is more appropriate because the response of a pyra-
nometer in the absence of incident radiation should be 0 W m−2.
Thermal offset errors are, however, known to affect PSPs (Bush et al.,
2000; Philipona, 2002) which could result in a non-zero intercept.
Therefore, considering a model that includes an intercept term is
warranted to extract as much information as possible. Parameter
estimates were compared using two-tailed t-tests.

2.2. Detecting drift in historical data

We developed an approach to identify drift by examining the
temporal trends in the three ratios: (i) PAR/K↓, (ii) K↓/KEX, and (iii)
PAR/KEX. We recognize that atmospheric optical depth can vary in
response to anthropogenic and natural factors (Ramanathan and
Feng, 2009), which makes detecting sensor drift a challenge. We
therefore, took steps to minimize the effect that real trends in the
observed radiation variables would have on sensor drift detection.

http://www.esrl.noaa.gov/gmd/grad/surfrad/sitepage.html
http://bsrn.awi.de/stations/maps.html
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Using co-located measurements was desirable from the perspec-
tive of avoiding the possibility that there was sufficient spatial
variation in atmospheric composition to obscure drift detection
implemented by comparison with other sites. A brief discussion
of the steps that were taken to minimize false drift identification
will now be provided.

Normalizing by measured KEX eliminates the possibility that
variations in solar emittance are responsible for real trends in PAR
and K↓, confining the possible causes to changes in atmospheric
transmissivity or drift. The remaining ratio, PAR/K↓ provides
further constraints, and has the advantage of having both mea-
surements being made at the surface. We defined sets of temporal
trends in each ratio, that if observed would indicate probable drift
in one sensor (i.e., pyranometer or PAR sensor), and simultaneously
eliminate, or at the very least, minimize the contaminating effects
of changing atmospheric transmissivity. The sets of defined trends
indicative of probable drift are outlined in Table 1. For example,
the expected set of trends for a downward drifting pyranometer
(and stable PAR sensor) is: upward trending PAR/K↓, downward
trending K↓/KEX, and stable PAR/KEX.

For comparison purposes, the expected temporal trends in the
ratios that would accompany real trends in the radiation fluxes due
to varying atmospheric composition are also provided in Table 1.
A key point is that in order to confidently identify drift, it was nec-
essary to observe sets of trends consistent with those prescribed
in Table 1 in the “Drift” section. It must be underscored that with
this approach we can only identify drift if one of the two sensors is
stable. That is, to ascribe pyranometer drift, a stable PAR/KEX ratio
is required. Conversely for a drifting PAR sensor, a stable K↓/KEX
ratio is needed. We will now consider the factors that influence
the transmission of shortwave radiation through the atmosphere,
whether they are important in the context of contaminating drift
detection, and if so, how our approach minimizes these effects.

Changes in atmospheric composition sufficient to radically alter
the magnitudes of Rayleigh scattering, and absorption by uniformly
mixed gases and ozone; and thus, control multi-year trends in
K↓ are unlikely (Stanhill and Cohen, 2001). The most plausible
drivers of K↓ trends due to variations in atmospheric transmissivity
are cloud scattering, water vapor absorption and aerosol scatter-
ing/absorption. Although, changes in aerosol optical depth (AOD)
has been identified as the most probable cause of large-scale K↓
trends over the land surface (Stanhill and Cohen, 2001; Wang et al.,
2012 Wild et al., 2005), it is important to consider how these three
factors – clouds, AOD, and water vapor absorption – could interfere
with sensor drift detection.

The algorithms select a sample of data from the clearest days,
using K↓/KEX as the metric, to eliminate cloud effects, and pre-
vent natural seasonal variations in the ratios from obscuring drift
detection. Furthermore, this approach selects for the days that are

least affected by aerosols and water vapor. Let us now consider
some scenarios to explore the extent to which variations in atmo-
spheric composition might interfere with drift detection, beginning
with changes in AOD. It is improbable that changes in AOD will
have no effect in the PAR waveband, therefore, both K↓/KEX, and
PAR/KEX should trend in the same direction, but with differing mag-
nitudes depending on which waveband is more sensitive to the
aerosols. Requiring that one of these two ratios be stable for posi-
tive drift detection (Table 1) therefore, mitigates contamination by
AOD effects. Next we will consider water vapor absorption effects.

Water vapor does not absorb in the PAR waveband. Since only K↓
is affected by water vapor absorption, it is possible that the PAR/K↓
and K↓/KEX ratios display temporal trends in opposite directions,
while PAR/KEX remains stable – a pattern consistent with what
is expected for a drifting pyranometer (Table 1). It is therefore,
important to consider the sensitivity of K↓ to variations in water
vapor, to assess the likelihood that this will interfere with drift
detection. Stanhill and Cohen (2001) estimated that increases of
3 and 6 mm from a global water vapor column average of 25 mm
would increase atmospheric shortwave absorption by ∼1% based
on the work of Ramanathan and Vogelmann (1997) and Arking
(1996), respectively. Further, Stanhill and Cohen (2001) noted that
observed increases in atmospheric water vapor were not sufficient
to significantly alter shortwave absorption during the latter part of
the 20th century. More recently, Wang et al. (2012) estimated that
atmospheric water vapor absorption increased by 1 W m−2 over 30
years during the 20th century dimming period over land. Taken
together, the fact that these are small trends with magnitudes on
the order of 1 W m−2 makes it unlikely that changes in water vapor
absorption will interfere with drift detection since we are selecting
for the clearest days each year, and that if drift is present, it will dis-
play stronger trends over shorter time-scales. A further analysis of
the sensitivity of atmospheric shortwave absorption to changes in
water vapor based on a simple radiative transfer model is provided
in the supplementary information.

