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ABSTRACT 

Nater, E.A., Nater, K.D. and Baker, J.M., 1992. Application of artificial neural system algorithms to 
image analysis of roots in soil, I. Initial results. In: A.R. Mermut and L.D. Norton (Editors), Digi- 
tization, Processing and Quantitative Interpretation of Image Analysis in Soil Sciences and Related 
Areas. Geoderma, 53: 237-253. 

Several back propagation artificial neural system (ANS) architectures were tested to determine 
their abilities to identify roots in minirhizotron images of soil. The general model had an input level, 
which consisted of two linear arrays l × I 1 pixels each, a hidden level, with 7 to 11 nodes, and an 
output level consisting of a single node set to produce a binary root/not-root output. The inputs to 
the model consisted of two linear arrays, one each from a horizontal and a vertical derivative image 
produced from the raw image by the Savitzky-Golay algorithm. A training image was constructed by 
hand-editing the raw image. The back propagation model was trained by repeatedly presenting it with 
a set of inputs and an associated target response. The error was calculated for the output from each 
input/target response pair and corrections to the weighting functions were made using a gradient 
descent back correction algorithm. The results of this study suggest that the ANS approach has poten- 
tial to identify roots in images of soil. Suggestions for improving the performance of the model are 
presented. 

I N T R O D U C T I O N  

Minirhizotron research 

A minirhizotron is a system of  clear glass or plastic access tubes placed in 
the soil that can be used to view plant root systems. Most current minirhizo- 
tron installations are equipped with a small video camera or a 35-mm still 
camera to collect images. Root  lengths, diameters, and rooting densities can 
be measured on minirhizotron images, thus allowing quantitative compari- 
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sons of root response to varying soil management schemes, environmental 
parameters, or other experimental treatments. A minirhizotron system pro- 
vides easy, rapid, non-destructive sampling along horizontal or nearly verti- 
cal transects through the soil, allowing a scientist to take a large number of 
images in a relatively short period of time. However, the amount of time re- 
quired to manually measure root dimensions in these images is considerable 
and currently constitutes the main drawback to use of the system. Because 
root distributions are often spatially quite variable (Tardieu, 1988), partic- 
ularly in well-structured soils, and the minirhizotron image represents a small 
(e.g., 12 by 16 mm for videotaped images) cross-section through the soil, a 
fairly large number of images may be required to assure statistical signifi- 
cance of results. Development of a method to automate the identification and 
measurement of roots in minirhizotron images would greatly enhance the 
utility of this type of research. 

The difficult part of this task is to automate the identification of roots in 
minirhizotron images. This is a problem in feature recognition. Once identi- 
fied, the automated measurement of root dimensions in binary (root, non- 
root) digitized images presents a less difficult, though not necessarily easy, 
task (Lebowitz, 1988). 

Traditional methods of feature recognition 

The recognition of root features in a minirhizotron image is a problem of 
separating foreground objects (roots) from the image background. Using tra- 
ditional image processing techniques, a number of global and localized spatial 
transformations can be applied to an image to increase the spectral separation 
of foreground and background objects. 

Global techniques 
Thresholding is a global technique used to produce a binary image wherein 

all light intensity values within a specified range are assigned a new, single 
intensity value, and all values outside the range are assigned another. If the 
features of interest are either consistently lighter or darker than the other por- 
tions of the image, thresholding can be used for feature identification. 
Thresholding is successful when the distribution of light intensity values for 
objects in the desired feature space is distinct from that of all other objects. 
Intensity histograms of such images are inherently multi-modal. 

At first glance, a minirhizotron image appears to be suitable for threshold- 
ing, as the roots are perceived to be lighter than the background in nearly all 
portions of the image (Fig. 1 a). The resulting light intensity histogram (Fig. 
lb) ,  however, is not bimodal as expected. Many background features share 
the same light intensity distribution as a root. Human perception, therefore, 
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Fig. 1. A videotaped minirhizotron image (a) and its associated light-intensity histogram (b). 
Note the absence ofa bimodal distribution in the intensity histogram. 

must use other, localized clues to distinguish roots from the remaining 
background. 

