BIOCHAR - Agriculture’s Black Gold?

The Promise of BIOCHAR:

Hal Collins, USDA-ARS
Vegetable and Forage Crops Unit
24106 N. Bunn Rd.
Prosser WA 99350
Biochar

- What is Biochar
- How is it Made/Feedstocks
- Physical/Chemical Characteristics
- Effects on soil properties
- Effect on crop growth and Yield
- Other uses
Biochar

What is Biochar?

- carbon-rich solid - a co-product of pyrolysis of biomass.

- also known as charcoal, biomass derived black carbon, Agrichar, C-Quest™

- formed under complete or partial exclusion of oxygen at temperatures between 700 and 1800 ºF.

- Origins - has been used for centuries
 - Cooking, health, water purification, etc

Active research into soil benefits was renewed by Johannes Lehmann at Cornell University in about 1998 resulting from studies of Terra preta soils of the Amazon.
How is Biochar Made?

Major Techniques:

- **Slow Pyrolysis**
 - traditional (dirty, low char yields) and modern (clean, high char yields)

- **Flash Pyrolysis**
 - modern, high pressure, high char yields

- **Fast Pyrolysis**
 - modern, maximizes bio-oil production, low char yields

- **Gasification:**
 - modern, maximizes bio-gas production, minimizes bio-oil production, low char yields, highly stable, high ash

- **Hydrothermal Carbonization**
 - under development, wet feedstock, high pressure, highest “char” yield but quite different composition and probably not as stable as pyrolytic carbons
Feedstocks for Biochar Production

Any source of biomass:

- Crop residues (wheat, corn stover, rice husks)
- Nut shells (groundnut, hazelnut, macadamia nut, walnut, chestnut, coconut, peanut hulls)
- Orchard, vineyard pruning's or replacement
- Bagasse from sugar cane production
- Olive or tobacco waste
- Forest debris, wood chips, sawdust, bark, etc
- Animal manure
- Grasses
- Other – sewage sludge, tires, peat, lignite, coal

* Not all organic biomass is suitable for producing biochar

Household, municipal and industrial waste may contain heavy metals or organic pollutants which could cause environmental contamination by land application of the resulting biochar.
Why Make Biochar?

Technology Applications

- **Biofuel**—process heat, bio-oil, and gases (steam, volatile HCs)
- **Soil Amendment** sorbent for cations and organics, liming agent, inoculation carrier
- **Climate Change Mitigation**—highly stable pool for C, avoidance of N₂O and CH₄ emissions, carbon negative energy, increased net primary productivity
Pyrolysis of Crop Residues: USDA-ARS

Corn Stover

Bio-Oil

BioChar

Dr. Boateng
Pyrolysis of Forest Debris: USDA-FS

Logging slash

Beetle killed trees

Thinning slash

Portable pyrolysis unit

JF Biocarbon Systems INC, Canada
Physical Properties Change with Pyrolysis Temperature

Downie et al., 2009
Kercher and Nagle, 2003
Physical Structure and Chemical Properties Depend on Carbon Bonding Network

Radovic et al., 2001
JE Amonette 24Apr2009

13C CP-MAS NMR
Amonette et al., 2008
Char Production

- Biochar yield decreases as pyrolysis temperature increases from 350 to 600 °C

 Yield of char was 30-45%

- Herbaceous feedstocks (DF and SG) lost 41 – 50% of their initial total C

- Woody feedstocks (SWP and SB) lost 40 – 45% of their initial total C.

- For each 100 °C rise in pyrolysis temperature C concentration of the resulting char increased an average of 41 g C kg⁻¹ among feedstocks.

- As pyrolysis temperature increased from 350 to 600 °C, feedstocks lost 60 - 70% of total N.
Biochar Characteristics

Figure 4.1. Relationship between pyrolysis temperature and the C concentration of the resulting biochar.