2.2.1. Data requirements
In addition to K↓, the approach requires co-located measure-

ments of PAR, and an estimation of KEX. PAR is typically measured
as a photosynthetic photon flux density (PPFD; �mol m−2 s−1),
which was multiplied by 0.235 J �mol−1 to convert to a radiative
flux density (Campbell and Norman, 1998) to give dimension-
less radiative flux ratios. The KEX is computed using the cosine
law of illumination with PMOD (Physikalisch-Meteorologisches
Observatorium Davos) total solar irradiance (TSI) estimates
(http://www.pmodwrc.ch/pmod.php?topic=tsi/composite/
SolarConstant) and the known zenith angle for the location’s
latitude, longitude and altitude. The PMOD TSI data are reported
for 1 AU, and were therefore, converted to true Earth–Sun distance.

Table 1
Expected trends in the PAR/K↓, K↓/KEX, and PAR/KEX ratios required to identify sensor drift and the expected ‘real’ trends in the ratios (for properly functioning sensors) for
various scenarios where changes in atmospheric composition affect its transmissivity.

Trenda

Scenario
PAR
K ↓

K ↓
KEX

PAR
KEX

Driftb Pyranometer drift down, PAR sensor stable ↑ ↓ 0
Pyranometer drift up, PAR sensor stable ↓ ↑ 0
Pyranometer stable, PAR sensor drift down ↓ 0 ↓
Pyranometer stable, PAR sensor drift up ↑ 0 ↑

Real trends in
atmospheric
composition affects
PAR and K↓

Increasing aerosols, lower PAR sensitivity (�PAR < �K↓)c ↑ ↓ ↓
Decreasing aerosols, lower PAR sensitivity (�PAR < �K↓) ↓ ↑ ↑
Increasing aerosols, higher PAR sensitivity (�PAR > �K↓) ↓ ↓ ↓
Decreasing aerosols, higher PAR sensitivity(�PAR > �K↓) ↑ ↑ ↑
Increasing water vapor ↑ ↓ 0

a Increasing trend = ↑; decreasing trend = ↓; no trend = 0.
b Temporal trends in the ratios required to diagnose drift.
c �PAR and �K↓ refer to changes in PAR and K↓ over time, respectively.

http://www.pmodwrc.ch/pmod.php?topic=tsi/composite/SolarConstant
http://www.pmodwrc.ch/pmod.php?topic=tsi/composite/SolarConstant
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The PMOD data were used because the most reliable TSI product
available from the SORCE (Solar Radiation and Climate Experiment)
mission began in 2003 (Myhre et al., 2013), and did not permit the
assessment of data collected in the 1990’s.

2.2.2. Data screening and calculations
Prior to subjecting data to the detection algorithm, they must

be screened to permit the detection of the small drift in the pres-
ence of natural fluctuations in radiative fluxes, and to prevent other
errors from contaminating the analyses. First, all data with zenith
angles >60◦ were discarded to avoid directional response errors.
To minimize the impact of varying optical depth, calculations were
performed using a subset of data associated with the highest, clear-
sky K↓/KEX ratios. We only considered years where instrument
failure did not decrease data retention below 90%.

For each year of available data, the 24 highest K↓/KEX ratios were
obtained along with the corresponding PAR/K↓ and PAR/KEX ratios
and timestamps. Data were sampled from the clearest-sky days
(with at least 5 h of data), which were identified based on the cor-
relation between the first derivatives of valid K↓ and KEX data. The
PAR, K↓ and KEX flux densities were drawn from the 2 h bracketing
the minimum daily zenith angle on the days with the highest corre-
lation coefficients. Using a sample size of 24 was a balance between
including enough data to minimize statistical noise within a year,
but not including so much data that optical depth effects contami-
nate the analysis. These de-noised data series were then subjected
to the drift detection algorithms (described below).