Local techniques 
Edge tracing, or outlining, is an example of  a spatially localized transfor- 

mat ion used in feature recognition. This technique employs a convolution 
kernel to delineate areas of  steep localized change in light intensity, thereby 
outlining features that are either much brighter or darker than the surround- 
ing portions of  an image. Once an initial set of  edges has been detected, other 
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Fig. 2. The result of outlining the raw image presented in Fig. 1 a, showing outlining of numerous 
features other than roots. 

transformations are applied to grow continuous edges from edge segments 
and to skeletonize thick edges to a uniform size. 

If variations in image light intensity are viewed as one dimension of a three- 
dimensional surface, then edge tracing is a global transformation, threshold- 
ing, applied to the first derivative of  the image. Points with tangents exceed- 
ing a specified slope are assigned one intensity value and all other points are 
assigned another. Edge tracing will succeed only if the distribution of first 
derivative values for the edges of the desired feature is distinct from the dis- 
tribution for all other edges in the image. 

Roots exhibit large, localized changes in light intensity, but analysis reveals 
that other features, such as pores and cracks in the soil, exhibit the same rate 
of change of  intensity as do roots (Fig. 2 ). Thus, outlining algorithms alone 
are also unable to accurately and exclusively delineate roots. 

Rule-based techniques 
Rule-based, or expert system, methods recently have been applied to prob- 

lems of feature identification, and more particularly to the identification of 
roots in minirhizotron images (Ferguson et al., 1990; Stockman et al., 1990). 
Expert system methods use codified rules based on intensity, contrast, and 
root morphological characteristics (such as length-to-width ratios or orienta- 
tion of axes) to identify features (Stockman et al., 1990). They require the 
programmer to codify rules that can distinguish between the features in an 
image. It is difficult to formulate such rules a priori, and empirical develop- 
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ment  of  them often leads to complex structures in an attempt to allow for all 
situations observed. Rule-based methods have met with success on well-re- 
solved minirhizotron images (Stockman et al., 1990), but may be prone to 
gross misjudgements when applied to noisier or more complex images. 

Introduction to artificial neural systems 

Artificial neural systems (ANS) are a class of mathematical models pro- 
posed to explain how neurons in higher organisms can interact to store and 
retrieve information (McClelland et al., 1986 ). Although a complete descrip- 
tion of their theory and use is beyond the scope of this article, a brief descrip- 
tion of  the architecture and operation of an ANS is given to acquaint the reader 
with the methods used in these experiments. For a more complete description 
the reader is referred to Rumelhart  et al. (1986a) and Wasserman (1989). 

Artificial neural systems are used to solve pattern recognition problems be- 
cause they can be trained to classify input patterns into user-defined cate- 
gories, even in the presence of  significant noise. The network learns to classify 
patterns by example, not on the basis of  predetermined rules. The ANS is 
trained by presenting a pattern and expected response to the network. The 
network will make an initial classification for the pattern and then adjust its 
internal representation to reduce the error between this initial classification 
and the expected answer. This ability to self-organize, even in the presence of  
noise, is a significant advantage over rule-based systems. Computer  imple- 
mentations of  artificial neural systems are generally simple in concept and 
easy to code. They are, however, computationally intensive and generally re- 
quire the use of  high-speed computers with several megabytes of dynamic 
memory. 

Artificial neural systems are organized as a hierarchy of  two or more layers 
or slabs. The model used in this study, called a back propagation model, has 
three levels referred to as the input layer, the hidden layer, and the output  
layer (Fig. 3). Nodes in the input layer are connected to each node in the 
hidden layer. The hidden layer is similarly connected to the output layer. Each 
connection has a weight or connection strength associated with it which gov- 
erns the lower-level node's contribution to the higher-level node's input or 
activation. 