Yield of char was 30-45%

Figure 4.2. Influence of pyrolysis temperature on the pH of a variety of biochars.
The properties of biochar greatly depend upon the production procedure. Temperature effects on C recovery, CEC, pH and surface area.

Soil Applications: Biochar

Richard Haard
Four Corner Nurseries
Bellingham, WA

Ames Iowa, ISU Agronomy Farm July 25

Yield was not significantly different in 2007

<table>
<thead>
<tr>
<th></th>
<th>Grain (bu/acre)</th>
<th>Stover (ton/acre)</th>
</tr>
</thead>
<tbody>
<tr>
<td>With biochar</td>
<td>223</td>
<td>5.67</td>
</tr>
<tr>
<td>No biochar</td>
<td>217</td>
<td>5.81</td>
</tr>
</tbody>
</table>

Biochar applied fall of 2006

Tropical Soils

Potting soil mixes

Temperate soils
What we know: Terra Preta

Terra preta do indio or the “black earth of the Amazons”

• fine dark loamy soil
 - up to 9% carbon, (adjacent soil 0.5% C)
 - high nutrient content and high fertility
 - 3 times the phosphorous and nitrogen developed over thousands of years by human habitation correspond to ancient settlements

• results from long-term mulching of charcoal production from hearths and bone fragments with soil application of food wastes and animal manures

• persistents in soil, recalcitrant, resistant to decomposition.

• forest fires and slash-and-burn contribute very low amounts of charcoal-C (~3%)
 “Slash and Char”

Crop Yields: tropical soils

- Comparisons of Terra Preta to Adjacent Soils show crop yield increases of 2-3 fold.

- Yields typically increase w/applications to 65 T/ha

- Increases result from improvements in:
 - Nutrient availability (N, P, S, etc.)
 - Storage
 - increased CEC
 - increased soil pH
 - Changes in physical properties
 - water retention
 - reduced soil density
 - increased porosity/aeration

Impact on Temperate soils?
Effect of Biochar additions on Soil pH

<table>
<thead>
<tr>
<th>Rate</th>
<th>Hale SiL</th>
<th>Quincy Sand</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>4.5</td>
<td>7.1</td>
</tr>
<tr>
<td>5</td>
<td>4.7</td>
<td>7.4</td>
</tr>
<tr>
<td>10</td>
<td>4.9</td>
<td>7.7</td>
</tr>
<tr>
<td>20</td>
<td>5.0</td>
<td>8.1</td>
</tr>
</tbody>
</table>

| Change | 0.2 / 5-ton | 0.3 / 5 ton |

Implications: Can use char to improve soil pH
- heavy textured soils have greater buffering capacity
- reduce the use of lime and CO$_2$ emissions
- placement issues (broadcast vs. seed row)
- could impact soilborne diseases
Effect of Biochar on Nitrogen Mineralization

Peanut Hull Char

% T//ac
0.4 5
0.8 10
1.5 20

28 d

Quincy Sand

N-Mineralization (kg ha⁻¹)

Biochar

Control Pellet Bark Fiber Grass
Impact of biochar and manure on P leaching

Percent of P added with manure that leached and % reduction

<table>
<thead>
<tr>
<th>Char (g/kg)</th>
<th>Manure</th>
<th>% reduced</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>28</td>
<td>-</td>
</tr>
<tr>
<td>5</td>
<td>15</td>
<td>41</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td>55</td>
</tr>
<tr>
<td>20</td>
<td>5</td>
<td>70</td>
</tr>
</tbody>
</table>

mg/column

Week

Manure added
Soil Microflora and Biochar

Colonization sites for soil bacteria, fungi.