Drift detection was accomplished by subjecting each of the 3
ratios to linear regression and change point detection analyses in
an iterative procedure. Change point detection was included in case
the pyranometer experienced an initial stable period before drift-
ing – example traces of the three ratios for cases of a systematically
downward drifting pyranometer with no stable period and an ini-
tial stable period are provided in Fig. 1a and b, respectively. During
each iteration, separate linear regression analyses were performed
where each ratio was a response variable and time was the explana-
tory variable. Change point detection was carried out similar to
Wang (2003), except that not all permutations of segmenting the
data were considered in order to prevent real short-term varia-
tions from being flagged as a change point. The classic change point
model is:

X(t) =
{

a1 + b1t + �t, 1 ≤ t ≤ c

a2 + b2t + �t, c < t ≤ n
(1)

where X(t) is a time-series variable, a and b are regression param-
eters, �t are residuals, and c is the change point. An iterative
procedure was used to find statistically significant change points.
At each iteration an F-value is calculated to permit significance test-

Fig. 1. Temporal trends in the PAR/K↓ (green), K↓/KEX (orange) and PAR/KEX (blue)
ratios for a pyranometer exhibiting steady downward calibration drift (a: linear
models), and for a pyranometer that is stable for a time and then has a downward
calibration drift (b: change point models). In panel (b) the vertical red dashed line
denotes a change point in the PAR/K↓ and K↓/KEX signals. Note that these data are
illustrative and not to scale. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article).

ing. We modified the procedure to prevent short-term variations
from being positively identified as change-points, because we were
interested in long-term trends. We shifted c by 12 positions – half
of the observations for a year – on each iteration. More specific
details pertaining to change point detection are provided in the
supplementary information.

The analysis was initialized using the first 3 years of data, after
which subsequent data were added one year at a time, until either
(a) iterations were terminated based on meeting specific criteria
that are suggestive of drift, or (b) no drift was detected in the data.
Selecting appropriate criteria for terminating the loop is essential
to the successful implementation of diagnosing calibration drift.
Because we were examining variables that exhibit natural varia-
tion, we required that a significant trend had to be observed for
a minimum of 3 years before diagnosing drift. Furthermore, for a
pyranometer drifting −1.5% y−1, it would take 3 years before the
bias overwhelms the measurement uncertainty. This 3 year rule
was applied to interpreting both the simple linear regression and
change point models. In the change point case, we did not consider
significant change points where the second segment of data was
shorter than 3 years.

During each iteration the linear and change point models were
fit to the PAR/K↓ and K↓/KEX time-series. Upon meeting the criteria
for terminating iterations, the models were then fit to the asso-
ciated PAR/KEX data, in one step without iterating. This was done
because analysis of PAR/KEX was used as a check on the PAR sen-
sor stability, and not as a primary identifier of pyranometer drift.
Loop termination criteria and additional evidence considered when

Table 2
Summary of criteria that terminate the iterative drift detection procedure and additional considerations for interpreting the results.

Loop termination scenario Criteria for loop termination Additional considerations

(1) Consistent calibration drift • 3 year data block analyzed
• PAR/K↓ and K↓/KEX slopes significant
• PAR/K↓ and K↓/KEX slopes have opposite direction (sign)

• PAR/KEX slope is 0, and no significant change points with
≥3 years of data in segment 2

(2) Change point • 3 years of data after the change point
• Statistically significant change points in PAR/K↓ and

K↓/KEX time-series
• Segment 2 PAR/K↓ and K↓/KEX slopes significant and

different sign

• PAR/KEX slope is 0, and no significant change points with
≥3 years of data in segment 2

• PAR/K↓ and K↓/KEX change points within ±0.5 years
• Within a time-series, segment 1 and 2 slopes

significantly different
• Significant linear PAR/K↓ and K↓/KEX of opposite sign

that agree with change point segment 2 slopesa

a The point at which calibration was deemed necessary is based on the average change point, however, the presence of significant linear trends that agree with the direction
of segment 2 change point slopes is further evidence of drift.
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Table 3
Site-years of data used for evaluating drift detection algorithms.

Site (years) Lat (◦N), long (◦W), alt (m) Pyranometer model Reference

CA-Oas (1997–2008) 53.6289, 106.1978, 600 PSPa (Amiro et al., 2006)
CA-Obs (1997–2008) 53.9872, 105.1178, 598 PI preference (Bergeron et al., 2007)
CA-Cbo (1996–2003) 44.3185, 79.9342, 211 PSP (Gu et al., 1999)
US-Bo1 (1996–2008) 40.0062, 88.2904, 219 CM3b (Meyers and Hollinger, 2004)
US-NR1(1996–2003) 40.0329, 105.5464, 3050 CM3 (Turnipseed et al., 2002)
US-Ro1 (2006–2010) 44.7143, 93.0898, 260 PSP (2) (Baker and Griffis, 2005)
US-Srm (2004–2012) 31.8214, 110.8661, 1116 CM3 (Potts et al., 2008)
US-Wkg (2004–2012) 31.7365, 109.9419, 1531 CM3 (Scott, 2010)

a The stated non-stability of the PSP is ±0.5% y−1.bThe CM3 pyranometer was a component of a model CNR1 4-component net radiometer (Kipp and Zonen USA Inc.,
Bohemia, NY). The CM3 has a stated non-stability of ±1% y−1.

interpreting the results are provided in Table 2. Model parameters
were declared statistically significant at p < 0.05.

