Pyrrolizidine Alkaloid Containing Plants

Bryan Stegelmeier
ADVS 586
February 9, 2010
Pyrrolizidine alkaloid containing plants are the most widespread and expensive poisonous plant problem that affects plants, insects, animals and humans.
Outline

- Plants
- Toxin
- Metabolism
- Poisoning
- Susceptibility
- Clinical signs
- Lesions
- Diagnosis
- Current Research
PA Global Problem

- >6000 plants contain PA’s
- Most common poisonous plant affecting livestock, wildlife, and humans
- Invasive noxious weeds
- Contaminated feed, food and herbal preparations
- Wide range of susceptibility
Plants Containing Pyrrolizidine Alkaloids

Compositae
- Senecio (1200 species)
- S. jacobaea (tansy ragwort)
- S. vulgaris (common groundsel)
- S. longilobus (threadleaf groundsel)
- S. riddellii (Riddell groundsel)

Fabaceae (Liguminosae)
- Crotalaria (600 species)
- C. sagittalis (rattlebox)
- C. spectabilis (showy crotalaria)
- C. retusa (wedge-leaf rattlebox)
- C. pallida (smooth crotalaria)
- C. juncea (sun hemp)

Boraginacea
- Amsinckia intermedia (tarweed)
- Borago officinalis (borage)
- Cynoglossum officinale (hound's tongue)
- Echium plantagineum (echium)
- Echium vulgare (vipers bugloss)
- Heliotropium europaeum (heliotrope)
- Symphytum officinale (comfrey)
Compositae

- Senecio (1200 species)
 - S. jacobaea (tansy ragwort)
 - S. vulgaris (common groundsel)
 - S. longilobus (threadleaf groundsel)
 - S. riddellii (Riddell groundsel)
Senecio jacobea
Senecio riddellii
Senecio longilobus
Fabaceae

- Crotalaria (600 species)
 - C. sagittalis (rattlebox)
 - C. spectabilis (showy crotalaria)
 - C. retusa (wedge-leaf rattlebox)
 - C. pallida (smooth crotalaria)
 - C. juncea (sun hemp)
Boraginaceae

- Amsinckia intermedia (tarweed)
- Borago officinalis (borage)
- Cynoglossum officinale (hound’s tongue)
- Echium plantagineum (Patterson’s curse)
- Echium vulgare (viper’s bugloss)
- Heliotropium europaeum (heliotrope)
- Symphytum officinale (comfrey)
Cynoglossum officinale
Amsinckia intermedia (tarweed)
Crop vs Weed

Echium plantagineum
- Patternson’s Curse
- Salvation Jane
Echium vulgare (viper’s bugloss)
Pyrrolizidine alkaloids: Chemistry
Pyrrolizidine Alkaloids: Metabolism

RO
\[\text{Pyrrrole derivative} \]
\[\text{Pyrrole bound to liver tissue (toxic reaction)} \]
CH\(_2\)-OCOR

\[\text{liver enzymes} \]

\[\text{conjugation} \]

\[\text{glutathione} \]

\[\text{Urinary excretion} \]
Riddelliine N-oxide

Dehydrogenation (Oxidation)

Esterase Hydrolysis

N-Oxidation

Riddelliine

Necine

Necine base and Necic Acid

Pyrrolic Riddelliine

Polymerization

Formation of Pyrrole Protein DNA Adducts

Formation of Pyrrolic DNA or Protein Adducts

Reaction with soluble nucleophiles

PPRL 2010

April 2009
Poisoning

- Accidental
- Palatability
- Feed Contamination
- Herbal Supplements
Feed and Food Contamination

- Native and introduced species invade ranges and fields.
- Though most are not palatable they are eaten in prepared feeds.
- Animal products?
- Human poisoning occurs.
Reversible hepatic veno-occlusive disease in an infant after consumption of pyrrolizidine-containing herbal tea