In a computer  implementat ion of a back propagation network, nodes in the 
input level are loaded with floating point values representing the pattern to 
be classified. For each connection to a node in the hidden layer, each input 
value, Or, is multiplied by an independent  weighting function, wji. The 
weighted values are then summed for each node in the hidden layer: 

netj = ~ wji Oi ( 1 ) 
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Fig. 3. Generalized architecture of an artificial neural system. Boxes are nodes in the input (1), 
hidden (H) ,  and output (O) layers. 
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Fig, 4. Output of the sigmoid function with tgj equal to zero. 

where netj is the input to any individual hidden node, and the subscripts i and 
j refer to nodes in the input and hidden layers, respectively. 

The sum of all weighted inputs to each node in the hidden level is passed 
through a nonlinear logistic activation (sigmoid) function: 

1 
Oj= 1 +exp[  - (netj+~gj)] (2) 

where Oj is a bias similar in function to a threshold. The sigmoid function 
returns values close to either zero or one for most values of n% (Fig. 4). 

The same weighting and summation processes occur between each node of 
the hidden level and the node (s) of the output level (subscript k). The sum 
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of all inputs to each node of the output level, netk, is also passed through the 
semi-linear activation function (eq. (2) ), thus producing the final output of 
the back propagation model, Ok, which resembles a binary switch, in that the 
values output tend to be close to either zero or one. 

During initialization, small random numbers are chosen for each of the 
weighting factors. Obviously, the first result from the back propagation model 
will most likely be incorrect, and the weights will have to be adjusted to obtain 
a more correct result. This process is referred to as the training or learning 
phase. During the training phase, the output of the back propagation model 
is compared to a target result supplied by the programmer. The error, E, is 
then calculated for any input/output pair p by: 

1 E = ~  ( tpk- Opk) 2 (3) 

where (tpk- Opk) is ~pk, the difference between the expected result, or training 
value, and the value output by the back propagation model. A gradient de- 
scent back propagation process then adjusts each set of weights by q~pjpk, 
where r/is a constant, the learning rate, andjpk is the value of the jth element 
of the hidden level. This type of ANS is commonly referred to as a delta rule 
back propagation model. The error function is then propagated back to the 
hidden level and a similar process is used to correct the weights operative 
between the input level and the hidden level. The basic algorithm described 
here has been enhanced by the use of learning rate and momentum terms to 
avoid local minima (Rumelhart et al., 1986b, pp. 329-330). 

Overall, the training process is an attempt to perform least squares min- 
imization of the total error of the network. Over the course of hundreds or 
thousands of iterations, the ANS often, though not always, converges gradu- 
ally on a set of weights that minimizes the sum of squares error and provides 
a solution to the problem at hand. 

Artificial neural systems have been used in a variety of pattern recognition 
and conversion problems. Networks have been trained to convert text to 
speech (Sejnowski and Rosenberg, 1987 ), to quantify and calibrate spectro- 
scopic data (Long et al., 1990 ), and for optical recognition of characters (Ra- 
javelu et al., 1989). 

In view of the limitations of other techniques and the potential of ANS, the 
objective of this study was to develop ANS algorithms to automatically iden- 
tify roots in minirhizotron images of soil. 

MATERIALS AND METHODS 

Minirhizotron photography 

Polybutyrate access tubes were installed horizontally at three depths in a 
field corn (Zea mays L. ) plot located on a Waukegan silt loam (Typic Haplu- 
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doll ) at the Rosemount Agricultural Experiment Station of the University of 
Minnesota, located near Rosemount, Minn., U.S.A (Pettygrove et al., 1988 ). 
Minirhizotron images ( 12 by 16 ram) were taken using unfiltered visible light 
by a Circon Microvideo camera (Circon Corp., Santa Barbara, CA 93111, 
U.S.A. ). Root diameters were commonly 0.1 to 0.5 mm. During videotape 
recording, minirhizotron images were viewed on a monitor to allow proper 
orientation of the camera in the access tubes. 