We applied the drift detection algorithms to data from eight
AmeriFlux sites (Table 3). Recent interest in understanding ecosys-
tem responses to climate change has led to the establishment of
monitoring networks devoted to continuously measuring water
and carbon fluxes (Baldocchi et al., 2001). At these sites, the
emphasis is usually on measuring net ecosystem CO2 exchange
(NEE) as well as sensible (H) and latent (LE) heat fluxes, with
ancillary climatological variables monitored to aid in data inter-
pretation. The challenge is that at sites where the primary focus is
on measuring carbon and water fluxes as is the case with Amer-
iFlux, the frequency of pyranometer calibration may be longer
than is ideal because of funding constraints or a greater empha-
sis on maintaining more complicated instrumentation, such as
eddy covariance systems. The AmeriFlux network deploys roving
tower measurement systems for periodic QA/QC of turbulent fluxes
and meteorological variables to help maintain network-wide data
integrity, and have reported low average relative instrument errors
of −0.57 ± 0.535% (se) for K↓ (Schmidt et al., 2012). However, with
100 active sites at the time of their publication and an average of 8.5
site visits per year between 2002 and 2012 (Schmidt et al., 2012),
the time between inter-comparisons for a given location would be
on the order of ∼12 years.

Sites were selected such that there would be locations charac-
terized by higher (<35◦N, desert), mid-range (40–45◦N) and lower
(>50◦N) levels of solar radiation exposure. Measurements of K↓
were made using PSP and CM3 pyranometers. In the cases where
the CM3 was used it was a component of a CNR1 four compo-
nent net radiometer (Kipp and Zonen USA Inc., Bohemia, NY). The
reported non-stabilities of the PSP and CM3 are ±0.5 and ±1% y−1,
respectively. The K↓ data posted for one site (CA-Obs) was a PI-
preference, which indicates that the time-series were a synthesis of
their highest quality data. These data were examined in the context
of identifying discontinuities associated with merging data from
multiple sensors. Refer to the supplementary information for the
K↓ and PAR data included in this analysis (Fig. S2). Clear differences
in the solar radiation environments of the three broad groupings
were evident.

3. Results and discussion

3.1. Observed calibration drift

Ensemble average K↓ data collected during the inter-
comparison are provided in Fig. 2. Note that the data filtering
did not eliminate daily maxima. Observed systematic differences
between the sensors were most evident at around solar noon when
K↓ was near the daily maximum. The BW measurements were
systematically higher than all the PSPs, while the two PSPs that
had historically been deployed facing ‘down’ were similar, and
always higher than the other PSPs that had been mounted facing
‘upwards’. There was excellent agreement between the ‘down-

Fig. 2. Ensemble averaged incoming solar radiation (K↓) measured during the sen-
sor inter-comparison from Sep 20 through 30 (DOY 263–273) 2013. Data between
the vertical dotted lines were retained for regression analyses.(For interpretation of
the references to color in this figure legend, the reader is referred to the web version
of this article).

ward’ facing PSPs, with a linear regression slope of 1.002 ± 0.0033
(se) (p < 0.001), and an insignificant intercept of −1.9 ± 1.8 W m−2

(p = 0.295). Forcing through the origin resulted in a slight decrease
in the slope estimate to 0.998 ± 0.0009 (p < 0.001). Because of the
excellent agreement, the mean of the data from these two sensors
was used in subsequent analyses involving the ‘downward’ facing
PSPs.

Upon regressing the ‘upward’ facing G21 and I10 PSP
signals against the mean signal from the ‘downward’ PSPs,
differences in responsivities were found as evidenced by differ-
ent slopes that diverged from unity (slopeG21 = 0.880 ± 0.0011;
slopeI10 = 0.935 ± 0.0024) (Fig. 3a and b). This was expected,
because a discoloration of the black paint on the sensing elements
(to a noticeable green tint) on the ‘upward’ PSPs had been observed
(e.g., Fig. 3c vs. d), with more severe fading noted for the G21 sensor.
This discoloration represents a decreased absorptivity of the sens-
ing element, which causes a systematic underestimation of K↓. The
green discoloration indicates an increased reflectivity in the green
band of the solar spectrum, thus the downward calibration drift
was accompanied by a change in spectral response. The G21 upward
PSP should display larger bias due to the more severe discoloration,
an assertion that was supported by the greater underestimation of
K↓ revealed by regression analyses (Fig. 3a). A subset of historical
radiation data was analyzed to further examine this degradation in
responsivity.

Data from the two ‘upward’ PSPs were compared to a co-located
BW for years 2006–2010. In this case, BW data were used as the ref-
erence K↓ measure. This may seem counterintuitive because BW
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Fig. 3. Comparison of upward facing PSPs with downward facing PSPs. Panel (a) displays the results of the regression analyses, and panel (b) the residuals as a function of
predicted values (upper) and time-of-day (lower). Panels (c) and (d) are photographs of discolored and normal PSP sensing elements. The greening discoloration causes the
underestimation of radiation. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

pyranometers are classed lower than PSPs according to the WMO,
because their directional responses deviate further from the ideal
case than do PSPs. However, data from the ‘upward’ PSPs were
suspect due to the noted discoloration (Fig. 3c). To minimize the
effect of directional response errors in the historical analyses, more
stringent filtering was performed whereby data were limited to
solar zenith angles <65◦. For each year, half-hourly average PSP
responses were regressed against the BW responses. The slopes
from these regressions were used as estimates of the PSP respon-
sivity relative to the BW (which was stable) in each year. Relative
responsivities deviating from a value of 1 indicate that the respon-
sivity of the PSP is changing compared to the BW, with trends
yielding estimates of the magnitude and direction of PSP drift.