Abstract. Veno-occlusive disease was diagnosed in an 18-month-old boy who had regularly consumed a herbal tea mixture since the 3rd month of life. The boy developed portal hypertension with severe ascites. Histology of the liver showed cromocytic sinusoidal congestion with perivenular edematous and perivenular necrosis without cirrhosis. The tea contains peppermint and what the mother thought was calendula (Tussilago farfara). The parents believed the tea aided the healthy development of their child. Pharmacological analysis of the tea compounds revealed high amounts of pyrrolizidine alkaloids.Senecionine and the corresponding 3,7-oxide were identified as the major components by thin layer chromatography, mass spectrometry and NMR spectroscopy. We calculated that the child had consumed at least 60 μg/kg body weight per day of the toxic pyrrolizidine alkaloid mixture over 15 months. Macroscopic and microscopic analysis of the leaf material indicated that Senecionine alkaloids (Alphabetos) had been erroneously labeled by the patient in place of calendula. The two plants can easily be confused, especially after the flowering period. The child was given conservative treatment only and recovered completely within 2 months.

Conclusion. In all cases of veno-occlusive disease pyrrolizidine alkaloids ingestion should be considered. The identity of the herbal plant should be verified by pharmacological and morphological examination in addition to a medical history. The chemical composition should be analyzed to identify possible contaminants (herbal)

Key words. Veno-occlusive disease, pyrrolizidine alkaloids, herbal tea.

Introduction. Veno-occlusive disease (VOD) of the liver is characterized by portal hypertension with severe ascites due to obliteration of central venules or sublobular hepatic veins. It is the most frequent cause of hepatic veno-occlusion in children. Hepatic VOD in infants may be caused by hepatic irradiation, chemotoxic agents or bone marrow transplantation; in underdeveloped countries the most common cause is ingestion of plants that contain hepatotoxic pyrrolizidine alkaloids. Epideemics of pyrrolizidine alkaloid intoxication have been reported from India, Afghanistan and Jamaica [1], whereas only sporadic cases are known from the United States of America, United Kingdom and Europe [4, 14, 18]. In the latter, cancer products have led to an increased awareness of intoxication due to their widespread use as alternative medicine [4, 14, 15, 21].
Neonatal riddelliine toxicity of pigs

- 5 different age groups of 12 pigs
- neonates, 3 week old, 6 weeks old, 12 weeks old, 24 weeks old, and year old crossbred pigs
- dosed with riddelliine at 0.0, 5.0, 10.0 and 20.0 mg/kg for 14 days
Pyrrolizidine Alkaloidosis in a Two Month Old Foal

A. C. Small¹, W. R. Kelly², A. A. Seawright², A. R. Mattocks³ and R. Jukes³

Address of authors: ¹ Diagnostic Veterinary Laboratories, Randwick, New South Wales, Australia
² Department of Veterinary Pathology, The University of Queensland, St. Lucia, 4072, Australia
³ MRC Toxicology Unit, Carshalton, Surrey, SM54EF, England

With one figure and one table

(Received for publication June 30, 1992)

Summary

A foal, small and jaundiced from birth, succumbed after two months to chronic hepatic damage which was characterised by fibrosis, biliary ductular hyperplasia and the presence of pleomorphic hepatocytes containing either a single large nucleus or multiple nuclei. The fixed liver contained sulfur-bound pyrroles, which are derived from pyrrolizidine alkaloids. During pregnancy the pasture was heavily infested with the pyrrolizidine alkaloid-containing plant, Senecio madagascariensis. The hepatic disease affecting the foal appears to have been initiated by consumption of the alkaloids by the mare during gestation, and to represent a rare case of congenital pyrrolizidine alkaloidosis.
Species Susceptibility