Image digitization 

Images were captured from videotape in 256 levels of gray by a Scion FG- 
2 video capture board (Scion Corp., Walkersville, MD 21793, U.S.A. ) using 
its associated software, Video Image 1000 v. 3.32. The video capture board 
was installed in a Macintosh II computer. Image brightness and contrast were 
adjusted visually to operator satisfaction before image capture. Original im- 
ages were 500 pixels wide by 400 pixels high. In order to reduce the compu- 
tational time required to process each image, reduced-size images were pro- 
duced by discarding alternate rows and columns of pixels, thus yielding images 
250 pixels wide by 200 pixels high. 

Production of derivative images 

As illustrated earlier (Fig. 2 ), gray-scale thresholding did not satisfactorily 
identify roots in these images, even though the roots appeared visually to be 
brighter than soil materials in nearly all of these images. This implies that the 
relative brightness of a root is probably more important for visual recognition 
than its absolute brightness. Consequently, first derivatives of the raw image 
(Fig. 5a) were produced along both horizontal and vertical transects (Figs. 
5b, 5c) using the Savitzky-Golay algorithm (Savitzky and Golay, 1964; Stei- 
ner et al., 1972 ). Several different fits were tried; a seven-point quadratic fit 
appeared to be the best compromise between root edge sharpness and random 
noise level. A nine-point cubic fit gave visually similar results, but it also elim- 
inated one extra row of pixels along each border of the image. Before being 
input to the back propagation model, the derivative values were scaled to the 
interval 0.0 to 1.0 by dividing by a constant close to the maximum observed 
value and adding 0.5 to the result. The values 0.0 and 1.0 were substituted for 
scaled values < 0.0 and > 1.0, respectively. The horizontal and vertical deriv- 
ative images were then used as inputs to the ANS, both during the training 
sessions and during analysis. 

As expected, clear differences were observed between the horizontal and 
vertical derivative images (Figs. 5b, c). Because horizontal roots were barely 
visible in the horizontal derivative image, but were easily recognized in the 
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Fig. 5. Raw image (a), and the horizontal (b) and vertical (c) derivative images produced from 
it by the seven-point quadratic Savitzky-Golay smoothing algorithm. 

vertical derivative image, and vice versa, both derivative images were used as 
inputs to the ANS. 

Production of the training image 

A binary training image (Fig. 6 ) was produced by a combination of hand- 
editing and thresholding of a gray-scale image using Image v. 1.31p (Ras- 
band, 1990) on a Macintosh II computer.  The gray-scale image was enlarged 
from 3 to 8 times and editing was conducted on a pixel-by-pixel basis. Once 
the background material had been colored black, the image was thresholded 
to produce a binary image. 

Even though the image being edited was visually compared with its corre- 
sponding gray-scale image during the editing process, it was not always clear 
to the editor exactly which pixels were part of the root and which were not. 
Although the editor tried to be as consistent as possible during the production 
of  the training image, some arbitrary decisions were made. For linear features 
like roots, which have large perimeter to area ratios, edge pixels constitute a 
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Fig. 6. Binary training image produced by hand-editing the image in Fig. 5a. 

Fig. 7. The disallowed pixel map. 

sizable portion of all pixels associated with roots, in this case perhaps as much 
as 20%. Although back propagation networks often have the ability to handle 
noisy data, the authors felt that the presence of such a high proportion of 
potentially arbitrary training values might create problems in the use of the 
binary image as the training image because they would send mixed signals to 
the ANS and enforce improper corrections. This can produce poor or slowed 
performance of the ANS, or even a lack of convergence. 

In order to avoid problems with the use of arbitrary training data, the ANS 
was not trained on suspect pixels near the root-soil border. A map of disal- 
lowed pixels was produced by the following process. The binary training im- 
age was first subjected to a digital erosion process which removed two layers 
of pixels from the border of the root. The original binary training image was 
also subjected to a digital dilation process, which added two layers of pixels 
to the original border of the root. A third image, the disallowed pixel map, 
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was produced by subtracting the eroded image from the dilated image (Fig. 
7 ). All pixels associated with non-zero values in the disallowed pixel map 
were excluded from the training set. Because the ANS was not trained on 
pixels along the root-soil border, it was uncertain whether the ANS would 
identify them as root or soil; however, it was assumed that whatever choice 
was made, it would be consistent, which was our main concern. 