The PSP responsivities decreased linearly from 2006 to 2010
(Fig. 4a). Although the absolute responsivities differed between
PSPs, the temporal trend was similar. Indeed, the slopes of linear fits
to each data series did not differ significantly according to a t-test
(p = 0.921). The mean rate of responsivity decay was estimated as
−1.5 ± 0.19% y−1. This rate of decline was within the range noted in
Riihimaki and Vignola (2008), which summarized several sources
and reported decreases in PSP responsivities of up to 1.9% y−1. They
also pointed out that exposure to radiation was the critical factor in
determining the rate of decay, which supports the findings in this
inter-comparison where there was no visible color change for the
‘downward’ PSPs (Fig. 3c vs. d). To further explore the responsivity
decay, a relationship with radiation exposure was established.

Upward facing PSP responsivities as a function of cumulative
integrated K↓ (measured by a BW) are provided in Fig. 4b. The gen-
eral trend was similar to the time-dependent relationship, because
for upward facing pyranometers, time is an excellent proxy for
radiation exposure. As was the case with time as the explanatory
variable, there was no difference in the responsivity decay rate
according to a t-test (p = 0.940). The mean responsivity degrada-
tion rate as a function of radiation exposure was −0.38 ± 0.054%
(GJ m−2)−1. From 2006 to 2013, the exposures of the G21 and I10
‘downward’ PSPs were ∼6.3 and ∼7.2 GJ m−2, respectively. Assum-
ing degradation caused by radiation exposure is an integrated
effect that is independent of intensity or spectral characteristics,
the resultant decreases in responsivity for the G21 and I10 down-
ward PSPs were predicted to be 2.4% and 2.7%, respectively. The
importance of radiation exposure in decreasing responsivity is
underscored by the fact that the ‘downward’ PSPs did not suffer the
same level of degradation as the ‘upward’ facing sensors (Fig. 3a),
however, the fact that they were biased low compared to the BW
sensor (Fig. 2) suggests that there was some downward calibration
drift.

The cause of the stark differences in the absolute responsivities
during 2006–2010 (Fig. 4) for the G21 and I10 ‘upward’ PSPs is
unclear because they were deployed at similar times. It is possible
that the paint used on the sensing elements came from different
batches and that the one used for the G21 ‘upward’ PSP was less
stable.
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Fig. 4. Change in PSP (a) responsivities for a subset of years (2006–2010), and (b) the responsivities as a function of absorbed solar radiation (GJ/m2). All regression parameters
were significant (p < 0.01). Each symbol represents a relative responsivity that was calculated as the slope of a linear regression of the broadband incoming solar radiation
fluxes measured by PSP’s on measurements from a black and white pyranometer that was stable. Deviations from a value of 1 are reflective of a drifting PSP sensor. The
slopes represent drift estimates for each PSP.

This analysis of responsivities assumed that the BW pyranome-
ter was stable over time. In an effort to test the validity of this
assumption, the annual mean ratios of PAR to K↓ measured by the
BW were examined to identify possible changes in BW responsiv-
ity. Therefore, if the PAR/K↓ ratio exhibited a temporal trend it was
expected to be due to a change in BW sensor characteristics. Lin-
ear fits of PAR vs. K↓ fluxes were calculated for each year, and the
slope taken as the estimate of the annual PAR/K↓ ratio. The PAR/K↓
ratio ranged from 0.48 to 0.51, and there was no temporal trend, as
evidenced by an insignificant slope parameter estimate (p = 0.498)
supporting the assertion that the BW was relatively stable from
2006 to 2010.

In summary, PSP responsivities clearly decreased as a function
of radiation exposure. It appears that degradation may differ among
individual PSPs based on the quality of the paint used on the sensing
elements, and that ‘good’ quality paint may have an initial stable
period. However, once responsivity decay began, the rates were
similar and relatively constant as a function of radiation exposure at
0.38 ± 0.054% (GJ m−2)−1. For a site like Rosemount MN with annual
insolation of approximately 3.95 GJ m−2 y−1, this corresponds to a
time-dependent decay of 1.5 ± 0.19% y−1.

A critical point of note is that the declining responsivity was
accompanied by a change in spectral response owing to the dis-
coloration of the black paint on the sensing element. In this case,
routine calibration procedures will correct the responsivity for the
specific conditions during the procedure. Once re-deployed, the
calibrated pyranometer will only be accurate when incident radi-
ation has the same spectrum as the calibration radiation source,
which may not be the case. For instance, the spectral distribution
of K↑ varies with surface conditions, and differs from K↓ (Michalsky
and Hodges, 2013). The only remedy for the discoloration issue is
re-conditioning (i.e., re-painting) the sensing element prior to cal-
ibration. Careful examination of the sensing elements of all-black
pyranometers, and PSP’s in particular, is therefore, recommended
to guard against discoloring sensing elements. We found that out-
door, ambient light conditions made it difficult to discern the
discoloration except for the most extreme case – it was, however,
more noticeable indoors under fluorescent lights.