Use as delivery system of specialized organisms:
- Rhizobium
- PGPRB
- Mycorrhizae
C Sequestration Potential of Biochar

Figure 1. Schematics for biomass or bio-char remaining after charring and decomposition in soil. from Lehmann et al., 2006. Mitigation Adap. Strat. Glob. Change 11: 403–427.
Change in Soil C and N with BioChar

Soil + Biochar Characteristics

<table>
<thead>
<tr>
<th>Soil Series</th>
<th>Biochar</th>
<th>Rate</th>
<th>C</th>
<th>N</th>
<th>S</th>
<th>C:N</th>
<th>C:S</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>t/acre</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quincy</td>
<td>Switchgrass</td>
<td>0</td>
<td>0.23</td>
<td>0.01</td>
<td>0.010</td>
<td>23</td>
<td>23</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
<td>0.24</td>
<td>0.02</td>
<td>0.012</td>
<td>15</td>
<td>21</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10</td>
<td>0.56</td>
<td>0.02</td>
<td>0.011</td>
<td>23</td>
<td>49</td>
</tr>
<tr>
<td></td>
<td></td>
<td>20</td>
<td>1.19</td>
<td>0.06</td>
<td>0.011</td>
<td>30</td>
<td>151</td>
</tr>
<tr>
<td></td>
<td>Digested Fiber</td>
<td>0</td>
<td>0.23</td>
<td>0.01</td>
<td>0.010</td>
<td>23</td>
<td>23</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
<td>0.29</td>
<td>0.02</td>
<td>0.018</td>
<td>17</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10</td>
<td>0.57</td>
<td>0.03</td>
<td>0.014</td>
<td>18</td>
<td>39</td>
</tr>
<tr>
<td></td>
<td></td>
<td>20</td>
<td>1.14</td>
<td>0.05</td>
<td>0.014</td>
<td>22</td>
<td>82</td>
</tr>
<tr>
<td></td>
<td>Bark</td>
<td>0</td>
<td>0.23</td>
<td>0.01</td>
<td>0.010</td>
<td>23</td>
<td>23</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
<td>0.75</td>
<td>0.01</td>
<td>0.016</td>
<td>13</td>
<td>47</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10</td>
<td>0.93</td>
<td>0.01</td>
<td>0.060</td>
<td>17</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td></td>
<td>20</td>
<td>1.79</td>
<td>0.01</td>
<td>0.052</td>
<td>29</td>
<td>35</td>
</tr>
<tr>
<td></td>
<td>Pine Pellets</td>
<td>0</td>
<td>0.23</td>
<td>0.01</td>
<td>0.010</td>
<td>23</td>
<td>23</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
<td>0.53</td>
<td>0.01</td>
<td>0.034</td>
<td>28</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10</td>
<td>1.12</td>
<td>0.01</td>
<td>0.029</td>
<td>53</td>
<td>38</td>
</tr>
<tr>
<td></td>
<td></td>
<td>20</td>
<td>1.60</td>
<td>0.02</td>
<td>0.026</td>
<td>86</td>
<td>62</td>
</tr>
</tbody>
</table>

400-600% increase in soil-C and N with a 20 T/acre amendment
Accounting of Biochar C

Applied Biochar-C (g C kg\(^{-1}\) soil)

0 2 4 6 8 10 12 14 16 18

Soil Biochar-C (g C kg\(^{-1}\) soil)

0 2 4 6 8 10 12 14 16 18

y = 0.83X - 0.89; R\(^2\) = 0.87
y = 1.19X - 0.98; R\(^2\) = 0.92
y = 1.08X - 0.04; R\(^2\) = 0.98
y = 1.01X - 0.48; R\(^2\) = 0.98
y = 0.98X - 0.15; R\(^2\) = 0.98
y = 1.08X - 0.04; R\(^2\) = 0.98
Projected Atmospheric Carbon Levels and Associated Global Warming

IPCC (2007) WG1-AR4, SPM, p. 14, modified to show zone where irreversible warming of Greenland ice sheet is projected to occur (ibid., p. 17)
How can biochar help mitigate CO$_2$ Imbalance?

