Snakeweed

Guterrezia sarothrae - >3 floretes/head (Broom snakeweed)

G. microcephala - 1 florete/head (Threadleaf snakeweed)

Other common names: tuprentine weed, slinkweed, matchweed, rubberweed, yellowtop, broomweed

FIG. 8.2 Distribution of Gutierrezia sarothrae and G. microcephala in North America (adapted from Lane 1985).

Snakeweed History of Poisoning

- Ranchers in southern Great Plains suspected broomweed poisoning
- West Texas abortions 10-60%
- Research
 - Schmidt 1931 no toxicity
 - Matthews 1936 toxic to cattle sheep goats
 - Dollahite 1957 low dose cause abortions, high dose toxic

Chemistry

- Shaver 1964 Saponin caused abortions
- Roitman 1985 flavonids likely estrogenic
- Roitman 1994 Diterpene acids, similar to ICA in pines
- Gardner 1994 Diterpene acids
 - Relative amount of individual acids toxic or abortifacient

Clinical signs of Poisoning

Abortions

- Small weak calves
- Retained placenta
- Infection causing death

Toxic syndrome

- Anorexia
- Mucopurlent nasal discharge
- Listlessness
- Loss of appetite
- Diarrhea
- Constipation
- Rumen stasis
- death

Relationship of Snakeweed Poisoning to Nutrition NMSU

Smith 1991 – snakeweed in rat diets reduced fertility and increased fetal mortality.

Edrington 1993 – snakeweed reduced intake, impaired hormone balance, disrupted blood flow to uterus leading to fetal death.

Oetting 1991 – snakeweed in low quality diets reduced intake and ewes didn't show estrus.

Williams 1993 – snakeweed in balanced diet didn't affect estrus, conception, or cause abortions in heifers.

Poisoning = starved animals forced to graze snakeweed

Snakeweed Competition

- 1. Prolific seed producer 1200-22,000 seeds/plant
- 2. Seed germination
 - a. Seeds on surface 70% germination establish when conditions favorable
 - b. Buried seeds low germination reserve for long-term survival
- 3. 2-tier root system
 - a. Deep tap root
 - b. Extensive adventitious roots

Exhaust soil moisture from entire soil profile

- 4. Leaves little stomatal control luxuriant use of water
 - a. Shed leaves in drought
 - b. Stem photosynthesis to maintain plnt
- 5. Allelopathy saponins and flavonoids suppress grass root growth
- 6. Even-aged stands near total dominance
 - a. Cataclysmic event population dies (drought, fire, insects)
 - b. 1st to germinate and establish when adequate moisture
 - c. Intraspecific competition 70% seedlings die in first year
 - d. Interspecific competition crowd out grass
 - 1. Soil moisture depletion
 - 2. Allelopathy

Snakeweed Cover Ferron Utah

Snakeweed Dominate Plant Communities

Grass Production	no snakeweed	with snakeweed
Shortgrass prairies	800 lb/ac	80 lb/ac

Snakeweed Cover	Climax / PNC	<u>Current</u>
Salt-desert shrub		
Henry Mt	5%	13%
Ferron UT	3%	10%
Sagebrush steppe	5%	14%
Pinyon / Juniper	0%	4-5%
	(total foliar cover = 20%)	

State and Transition Model

Disturbance drivers
Over grazing
Fire

Conditions of Poisoning

Snakeweed is not palatable

High levels of saponins, flavonids, terpenes (crude resins 13%)

Overgrazed ranges.

Grazed only when desirable forage depleted Winter and early spring – warm season grasses dormant, snakeweed 1st to grow.

Magnitude of Losses (Torell 1988) Eastern New Mexico, West Texas - \$44.3 million

- Reduced forage production
 - Biggest impact, 72% of total loss
- Death and abortions
 - Abortions 2.9% of calf crop
 - Death rate 1% annually
- Decreased gains

Management to reduce poisoning

- Ensure adequate feed.
- Control
 - Mechanical plow and seed to adapted grass
 - Prescribed burning
 - Herbicide

<u>Herbicide</u>	<u>Rate</u>	<u>Spring</u>	<u>Fall</u>	<u>\$/ac</u>
2,4-D	2lb/ac	25%	0	4
Tordon	.5 lb/ac	98	99	23
Grazon PC	1.25 lb/ac	75	90	9.40
Escort	1 oz/ac	9	83	
Milestone	7 oz/ac	42	93	

Cool-season grass competition with snakeweed

Establish weed-resistant plant community

- Snakeweed seedlings sensitive to competition from established plants.
- Once established, it is competitive with other plants.

- Seed cool-season grasses following control or disturbance.
 - HyCrest crested wheatgrass most reliable to establish.
 - Squirrel tail establishes quickly, but declines.
 - Western and bluebunch wheatgrass slow to establish, allowing cheatgrass to establish.

Results of intensive grazing trial:

- 62-95% snakeweed plants grazed
- 50-85% snakeweed biomass removed
- Density of mature snakeweed declined 85%
- Crested wheatgrass cover increased

Density of existing mature snakeweed plants

Cover of associated vegetation did not decline

Spring grazing

Crested wheatgrass cover (%) Grazed Ungrazed

Summer grazing