Fig. 5. Implications of pyranometer drift on (a) incoming (Kdown) and net (K*)
solar radiation over time, assuming a true incoming solar radiation of 1000 W
m-2, and a surface albedo of 0.13. In (a) the error bars represent the measurement
uncertainty (±2%) and the horizontal dotted line represents the lower limit of uncer-
tainty in the initial year of deployment. In (b) the black line represents the bias
in K* and the red line represents the ratio of the bias to the measurement uncer-
tainty (K*bias/K*uncertainty). The × and vertical dotted line indicate the time at which
K*bias/K*uncertainty equals 1 and thus, bias equals uncertainty. (For interpretation of
the references to color in this figure legend, the reader is referred to the web version
of this article).
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Fig. 6. Time-series of K↓/KEX (blue), PAR/K↓ (red), and PAR/KEX (black) ratios for K↓/KEX > 0.65 (PAR = photosynthetically active radiation, K↓ = incoming solar radiation at the
surface, KEX = extraterrestrial solar radiation at the top of the atmosphere). Each observation is the ratio of the daily maxima of the respective radiation variables. Observations
are only shown when the solar zenith angle was >65◦ . (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article).

3.2. Implications of drift on measurements

For context, we illustrate the magnitude of the biases imparted
by radiation exposure induced drift, by demonstrating the change
over time of measured hourly average K↓ and net surface solar radi-
ation (K*) when the pyranometers are affected by drift. We assumed
clear-sky conditions and an hourly average K↓ of 1000 W m−2, a
surface albedo of 0.13, the total uncertainty in hourly K↓ was ±2%
(Eppley PSP stated uncertainty) and did not change; and that the
drifts were −1.5% y−1 and −0.5% y−1 for the upward and down-
ward facing pyranometers, respectively. For both K↓ and K*, the
bias equals the measurement uncertainty after ∼1.5 years, while
after three years the bias is large enough to be disentangled from
the measurement uncertainty (Fig. 5). After 5 years, the bias was
estimated to be −70 W m−2 for K*, which could have large rami-
fications when assessing eddy covariance energy budget closure,
conducting Penman Monteith or Bowen ratio measurements, or
making radiative forcing calculations.

3.3. Drift detection in historical time-series

To extend our analysis, we examined data from several Amer-
iFlux sites for drift errors to determine whether the issue is of
widespread concern. For context, the radiation environments of

the sites are summarized in Fig. 6 showing only data where K↓/KEX
exceeded 0.65. While it was in general not possible to discern drift
by eye, it was possible to identify potential issues in several of the
time-series. The first 4 years of data at the CA-Cbo data exhibited
larger seasonal variation than the last 4 years, particularly for ratios
that contained PAR (Fig. 6c). The US-NR1 data also exhibited differ-
ent seasonal patterns in the first half of the data set compared to the
latter half (Fig. 6d). Finally, several large step changes were evident
in the data from US-Bo1.

Example algorithm output with an accompanying interpreta-
tion can be found in the supplementary information (Fig. S3).
Probable drift was diagnosed at five sites (5 pyranometers and
one PAR sensor; Table 4), although the trends were not always
what was expected. At Rosemount, we observed decaying PSP
responsivities consistent with the notion that it was caused by
solar radiation exposure for the two ‘upward facing’ PSPs dis-
cussed in section 3.1 (G21 and I10 upward), with significant PAR/K↓
increases and K↓/KEX decreases of similar magnitudes (p > 0.05)
and no trend in the PAR/KEX data. This is an important finding
because we know that these PSPs were drifting. The findings were
similar at CA-Oas, another site employing a PSP. At two sites (US-
Srm US-Wkg), the analyses indicated positive pyranometer drift. In
these cases, PAR/K↓ decreased while K↓/KEX increased over time.
This suggests that the issue of physical changes in the sensing



J.D. Wood et al. / Agricultural and Forest Meteorology 206 (2015) 33–44 41

Table 4
Slopes (±se) of the linear fits obtained when the drift detection algorithm terminated and decisions relative to drift detection. Values of 0 are reported when the slope
parameter estimate was insignificant (p > 0.05). Within rows, the magnitudes of non-zero slope estimates followed by the same letter are not different (p < 0.05) according
to a t-test.