- Create stable C pool using biochar in soil
- Use energy from pyrolysis to offset fossil C emissions
- Avoid emissions of N$_2$O and CH$_4$
- Increase net primary productivity of sub-optimal land
- Boundary conditions for biochar contribution shown to right
 - Maximum levels are not sustainable
 - Biochar cannot solve climate change alone
Effects of Biochar Applications on Yield

Crops

<table>
<thead>
<tr>
<th>Crop</th>
<th>Crop</th>
<th>Literature Review - 53 Trials</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clover</td>
<td>Beans</td>
<td>23 - Increases (10-150%)</td>
</tr>
<tr>
<td>Corn</td>
<td>Cowpea</td>
<td></td>
</tr>
<tr>
<td>Cotton</td>
<td>Cucumber</td>
<td>15 - Decreases (10-85%)</td>
</tr>
<tr>
<td>Oats</td>
<td>Peas</td>
<td></td>
</tr>
<tr>
<td>Rice</td>
<td>Peppers</td>
<td>15 - No Difference</td>
</tr>
<tr>
<td>Sugarcane</td>
<td>Tomato</td>
<td></td>
</tr>
<tr>
<td>Wheat</td>
<td>Mushrooms</td>
<td></td>
</tr>
</tbody>
</table>

Biochars were derived from:
- herbaceous – woody feedstocks

Rates of Biochar Application: 5 – 100 t/acre

Majority of increases were in tropical soils
Rate studies

Yield Response of Perennial Ryegrass

Baronti et al. 2008.
Institute of Biometeorology (IBIMET)

Response of Tomato

Hossain et al., 2008
Macquarie University NSW, Australia
Wheat root and shoot growth in Quincy sand amended with two biochars.

<table>
<thead>
<tr>
<th>Soil Series</th>
<th>Biochar</th>
<th>‡Rate</th>
<th>Root</th>
<th>Shoot</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>T ac⁻¹</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quincy</td>
<td>Peanut Hull</td>
<td>0</td>
<td>2.1<sup>NS</sup></td>
<td>7.8<sup>NS</sup></td>
<td>9.9<sup>NS</sup></td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
<td>1.8</td>
<td>8.2</td>
<td>10.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10</td>
<td>1.7</td>
<td>9.5</td>
<td>11.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>20</td>
<td>1.9</td>
<td>7.9</td>
<td>9.8</td>
</tr>
<tr>
<td>Bark</td>
<td></td>
<td>0</td>
<td>3.3<sup>NS</sup></td>
<td>8.8</td>
<td>12.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
<td>3.1</td>
<td>12.9*</td>
<td>16.0*</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10</td>
<td>4.1</td>
<td>15.5*</td>
<td>19.6*</td>
</tr>
<tr>
<td></td>
<td></td>
<td>20</td>
<td>3.0</td>
<td>10.2</td>
<td>13.2</td>
</tr>
</tbody>
</table>
Field Studies

Western Kenya

Woody biochar
6 tons/ha
2- applications

Figure 1: Influence of organic matter additions on maize grain yield across a chronosequence of soil degradation in 2005-06

Kmetu et al., 2008
USDA-ARS Research

- National Programs
 - ARS Biochar/Pyrolysis Initiative
- Five research sites
 - Prosser, WA
 - Kimberly, Idaho
 - Ames, IA
 - St. Paul, MN
 - Florence, SC
Yield was not significantly different in 2007

<table>
<thead>
<tr>
<th></th>
<th>Grain (bu/Ac)</th>
<th>Stover (ton/Ac)</th>
</tr>
</thead>
<tbody>
<tr>
<td>With biochar</td>
<td>223</td>
<td>5.67</td>
</tr>
<tr>
<td>No biochar</td>
<td>217</td>
<td>5.81</td>
</tr>
</tbody>
</table>

Biochar applied fall of 2006
USDA-ARS Biochar/Pyrolysis Initiative: Field Trials
Dynamotive Biochar Field Trials

Yield reduction attributed to poor stands under No-till and cool crop year

Yields returned to 2009 levels after eliminating no-till.
Other Uses for Biochar

“Currently sourcing enough biochar for application at the commercial farm scale is nearly impossible, due to lack of supply. The success of biochar production will depend on the economic values of the various products that can be produced or the potentially value-added uses of biochar that can be envisioned”.