<table>
<thead>
<tr>
<th>Species</th>
<th>Susceptibility to PA toxicosis</th>
<th>In vitro pyrrole production rate<sup>a</sup></th>
<th>Lethal dose (as % of body weight)<sup>b</sup></th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cow</td>
<td>High</td>
<td>High</td>
<td>3.6</td>
<td>Cheeke et al. (1985)</td>
</tr>
<tr>
<td>Horse</td>
<td>High</td>
<td>High</td>
<td>7.3</td>
<td>Garrett et al. (1984)</td>
</tr>
<tr>
<td>Sheep</td>
<td>Low</td>
<td>Low</td>
<td>302</td>
<td>White et al. (1984)</td>
</tr>
<tr>
<td>Goat</td>
<td>Low</td>
<td>?</td>
<td>205</td>
<td>Goeger et al. (1982a)</td>
</tr>
<tr>
<td>Rat</td>
<td>High</td>
<td>High</td>
<td>21</td>
<td>Goeger et al. (1983)</td>
</tr>
<tr>
<td>Mouse</td>
<td>Intermediate</td>
<td>High</td>
<td>?</td>
<td></td>
</tr>
<tr>
<td>Rabbit</td>
<td>Low</td>
<td>High</td>
<td>113</td>
<td>Pierson et al. (1977)</td>
</tr>
<tr>
<td>Guinea pig</td>
<td>Low</td>
<td>Low</td>
<td>119</td>
<td>Cheeke and Pierson-Goeger (1983)</td>
</tr>
<tr>
<td>Hamster</td>
<td>Low</td>
<td>High</td>
<td>338</td>
<td>Cheeke and Pierson-Goeger (1983)</td>
</tr>
<tr>
<td>Gerbil</td>
<td>Low</td>
<td>?</td>
<td>3640</td>
<td>Cheeke and Pierson-Goeger (1983)</td>
</tr>
<tr>
<td>Chicken</td>
<td>High</td>
<td>Low</td>
<td>39</td>
<td>Cheeke and Pierson-Goeger (1983)</td>
</tr>
<tr>
<td>Japanese quail</td>
<td>Low</td>
<td>Low</td>
<td>2450</td>
<td>Buckmaster et al. (1977)</td>
</tr>
</tbody>
</table>

^aAdapted from Shull et al. (1976).

^bChronic lethal dose of *Senecio jacobaea*.
Afghanistan: “Charmak” disease still killing people and livestock

16 December 2008 - Over 270 people have been diagnosed with a hepatic veno-occlusive disease (VOD), locally known as “camel belly” or “charmak” disease.
What about the pyrrole?
Is exposure changing?
Do herbal remedies cause cancer?

By Peter H. Gott, M.D.
Newspaper Enterprise Association

DEAR DR. GOTT:
Do you have any recent evidence that certain herbal remedies cause health problems? My friend says that some cause cancer, which I find hard to believe.

DEAR READER:
Hard to believe or not, your friend’s statement is correct. As pointed out in an editorial in The New England Journal of Medicine, the Chinese herb Aristolochia fangchi has been shown to cause kidney and bladder cancer in humans.

Suspicions were first raised a decade ago when, in a Belgian clinic, women were given a Chinese weight-reduction herb that was contaminated by A. fangchi. Within three years, dozens of the patients developed progressive renal failure. In 1994, the first bladder cancers were reported.

Following publication of this information, the United Kingdom, Canada, Australia and Germany banned the use of herbal remedies that contain this toxin. Unfortunately, the product remains available in many American stores.

Because of the 1994 Dietary Supplement Health and Education Act, the Food and Drug Administration is no longer permitted to regulate the manufacture, purity and distribution of most herbal remedies, some of which — notably ephedra — are clearly associated with major health risks.

It is inconceivable to many scientists that Congress has shown so little interest in protecting the consumer from dangerous dietary supplements, fraudulent claims, products contaminated by lead and arsenic, and dietary supplements that are — in reality — medicines containing powerful prescription drugs (such as cortisone) that are not listed on the labels. Certainly, all of us deserve to be protected against pharmaceutical fraud and abuse, yet the public continues to believe that such herbal remedies rarely place people in real danger. Nothing could be further from the truth.