Slope × 10−5 (1/d) Change pointsb Drift detection summaryc

Site Yearsa PAR/K↓ K↓/KEX PAR/KEX

Data from Rosemount, MNd

PSP up G21 2006–2010 3.2 (0.59) a −3.2 (0.44) a 0 N K↓ drift down
PSP up I10 2006–2009 1.5 (0.51) a −3.3 (0.52) a 0 N K↓ drift down
Data from other AmeriFlux sites
CA-Oas 2000–2004 1.0 (0.17) a −1.8 (0.42) a 0 N K↓ drift down
CA-Obs 1997–2001 −1.3 (0.15) a 0 −1.3 (0.22) a N PAR drift down
CA-Cbo 1995–2003 0.7 (0.07) a −1.0 (0.19) a 0 Y Consider change point model
US-NR1 2001–2007 −0.2 (0.09) a 0.4 (0.19) a 0 Y Consider change point model
US-Bo1 1998–2007 −2.7 (0.22) 1.2 (0.30) −1.4 (0.11) Y Consider change point models
US-Srm 2004–2010 −0.2 (0.08) a 0.4 (0.18) a 0 N K↓ drift up
US-Wkg 2005–2008 −0.9 (0.24) b 2.4 (0.46) a 0 N K↓ drift up

a The years for which summarized results were obtained.
b Interpretation requires consideration of significant change points; Y = yes, N = no.
c Conclusions based on results from linear fits and the presence/absence of significant change points. The results for cases where it was necessary to consider change point

models are presented in Fig. 7. K↓ drift down = downward drifting pyranometer; K↓ drift up = upward drifting pyranometer; PAR drift down = downward drifting PAR sensor.
d In the site column, Rosemount pyranometer designation corresponds to the previously established nomenclature in this present work.

element causing a decrease in the responsivity of the sensing ele-
ment was not an issue with these pyranometers, but that there
were errors caused by some other factor contaminating the K↓
data. These two sites employed CM3 pyranometers as component
sensors on CNR1 net radiometers. It may be that drift in the shunt
resistors, which trim the output voltages of the component sen-
sors to a common sensitivity, were causing the upward drift in the
CM3 signals. Another interesting finding was that at CA-Obs, where
the K↓ was a synthesis of PI-preferred measurements, we detected
drift in the PAR sensor. In this case, there was no significant trend
in K↓/KEX, however, both PAR/K↓ and PAR/KEX displayed significant
decreasing trends of similar magnitudes (p > 0.05).

Although there were significant linear trends at CA-Cbo and US-
NR1 (Table 4), there were significant change points that must be
considered in these cases (Fig. 7). At CA-Cbo there were change
points found for each ratio in either 1997 or 1998. For each flux
ratio, the intercepts were different before and after the change
point, which suggests that there could have been a recalibration,
re-leveling or sensor replacement. Further, the ratios that include
PAR displayed high variability about a highly negative trend prior
to the change points, which was not the case in segment 2. Based
on these observations further investigation of PAR data prior to the
change point seems warranted. After the change point both K↓/KEX
and PAR/KEX decreased and K↓/KEX increased over time obscuring
drift detection after the change point. At US-NR1, our analysis did
not conclusively find evidence of sensor drift (Fig. 7), however, sig-
nificant change points were found for all radiative flux ratios at
US-NR1, which may have been due to other artifacts such as sen-
sor leveling or calibration. Similar to US-NR1, the analyses did not
identify drift at US-Bo1 (data not shown). In the case of US-Bo1,
there were changes in K↓ and PAR data that could be identified by
eye in either time series of the radiative flux ratios (Fig. 6f) or the
raw fluxes (Fig. S2). This partitioned the data into several segments
and interfered with drift detection. It is noteworthy that the algo-
rithms were inconclusive at the three sites for which observations
by eye of the raw data indicated possible issues.

This analysis was devised to minimize the effects of natu-
ral variations in atmospheric transmissivity on drift detection.
As noted previously, water vapor absorbs in the infrared region
and is of greatest concern because it only affects K↓. To confirm
that variations in water vapor did not contaminate these analy-
ses, we examined surface vapor pressures (ea) observed during the
averaging periods that were selected by the algorithm. Although

shortwave absorption is related to column-integrated water vapor,
ea is a useful indicator of atmospheric moisture status in the
absence of co-located measurements of the former. The results of
this analysis are summarized in Fig. S4. The relation between K↓/KEX
and ea followed exponential decay, with site-specific coefficients
due to differences in mean moisture status and elevation (Fig S4a).
However, since we were preferentially selecting for the clearest-
sky days with high transmissivity, the range of ea within-years was
generally similar (Fig. S4b). That is, variable moisture conditions
affected within-year variations in the K↓/KEX and PAR/K↓ ratios,
rather than the temporal trends. Indeed, linear regression analy-
sis of the annual (i) median ea and (ii) interquartile range of ea on
years yielded insignificant slopes at all sites (p > 0.1). To summa-
rize, although water vapor affects atmospheric transmissivity, in
the context of our drift detection routines the within-year effects
are more important because the sampling strategy tends to draw
from consistent ranges of moisture across years. The implication
is that variable ea is partially responsible for noise in the signal,
making it more difficult to diagnose drift, as opposed to exerting
controls on the trends in K↓/KEX and PAR/K↓ ratios over time.