Yoder and Galinato, 2009

- Conversion to activated carbon, commonly utilized in industrial filtration processes or water treatment
- Nutrient recovery
- Soil herbicide and pesticide management
- Reduce the bioavailability and mobility of toxic trace metals in contaminant mitigation
- Metallurgy - reductant in the production of iron or steel
Dairy Manure: Nutrient Recovery

- Increase in dairy herds in Eastern WA ~8% y\(^{-1}\)
- Large dairy herds; 4,000 - 25,000 cows
- 1000 lb milking cow produces ~100 lbs manure d\(^{-1}\)
- Lagoons – 5 - 20 million gals (emptied twice y\(^{-1}\))
- Small land base with application of 560 - 900 lbs N ac\(^{-1}\) and 120 - 450 lbs P ac\(^{-1}\)

Global Objective:
- Combine technologies of anaerobic digestion and pyrolysis to reduce nutrient loss and soil and water contamination.

04/12/2007
Manure

- Dairy and Cattle manure – > 1.5 million dry tonnes of manure produced each year in WA State.
Pyrolysis of Manure:

AD Dairy Manure Fiber

Pelletized Manure

Biochar

Dairy AD Manure Effluent Collection

Lagoon 378 L

Slow Pyrolysis
500°C
Manure fiber Coating the Char

73% of the Fiber was removed from the lagoon

Coatings ~5% Mass

The fiber accounts for 35% of the P removed
Biochar made from Manure

Un-amended Char

Lagoon-treated Char
Phosphorus Availability
Anaerobic Digested Fiber Biochar

Days of Biochar filtration
0 3 6 9 12 15 18
Olsen P (mg kg$^{-1}$ biochar)
0 200 400 600 800 1000 1200 1400

Total P adsorbed = 7.8 g kg$^{-1}$ biochar
(16 lbs P/ton)

Available P
~13% of adsorbed

To satisfy a 50 kg ha$^{-1}$ P application
6.4 Mg of char ha$^{-1}$
(2.7 ton/acre)

P recovery of Pyrolyzed AD Manure:
(16 lbs P/ton)
(2.7 ton/acre)
Greenhouse trial: Biochar/ Dairy Recovered P

Soil control
0 P

Biochar
0 P

Biochar + Recovered P

Fertilized
Summary:

- Pyrolysis of agricultural wastes produces energy and a co-product that can be used as a soil amendment.

Biochar impact on soil characteristics:

- increased soil pH 0.5 – 1 pH unit
- increased soil C levels 1.3 – 5 fold C_T and C_{AH}
- up to 2.93 Mg CO2 offset per Mg of biochar
- small increase in CEC (30% sand; 3-17% SiL)
- increases in water retention dependent on char type 0.5 – 2.5 in ft$^{-1}$ dependent on soil type
- reduced NO$_3$ production 15-30%

- Effects on plant growth are variable.
- How to incorporate biochar? (broadcast vs. banding)
- Availability of feedstocks will compete with other energy technologies.
Sufficiently advanced technology is indistinguishable from magic

Arthur C. Clarke

Biochar?
Long-term Supply of feedstocks: Biochar?

- **Forest Resources**
 - logging debris – 67 M dry T y\(^{-1}\)
 60% recovery
 Converted to biochar = 10 M T Carbon
 - forest thinning – 60 M dry T y\(^{-1}\)
 at most 30% collected 18 MT
 Converted to biochar = 4.5 M T Carbon
 - Primary wood processing mills – 91 M dry T y\(^{-1}\)
 bark, saw mill slabs, edgings, sawdust, etc.
 < 2 million dry tons available
 Converted to biochar = 0.4 M T Carbon
 - Secondary wood processing mills – 16 M dry T y\(^{-1}\)
 millwork, containers, pallets, etc.
 recovered from urban MSW