Architecture of the ANS 

A program to produce a delta rule, back propagation ANS was written in 
the C language for execution on a Sun Sparcstation l + workstation with 16 
megabytes of dynamic RAM. Inputs to the ANS consisted of  11 pixels each 
in the vertical and horizontal derivative images (Fig. 8 ), with the midpoint  
of each 11-pixel array centered on the pixel of interest. The number  of hidden 
nodes was varied between 7 and 11. Only one output  node was used which 
corresponded to a binary decision on whether the pixel of interest was part of 
a root. All 22 input nodes were connected to each node in the hidden layer, 
and all nodes in the hidden level were connected to the output  node. 

During the training phase, a result was calculated for a single pixel, com- 
pared to the training value, and corrections were applied. The ANS was moved 
systematically across and down the image on a pixel-by-pixel basis, excluding 
those pixels that were identified in the disallowed pixel map. The results for 
each pixel were compared to their corresponding values in the training image, 
and corrections were applied. 

At every tenth iteration through the training image, a mean error for the 
whole image was calculated and the current weights were saved in a separate 
file. Once the mean error reached an apparently stable min imum,  the training 
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Fig. 8. Inputs to the model consisted of 11 pixels each in the vertical and horizontal derivative 
image, each centered on the pixel of interest. 
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phase was stopped. Identification of roots in the image was then attempted 
on the training image and other images using the saved weights. 

RESULTS AND DISCUSSION 

Decrease  in m e a n  error 

For a typical training session, the mean error showed an overall decrease 
with increasing number of iterations (Fig. 9 ). Fluctuations of the mean error 
in the early part of the training phase were usually associated with movement 
in and out of local minima on the response surface. Although the gradient 
descent algorithm included learning and momentum terms, the network would 
occasionally become trapped in a local minimum and have to be restarted 
with a different set of random weights in order to avoid that particular mini- 
mum. Typically, the first local minimum encountered is a weight configura- 
tion that gives non-root values for all pixels. This configuration represents a 
local minimum because the majority ofpixels in the image are associated with 
non-root features. Other local minima are associated with more complex 
properties of the image or with recognition of some roots by specific proper- 
ties that may not be shared by all roots. 

Resu l t s  on the s a m e  i m a g e  

Results of a single training session using a network architecture with 7 hid- 
den layer nodes are displayed in Figs. 10a-10d for 10, 20, 30, and 40 itera- 
tions through the training image, respectively. This sequence displays an 
overall, though not necessarily a monotonic, increase in the ability of the net- 
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Fig. 9. Relationship between mean error and iteration during the learning phase. 
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Fig. 10. Results on the training image at 10 (a), 20 (b), 30 (c), and 40 (d) iterations. 

work to recognize roots and a progressive refinement of the ability of the ANS 
to discriminate against other features in this image. Though not entirely ac- 
curate, the network correctly identified most of the pixels associated with roots. 

The thickness of the roots identified by the ANS varied from image to im- 
age. As discussed earlier, the ANS was not trained on pixels near the root-soil 
border, and thus was allowed to consider them as either root or background 
without penalty or correction. Apparently these pixels were identified as roots 
in some instances (thick root image, Fig. 10d ) and as soil at other times (thin 
root image, Fig. 10c). 

Other problems of  identification are also evident in this sequence. For ex- 
ample, in the lower left-hand quadrant of  Fig. 10d, pixels in the middle of the 
thick root are identified as background, even though they are clearly within 
the root. The width and height of the root ( 12-16 pixels) exceeded the length 
of  our input pattern ( 11 pixels) at this particular location on the image. Us- 
ing the inputs given, it would be difficult for the ANS to distinguish the inte- 
rior of  a root (all white ) from open areas of background (all black), because 
the first derivatives of  both conditions are similar. Consequently, either a 



2 5 0  E.A. NATER ET AL. 

longer input slice is required for identification of root pixels at sites like this 
or additional processing is required to eliminate "holes" in roots before root 
measurements are taken. 