One of the shortcomings of this approach is that several years
of data are required before one can confidently ascribe trends in
the ratios to measurement errors, however, this is not an issue
when assessing historical data. In the cases where there was pyra-
nometer drift, 3–6 years of data were required before a significant
linear trend was observed. While this has the disadvantage that it
does not immediately identify when a sensor begins drifting, it is
implemented to prevent falsely identifying inter-annual variations
in optical depth or other artifacts as drift. These approaches can be
incorporated into QA/QC routines at active measurement sites as
a relatively simple and effective way to track the performance of
radiation sensors.

3.4. Other QA/QC considerations: exposure error

The drift detection algorithms were designed to restrict the anal-
yses to periods with the highest K↓/KEX to minimize the impact
of natural variations in optical depth, which necessarily imparts
substantial data reduction. This approach was designed to specifi-
cally eliminate as many confounding errors as possible. Examining
intermediate output from analyses of daily correlation coefficients
between (i) K↓ and KEX and (ii) PAR and KEX data revealed time
periods (e.g., one site-year at a location) where the PAR sensors
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Fig. 7. Summary of change point model results for (a) Borden (Ca-Cbo) and (b) Niwot–Ridge (US-NR1) sites fitted to K↓/KEX, (blue symbols and line), PAR/K↓(red symbols
and line) and PAR/KEX (black symbols and line) ratios (K↓ = incoming solar radiation, PAR = incoming photosynthetically active radiation, and KEX = incoming extraterrestrial
radiation at the top of the atmosphere), with the standard errors for each. The slopes with standard errors for each segment are tabulated below the respective graph panels,
where values of 0 are shown when the slope was not significant according to a t-test (p > 0.05). Note that the entire time-series of raw data are shown, while the predicted
values (lines) are extended only to the time at which the algorithms terminated. (For interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article).

Fig. 8. Example diurnal variations of incoming solar radiation (K↓, dotted black
lines) and photosynthetically active radiation (PAR, solid black lines) for the same
days, where the PAR sensor displayed responses that typify exposure errors associ-
ated with shading.

had been deployed in a position that was partially shaded in the
mornings, which resulted in underestimations of half-hourly mea-
surements of ∼100 W m−2 on clear sky days (Fig. 8). Although this
artifact did not affect our drift detection analyses, it further high-
lighted the need for careful data screening.

Our analyses identified exposure errors, probable drift and other
artifacts in historical AmeriFlux radiation data from several sites.
Considering that recent reductions in globally averaged K↓ have
been estimated at 2.7% per decade (Stanhill and Cohen, 2001), the
drift reported here is sufficient to contaminate analyses of long-
term temporal trends. Although considering multiple years of data
at each site is laborious, we have shown the value in evaluating
long-term data records with post-hoc screening to identify bias.
Further, the frequent incidence of drift suggests the need to increase
network-wide calibration frequency. While this is in part fulfilled
by the AmeriFlux mobile QA/QC systems (Schmidt et al., 2012), the
number of sites that can be visited each year is limited. Some form
of centralized calibration service where site PIs are able to ship
sensors is one way to promote increased calibration frequency.

4. Conclusions

We demonstrated that calibration drift for Eppley PSP pyra-
nometers was caused by a radiation-induced discoloration of the
sensing element that altered the spectral response. An initial stable
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period that varied among sensors was observed, but once respon-
sivities began to decay, they declined at similar rates that were
linearly related to radiation exposure, which for a mid-latitude site
represented drift of −1.5% y−1. At this rate, the drift bias exceeds
the total measurement uncertainty after ∼3 years. After 5 years,
without calibration, K* is underestimated by ∼70 W m−2, which
is enough to have large implications on applications requiring
accurate measurements of available energy such as eddy covari-
ance energy balance closure, or Penman-Monteith or Bowen ratio
methods. The altered spectral response is also critical in the context
of maintaining high quality measurements because calibration will
not account for the change in spectral response unless the sensing
element is first re-painted.

We have proposed the use of K↓/KEX, PAR/K↓ and PAR/KEX ratios
to diagnose calibration drift and other errors in K↓ time-series. In
the absence of issues that cause noticeable step changes in the
data, the method was able to diagnose possible drift. This can be
used as additional QA/QC on K↓ data at active measurement sites
to determine when calibration is needed, or for post-hoc screening
when synthesizing data from many sites. We diagnosed drift in K↓
data collected at multiple AmeriFlux sites. Downward drift that was
consistent with fading of the sensing element was observed at sev-
eral sites deploying PSPs. We also found upward drift at two sites
employing the CM3 as a component sensor of a CNR1 net radiome-
ter, which was possibly caused by drift in the shunt resistor. The
utility of collectively examining these ratios to easily flag periods
of data that may be suspect was highlighted. We were also able to
identify sensors that experienced shading exposure error, which
biased measurements by up to −100 W m−2 on clear sky days.
Incorporating these approaches into QA/QC programs could help to
improve data integrity at active sites, and when assimilating data
from many sites for reanalysis. Although this method is not with-
out drawbacks because it relies on co-located measurements, one
of which must be stable, it was developed in an attempt to provide a
practical solution to a challenging problem in order to maximize the
use of existing datasets. Finally, this analysis highlights that greater
availability of economical access to network-managed calibration
services would be of value from the perspective of increasing cali-
bration frequency.
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