Until the Dietary Supplement Act can be revised and modified, our elected officials need to initiate an educational program that will inform consumers of the hazards of certain herbal remedies, especially those that are manufactured in parts of the world where quality control and public responsibility are, apparently, lacking. As with conventional medications, these unregulated supplements have the potential to cause harm. Take them at your own risk.
Clinical Lesions- Dose Dependent
Leakage enzymes (AST, ALT, SDH, LDH)
Billiary proliferation (ALP, GGT)
Cholestasis (Bilirubin, Bile Acids, Dye retention)
Clinical Signs

- Lethargy
- Anorexia
- Photosensitivity and solar dermatitis
- Diarrhea
- Weakness
- Wandering or blindness
- Belligerence
- Ascites
- Hepatic lesions
 - Yellow soft liver
 - Hepatocyte necrosis, fibrosis, biliary hyperplasia
- Generalized icterus
- Subcutaneous and visceral edema
- Species related extra-hepatic lesions
Secondary Lesions

- Wasting cow
- Hepatic encephalopathy
- Icteric and hyperbilirubinemia
- Edema and dilated lymphatics
- Gross liver necrosis
- Edema (colonic and abomasal)
- Vascular thrombosis and intestinal infarction
- Photosensitivity and dermal necrosis
Dose Dependent- Histologic Lesions

- Portal circulation
- Hepatic metabolism
- Hepatocyte response
- Classical response
 - Necrosis
 - Fibrosis
 - Biliary hyperplasia
Pyrrole Detection
ELISA Studies

- Coat well with antigen
- Block
- Incubate with antibody
- Wash
- Incubate with antibody-enzyme conjugate
- Wash
- Add substrate and observe color change or fluorescence

Ag = antigen; Ab = antibody; E = enzyme.
Class and alkaloid specific ELISA’s
Riddelliine conjugate vaccine trial

Three groups of 30 rats were immunized with two riddelliine conjugates and a sham ovalbumin conjugate.

Three groups of 10 dosed with riddelliine of 5 mg/kg (25% LD50), 15 mg/kg (75% LD50) and 30 mg/kg (150% LD50) for 10 days.

Serum was collected and tissues were collected for evaluation.
Which rat was vaccinated? Real blind study.
Diagnosis
Current Research Plan Objectives

Objective 1: *Develop diagnostic techniques and biomarkers to better identify animals poisoned by pyrrolizidine alkaloids (PA’s) and their subsequent metabolites, and develop techniques to monitor foods and feeds for PA-contamination.*

Objective 2: *Determine pyrrole toxicity and carcinogenicity and compare pyrrole toxicity with that of PA and PA-n-oxides. Characterize the risk to fetuses and neonates that are exposed by maternal PA-ingestion.*

- **Sub-Objective 2.1:** Determine pyrrole toxicity and carcinogenicity.
- **Sub-Objective 2.2:** Characterize transplacental and transmammary toxicity of various PA’s.
Immunologic Diagnostics

DNA Conjugates
Thymidine Conjugates

Glutathione Conjugates

Protein Conjugates

April 2009

PPRL 2010
Diagnostic Immunochemistry (ELISA)
Pyrrole kinetics
Objective 2: Determine pyrrole toxicity and carcinogenicity and compare pyrrole toxicity with that of PA and PA-n-oxides. Characterize the risk to fetuses and neonates that are exposed by maternal PA-ingestion.

Sub-Objective 2.1: Determine pyrrole toxicity and carcinogenicity.

Sub-Objective 2.2: Characterize transplacental and transmammary toxicity of various PA’s.
Upregulated or sensitized mice model

- P450 upregulation
 - Phenobarbital
 - Spironolactone
- Glutathione depletion (BSO)
- Pilot Study: Groups of 3 sensitized mice dosed with riddelliine for 14 days
Pilot Study

- Phenobarbital and spironolactone increased susceptibility
- BSO (L-buthionine (S,R)-sulfoximine) alone or in combination was poorly tolerated
- Histology studies are underway
Heterozygote TRP53 mutated mice model

- Carcinogenesis endpoint
- Riddelliine challenge at 0, 5, 15, and 45 mg/kg/day for 14 days.
- Monitor neoplastic transformation
Current Direction

- Continue synthesizing pyrrole conjugates
- Further define and characterize small animal model (sensitized mouse)
- Compare free base, n-oxide and pyrrole toxicity *in vitro* and sensitized mouse models
- Complete characterization of P53 knockout carcinogenicity model
Reading Assignment:

Cheeke: Natural Toxicants in Feeds, Forages and Poisonous Plants

Pyrrolizidine Alkaloids 338-352