Results on other images 

In order to be useful, the ANS must be able to identify roots in images other 
than the training image. In Fig. 11, several raw images are compared and the 
results predicted by the ANS for these images. The results are not as good as 
those obtained for the original training image. This is not surprising consid- 
ering that these images contain features not present in the original training 
image. Although the majority of the roots in these images were correctly iden- 
tified as roots, many non-root features were also identified as roots, indicat- 
ing that the algorithm, as configured and trained, had converged on a solution 
to the identification of roots, but had not developed the resolution to discrim- 
inate between some of these other features and roots. Because the ANS con- 
verges on solutions during the training session, it is reasonable to assume that 
it may misinterpret features presented later in images that were not presented 
during the training phase. 

Obviously, a first step at finding a solution to this problem was to include 
a broader range of characteristics and features in the training set. To this end, 
the network was presented three different images and associated training sets 
during the training phase. However, it did not attain a stable minimum dur- 
ing several hundred iterations through the images. Part of the problem en- 
countered here may be that, by combining horizontal and vertical slices in the 
same input pattern, we have inadvertently produced an XOR (exclusive-or) 
logistic problem: "if  the vertical slice indicates an edge or the horizontal slice 
indicates an edge, signal an edge." Although back propagation networks can 
solve XOR problems (Rumelhart et al., 1986b, pp. 319-322), it generally 
takes longer for them to converge and they often get stuck in local minima. 

Variations in contrast and dynamic range between images may also have 
contributed to inconsistent feature recognition between images (Fig. 12 ). Al- 
though back propagation networks are noise-resistant, they are based on the 
premise that all patterns share a single representation scale, i.e., any particu- 
lar value (e.g., 0.7) is assumed to represent the same change in light level 
across all images. If the patterns do not share the same representation scale, 
the networks may give inconsistent results and misidentify features. Trans- 
forming pixel intensity values to standard contrast and dynamic range before 
input to the ANS should reduce this problem. 

Another possible problem is that the input pattern does not contain enough 
information to make recognition possible. The inclusion of a wider swath (e.g., 
a 3 by 11 slice from each derivative image) or longer pattern might make it 
easier for the network to recognize continuous edges. Using the input pattern 
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Fig. 11. Pairs  o f  raw images (A, C, E)  and  the results calculated for t h e m  (B, D, F, respect ively) .  

given, the network would have trouble developing a rule like "roots include a 
long adjacent series of  high slopes" or even "roots are linear features". How- 
ever, larger input patterns require more t ime for calculation of  each iteration 
and may require more iterations to reach convergence. With the current  ar- 
chitecture of  22 input layer nodes and 7 hidden layer nodes, one iteration 
through a 250×  200 pixel image requires about 2 min on a Sun Sparcstation 
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Fig. 12. Comparison of histograms for image 1 (Fig. 5a) and image 20 (Fig. I le). 

1 + workstation. Significantly larger network architectures will require more 
processing time, and may require more dynamic RAM storage as well. The 
increase in processing time is nonlinear because the number of connections 
increases faster than the number of nodes added. 

CONCLUSIONS 

Although the results reported in this manuscript are preliminary in nature, 
they suggest that the ANS approach has potential for the identification of 
roots in images of soil. The back propagation model presented in this paper 
was able to accurately identify most pixels in the training image correctly after 
approximately 40 iterations through the training set. However, there was a 
substantial decrease in accuracy when applied to other images on which it had 
not been trained, in part due to the presentation of features in these images 
that had not been presented to the ANS during the training phase. 

This research is far from complete at this time. Future directions include 
testing different and more complex ANS architectures, particularly architec- 
tures containing larger input slices. Pre-processing techniques, such as con- 
trast and histogram equalization, will be employed in order to make each set 
of inputs as similar as possible. 

Research is also being conducted to try to produce higher-quality images in 
the field. Different wavelength filters for the minirhizotron camera light source 
are being tested to determine which wavelengths will increase contrast levels 
between the roots and the background. 
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