DOE Billion Ton Report, 2005
Long-term Supply:

- **Available Urban Wood residues 63 M dry T yr⁻¹**

<table>
<thead>
<tr>
<th>Material</th>
<th>Generated</th>
<th>Recovered/Un-useable</th>
<th>Available</th>
</tr>
</thead>
<tbody>
<tr>
<td>Construction</td>
<td>11.6</td>
<td>3.0</td>
<td>8.6</td>
</tr>
<tr>
<td>Demolition</td>
<td>27.7</td>
<td>16.1</td>
<td>11.7</td>
</tr>
<tr>
<td>Woody yard</td>
<td>9.8</td>
<td>8.0</td>
<td>1.7</td>
</tr>
<tr>
<td>Wood (MSW)</td>
<td>13.2</td>
<td>7.3</td>
<td>6.0</td>
</tr>
<tr>
<td>Total</td>
<td>62.3</td>
<td>34.4</td>
<td>28.0</td>
</tr>
</tbody>
</table>

Expected to increase 30%. (McKeever, 2004)

Converted to biochar = 7 M T Carbon

- **Total Forest resources available for biochar production**
 ~ 88 M dry T yr⁻¹ of 296 M dry T yr⁻¹ inventoried. (30%)

Total biochar produced = 22 M T Carbon yr⁻¹

Land Application @ 10 T acre⁻¹ = 2.2 million acres
Long-term Supply:

- **Crop residues** (corn stover, small grain residues)
 - DOE estimated 428 M dry T of residues. (2006)
 - 28% (120 M dry T) will be available for conversion
 - ignore ethanol industry, convert by pyrolysis

 Converted to biochar = 27 M T Carbon

- **Dedicated crops** (perennial, switchgrass, poplars, etc.)
 - DOE reports potential production for 377 M dry T
 - Yields range from 5-10 T acre⁻¹
 - Acreage needed: 38 - 75 M acres
 - ignore ethanol industry, convert by pyrolysis

 Converted to biochar = 85 M T Carbon

Total biochar produced = 112 M T Carbon y⁻¹
Land Application @ 10 T acre⁻¹ = 11.2 million acres
Washington State

Forest Resources
- logging debris – 1.9 M T y\(^{-1}\)
- forest thinning – 0.5 M T y\(^{-1}\)
- mill residues – 5.2 M T y\(^{-1}\) @10% = 0.5 M T y\(^{-1}\)
- urban wood – 3.7 M T y\(^{-1}\)

Converted to biochar = 0.8 M T Carbon

Crop Residues
- 2.2 M T y\(^{-1}\) @ 20% = 0.4 M T y\(^{-1}\)

Converted to biochar = 0.1 M T Carbon

Total biochar produced = 0.9 M T Carbon y\(^{-1}\)

Land Application @ 10 T acre\(^{-1}\) = 90,000 acres

WA State, Biomass Inventory and Bioenergy Assessment, 2005

If the U.S. were to harvest and pyrolyze 1.3 billion tons of biomass per year: We could displace 1.9 billion barrels of imported oil with domestically-produced and renewable bio-oil (about 25% of U.S. annual oil consumption). We could also sequester 153 million tons of carbon per year by amending soils with the biochar co-product. The total carbon credit (400 million tons of C per year) would reduce U.S. greenhouse gas emissions by about 10%.

Adding biochar to soils has been shown to increase crop yields for tropical soils and is anticipated to do the same for temperate region soils. Amending soils with biochar improves soil quality, because biochar acts as a liming agent, reduces soil bulk density, and increases nutrient cycling. In addition, amending soils with biochar returns to the soil most of the plant nutrients that are removed from the soil when biomass is harvested.

Biochar strongly adsorbs excess plant nutrients, pesticides and many other pollutants. Therefore amending soils with biochar reduces leaching of pollutants and thereby improves the quality of water in lakes and streams.

