
Overview of the SHAW Model

The Simultaneous Heat and Water (SHAW) Model is a one-dimensional model originally
developed to simulate soil freezing and thawing.  The model's ability to simulate heat and water
movement through plant cover, snow, residue and soil for predicting climate and management
effects on soil freezing, snowmelt, runoff, soil temperature, water, evaporation, and transpiration
has been demonstrated (Flerchinger and Saxton, 1988; Flerchinger and Hanson, 1989;
Flerchinger et al., 1990; Flerchinger and Pierson, 1991; and Xu et al., 1991, Flerchinger et al.,
1994, Hayhoe, 1994, and Flerchinger et al. 1996). 

The SHAW model simulates a one-dimensional vertical profile extending from the top of
a plant canopy or the snow, residue or soil surface to a specified depth within the soil.  The
system is represented by integrating detailed physics of vegetative cover, snow, residue and soil
into one simultaneous solution.  The model is sufficiently flexible to represent a broad range of
conditions and the system may or may not include a vegetative canopy, snow, or a residue layer. 
Interrelated heat, water and solute fluxes are computed throughout the system and include the
effects of soil freezing and thawing.  Daily or hourly predictions include evaporation,
transpiration, soil frost depth, snow depth, runoff and soil profiles of temperature, water, ice and
solutes.  

Weather conditions above the upper boundary and soil conditions at the lower boundary
define heat and water fluxes into the system.  Water and heat flux at the surface boundary
include absorbed solar radiation, long-wave radiation exchange, and turbulent transfer of heat
and vapor.  A layered system is established through the vegetation canopy, snow, residue and
soil, with each layer represented by a node.    

Soil Freezing and Thawing
The Simultaneous Heat and Water (SHAW) model represents one of the more detailed

models of snowmelt and soil freezing and thawing.  The Simultaneous Heat and Water model,
originally developed by Flerchinger and Saxton (1989) and later updated by Flerchinger and
Pierson (1991) and Flerchinger et al. (1996) is capable of simulating the complex wintertime
phenomena of snow accumulation and melt, detailed soil freezing and thawing including
freezing-induced moisture migration, solute effects frost formation, solute translocation, and
frozen soil related runoff.  Heat, water and solute equations are solved iteratively until a
simultaneous solution is found.

Transpiration from a Multi-Species Plant Comunity
The model is capable of simulating the effects of a multi-species plant canopy (including

standing dead plant material) on heat and water transfer.  Amount of dry matter, size and leaf
area index of each plant species over the year is defined by the user.   Provisions for a plant
canopy in the SHAW model as described by Flerchinger and Pierson (1991) were made using
detailed physics of heat and water transfer through the soil-plant-atmosphere continuum. The
plant canopy may be divided into several layers (up to 10) and transfer of water vapor and
energy are solved for each layer within the canopy.  Heat and water flux within the canopy
include solar and long-wave radiation, turbulent transfer of heat and water vapor, and
transpiration from plant leaves. Transpiration from plants is linked mechanistically to soil water



by flow through the roots and leaves.  Within the plant, water flow is controlled mainly by
changes in stomatal resistance, which is computed as a function of leaf water potential. 

Snow Accumulation and Melt
Energy and mass transfer calculations for snow within the SHAW model are patterned

after the point energy and mass balance model developed by Anderson (1976).  The energy
balance of the snow includes solar and long-wave radiation exchange, sensible and latent heat
transfer at the surface, and vapor transfer within the snowpack.  Absorbed solar radiation,
corrected for local slope, is based on measured incoming short-wave radiation, with albedo
estimated from grain size, which in turn is estimated from snow density.  Liquid water is routed
through the snowpack using attenuation and lag coefficients, and the influence of metamorphic
changes of compaction, settling and grain size on density and albedo are considered.

Input to the SHAW model includes: initial snow depth and density; initial soil
temperature and water content profiles; daily or hourly weather conditions (temperature, wind
speed, humidity, precipitation and solar radiation); general site information; and parameters
describing the vegetative cover, snow, residue and soil.  General site information includes slope,
aspect, latitude, and surface roughness parameters.  Residue or litter properties include residue
loading, thickness of the residue layer, percent cover and albedo.  Input soil parameters are bulk
density, saturated conductivity, coefficients for the matric potential-water content relation, and 
albedo-water content relation.
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