Chapter 1. Origin and nature of saline and alkali soils.

Sourc;e of soluble salts.

Salinization of soils.

Alkalification or accumulation of exchangeable sodium in soils.

Characteristics of saline and alkali soils.

Saline soils.

Saline-alkali soils.

Nonsaline-alkali soils.

Chapter 2. Determination of the properties of saline and alkali soils.

Soil sampling.

Estimation of soluble salts from electrical conductivity.

Conductivity of the saturation extract and the saturation percentage.

Relation of conductivity to salt content and osmotic pressure.

Conductivity of 1:1 and 1:5 extracts.

Salinity appraisal from the electrical resistance of soil paste.

Conversion of conductivity data to a standard reference temperature.

Comparison of percent salt in soil and extract measurements.

Chemical determinations.

Soil reaction—pH.

Soluble cations and anions.

Solubleboron.

Exchangeable cations.

Gypsum.

Alkaline-earth carbonates (lime).

Physical determinations.

Infiltration rate.

Permeability and hydraulic conductivity.

Moisture retention by soil.

Density and porosity.

Aggregation and stability of structure.

Crust formation.

Choice of determinations and interpretation of data.

Equilibrium relations between soluble and exchangeable cations.

Analyses of representative soil samples.

Nonsaline-nonalkali soils.

Saline soils.

Nonsaline-alkali soils.

Saline-alkali soils.

Cross-checking chemical analyses for consistency and reliability.

Factors that modify the effect of exchangeable sodium on soils.

Texture.

Surface area and type of clay mineral.

Potassium status and soluble silicate.

Organic matter.

Sequence of determinations for soil diagnosis.

Chapter 3. Improvement and management of soils in arid and semiarid regions in relation to salinity and alkali.

Basic principles.

Irrigation and leaching in relation to salinity control.

Leaching.

Leaching requirement.

Leaching methods.

Field leaching trials.

Special practices for salinity control.

Chapter 3-Continued

Drainage of irrigated lands in relation to salinity control.

Draffitiage requirements.

Water-transmission properties of soils.

Boundary conditions.

Layout and placement of drains.

Techniques for drainage investigations.

Measurements of hydraulic head.

Determination of subsoil stratigraphy.

Determination of water-transmitting properties of soils.

Chemical amendments for replacement of exchangeable sodium.

Suitability of various amendments under different soil conditions.

Chemical reactions of various amendments in alkaline soils.

Class 1. Soils containing alkaline-earth carbonates.

Class 2. Soils containing no alkaline-earth carbonates: pH 7.5 or higher.

Class 3. Soils containing no alkaline-earth carbonates: pH less than 7.5.

Estimation of amounts of various amendments needed for exchangeable-sodium replacement.

Speed of reaction of amendments and economic considerations.

Application of amendments.

Laboratory and greenhouse tests as aids to diagnosis.

Reclamation tests in the field.

Reclamation of saline and alkali soils in humid regions.

Chapter 4. Plant response and crop selection for saline and alkali soils.

Significance of indicator plants for saline soils.

Indicator plants.

Crop response on saline soils.

Salinity and water availability.

Specific ion effects.

Sodium.

Calcium.

Magnesium.

Potassium.

Chloride.

Sulfate.

Bicarbonate.

Boron.

Plant analysis.

Crop selection for saline soils.

Germination.

Relative salt tolerance of crop plants.

Relative boron tolerance of crop plants.

Chapter 5. Quality of irrigation water.

Methods of analysis.

Characteristics that determine quality.

Electrical conductivity.

Sodium-adsorption-ratio.

Boron.

Bicarbonate.

Typical waters.

Classification of irrigation waters.

Salinity hazard.

Sodium hazard.

Diagram for classifying irrigation waters.

Conductivity.

Sodium.

Effect of boron concentration on quality.

Effect of bicarbonate ion concentration on quality.
Chapter 8. Methods of analysis of irrigation waters.

(70) Collection of irrigation water samples.............. 136
(71) Records, reports, and expression of results........ 136
(72) Electrical conductivity.............................. 136
(73) Boron... 140
(73a) Boron, electrometric titration..................... 140
(73b) Boron, colorimetric, using carmine................. 142
(74) Dissolved solids................................... 142
(75) pH of waters..................................... 142
(76) Silica.. 142
(76a) Silica, gravimetric................................ 142
(76b) Silica, colorimetric................................ 143
(77) Calcium... 143
(78) Magnesium.. 144
(79) Calcium and magnesium by the Versenate method.... 144
(80) Sodium.. 144
(80a) Sodium by uranyl zinc acetate, gravimetric......... 144
(80b) Sodium by flame photometer......................... 144

Chapter 8-Continued

(81) Potassium.. 144
(81a) Potassium by cobaltinitrite, gravimetric........... 145
(81b) Potassium by cobaltinitrite, volumetric............. 145
(81c) Potassium by flame photometer....................... 145
(82) Carbonate and bicarbonate............................ 145
(83) Sulfate... 146
(84) Chloride.. 146
(85) Fluoride... 147
(86) Nitrate... 147
(86a) Nitrate, phenoldisulfonic acid....................... 147
(86b) Nitrate, Devarda.................................. 147

Literature cited.. 148
Glossary... 154
Appendix.. 157
Symbols and abbreviations............................... 157
Conversion formulas and factors.......................... 157
Chemical symbols, equivalent weights, and common names.. 158
Soil sampler and core retainer............................. 159
Modulus of rupture apparatus............................. 160