When biomass is heated in the absence of oxygen it thermally decomposes into syngas, bio-oil, and biochar. Syngas is a combustible gas that can be used to provide the energy needed to run the pyrolyzer. Bio-oil is an energy raw material with about half the heating value of fuel oil. Biochar can also be used as a renewable fuel (displacing coal) or as a soil amendment. Modern fast pyrolyzers are designed to maximize the production of bio-oil by heating the biomass to >400°C in less than one second.

The Biochar Vision
We envision using a distributed network of fast pyrolyzers to turn biomass (crop residue, switchgrass, yard waste, etc.) into bio-oil, a renewable energy product, and biochar, a soil amendment that builds soil quality, increases crop yields, and sequesters carbon in soils for millennia.
Use of Biochar from the Pyrolysis of Waste Organic Material as a Soil Amendment

Submitted by
Center for Sustaining Agriculture and Natural Resources
Washington State University
July 2009

David Granatstein, Sustainable Agriculture Specialist
Chad Kruger, BIOAg Educator
Project Leaders and Co-Principal Investigators
Center for Sustaining Agriculture and Natural Resources
Washington State University, Wenatchee, WA 98801

Harold Collins, Soil Scientist, Co-Principal Investigator
USDA-ARS, Prosser, WA 99350-9687

Manuel Garcia-Perez, Chemical Engineer, Co-Principal Investigator
Department of Biological Systems Engineering
Washington State University, Pullman, WA 99164-6120

Jonathan Yoder, Economist, Co-Principal Investigator
School of Economic Sciences
Washington State University, Pullman, WA 99164-6210

This project was completed under Interagency Agreement C0800248 with the Center for Sustaining Agriculture and Natural Resources, Washington State University.
Key Findings: Economics

Chapter 5.
- Pyrolysis temperature influences the trade-off between production of bio-oil and biochar. Higher temperatures lead to more bio-oil and less biochar, as does fast pyrolysis versus slow pyrolysis.
- Above about 525°C, bio-oil production declines; thus this represents an economic threshold to stay below.
- Based solely on energy content, biochar is worth about $114/metric ton and bio-oil about $1.06/gallon.

Chapter 6.
- Forest thinning represents a major potential feedstock source for pyrolysis in Washington in terms of quantity of under-utilized biomass.
- Only a larger stationary facility has returns over total costs ($4/ton dry feedstock) for biochar and bio-oil production at prices based on energy content.
- The break-even selling price for biochar from a stationary facility is $87/metric ton without transportation to the end user.
- The break-even selling price for bio-oil from a stationary facility is $1.03/gallon without transportation to the end user.
- If bio-oil can be sold for $1.15/gallon, then the break-even price for biochar from a stationary facility drops to $7/metric ton.
- Labor costs are the major factor in driving up costs for a smaller mobile pyrolysis unit.
- For a stationary facility to be profitable under the assumed prices and costs, feedstock cost should not be higher than $22/ton.
- Siting pyrolysis with existing collected feedstocks, use for waste heat, and other synergies is important for its economic viability.
Key Findings: Carbon Offsets

Chapter 7.

- Biochar represents an offset of about 2.93 MT* CO$_2$/MT biochar.
- Biochar production via pyrolysis still provides a large C sequestration potential even after emissions from process energy are subtracted.
- Biochar can substitute for agricultural lime for raising soil pH, but is much more expensive.
- With carbon offsets, biochar production can become profitable when trading prices per metric ton CO2 are $16.44, $3.39, and $1.04 for the smaller mobile, transportable, and relocatable facilities, respectively. A stationary facility is profitable without a carbon credit.
Competing Uses:

Syngas

- CO
- H$_2$
- CH$_4$

Electricity
Transportation fuel

Gasification
High temp

Slow Pyrolysis
Low temp

Facility

Feedstocks

Additional Gasification

Güssing, 2 MW of electricity and 4 MW of heat, generated from wood chips, since 2003.

Bunker Fuel
Smudge pots
Other?

Soil Amendment