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Persistence of E. coli O157 in the environment is a serious public health concern. However, little is known
about the persistence of this pathogen after exposure to chemical compounds like fumigants in the
environment. In this study, the persistence behavior of pathogenic E. coli O157:H7 was investigated after
fumigation with methyl bromide (MeBr; CH3Br) and methyl iodide (MeI, iodomethane; CH3I) in soil
microcosms under laboratory conditions. Our goal was to assess changes in soil microbial community
structure and persistence of E. coli O157:H7 in microcosm soils after fumigation. PCR was used to amplify 16S
rRNA genes from total bacterial community composition, and the products were subjected to denaturing
gradient gel electrophoresis (DGGE). Microbial diversity as determined by DGGE was significantly higher in
clay soil than sandy soil. Real-time PCR and plate counts were used to quantify the survival of E. coli O157:H7
in the two soils after fumigation with MeBr and MeI. The survival of the pathogen was higher in the non
fumigated controls than the fumigated treatments when determined using plate counts. These results were
confirmed by real time PCR analysis targeting the stx1, stx2, and the eae genes. E. coli O157:H7 survived for
about 35 days when determined using the plate count method but continued to be detected at about the
detection limit of 102 by real time PCR for more than 86 days. Our results showed that there was a fast
inactivation of the pathogen during the first 35 days. After this period, a small proportion of the pathogen
continued to survive in the soil microcosms. Subsequent enrichment of soil samples and immunomagnetic
separation revealed the continuous presence of viable cells after 86 days of incubation. The data presented
contribute to a better understanding of the behavior of E. coli O157:H7 in soil, and showed the need for more
investigation of the role of dormant cells in soil that may be a source for recontamination of the environment.
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1. Introduction

Methyl bromide (MeBr; CH3Br) is a broad spectrum, highly effective
and relatively cheap fumigant used for pre-planting fumigation. It has
been used extensively to control plant pathogens such as nematodes,
soil-borne diseases, andweeds in economically important crops such as
strawberries and nursery stock (Ferguson and Padula, 1994) in
California and other parts of the world. Methyl bromide was scheduled
for elimination in the United States and other developed countries by
the year 2005 (USEPA., 2000) and in developing countries by 2015
because of its stratospheric ozone depletion potential. However,MeBr is
still in use due to critical use exemptions for the cultivation of
strawberries, tomatoes, and peppers in California and Florida. The
proposed phase-out has resulted in an intensive search for alternative
fumigants and the development of other integrated pest management
strategies to replaceMeBr.Methyl iodide (MeI, iodomethane, CH3I) was
reported as a potential alternative to the stratospheric ozone-depleting
fumigant methyl bromide (MeBr) in the mid-1990s (Ohr et al., 1996;
Sims et al., 1995). Methyl iodide is often referred to as the “drop-in
replacement” because its fate, transport characteristics and effective-
ness as a biocide are similar to those properties of MeBr (Ohr et al.,
1996). MeI has a distinct advantage over MeBr in that its atmospheric
lifetime is only b10 days, compared to 1.5 to 2 years for MeBr (Ruzo,
2006). Therefore, it is unlikely that MeI will reach the stratosphere and
contribute to ozone depletion (Rassmussen et al., 1982; Solomon et al.,
1994), although the volatilization ofMeImay be similar to that of MeBr.
As a preplant soil fumigant, MeI can be used alone, or in combination
with chloropicrin (CP) to control plant pathogens, nematodes, insects
and weeds on crops such as strawberries, tomatoes, peppers, ornamen-
tals, turf, trees and vines (USEPA, 2010).

Methyl iodide use in US agriculture is receiving significant focus due
to its recent registration (USEPA, 2010). California recently announced
its decision to become the forty-eighth US state to register MeI
(California Department of Pesticide Regulation, 2010). Concern over
the use of MeI as an agricultural fumigant is based on its potential to
cause serious health effects to humans after emission and inhalation.
Recently, our laboratory has tested different methods of reducing
emissions of methyl iodide from agricultural soils (Ashworth et al.,
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2011; Luo et al., 2010), but little or no studies have been done on the
long term impact on soil bacterial composition. Changes in the soil
microbial population can be observed following fumigation with MeBr
and other fumigants (Dungan et al., 2003; Ibekwe et al., 2001; Martin,
2003). Ibekwe et al. (2010) observed decline in E. coli O157:H7
population in soils cultivated with lettuce and fumigated with MeBr
and MeI in a growth chamber. This study was conducted for 60 days in
two walk-in growth chambers. However, E. coli O157:H7 survived
longer in non-fumigated soil than in fumigated soil. A subsequent study
showed that the effect of these fumigants on rhizosphere and phyllo-
sphere microbial composition was insignificant (Ibekwe et al., 2009).
Due to the increased focus on food safety related to fresh produce, there
are several other studies of E. coli O157:H7 survival in different
environments such as soil, manure and water (Jiang et al., 2002;
Kudva et al., 1998; Vital et al., 2008). These studies showed that the
availability of nutritional resources and key abiotic conditions are
critical to E. coli O157:H7 population survival and even growth in such
environments. However, under fluctuating environmental conditions,
such as those present in many soil environments, growth may be
differential and gross bacterial death may ensue if the death rate
exceeds the growth rate.

Our goal was to assess changes in soil microbial community
structure and persistence of E. coli O157:H7 in soil microcosms after
fumigation with MeBr and MeI. PCR was used to amplify 16S rRNA
from total bacterial community composition, and the products were
subjected to denaturing gradient gel electrophoresis (DGGE). The
Shannon-Weaver index of diversity (H) was used to determine the
effects of both fumigants on soil microbial community structure. For
our main objectives, plate count and real-time PCR approaches were
used to determine the survival of E. coli O157:H7 in the two soil
microcosms. The survival data were fitted to a biphasic model as
proposed by Coroller et al. (2006) with the Geeraerd and Van Impe
inactivation model-fitting tool (GInaFiT) (Geeraerd et al., 2005) as
described by Franz et al. (2008).

2. Materials and methods

2.1. Soils and chemicals

Clay soil (Willows silty clay, saline–alkaline) and sandy soil (Dello
sand) were collected from Mystic Lake dry bed and the Santa Ana
River bed, respectively, in Riverside County, California. The clay soil
has a bulk density of 1.51 Mg m−3 with 3.7% sand, 49.1% silt, and
47.2% clay. The sandy soil has a bulk density of 1.67 Mg m−3 with
99.1% sand, 0.20% silt, and 0.70% clay. The soils were sieved through a
4 mm sieve before planting, and the high salt content (electrical
conductivity=15 ds m−1) in the clay soil was reclaimed as described
by Ibekwe and Grieve (2004). These soils were chosen because these
are the two main soil types supporting cattle production in the area
and cattle are the main source of E. coli O157:H7 in the environment.

Methyl iodide (N99% purity) was purchased from Chem Service
(West Chester, PA) and methyl bromide (N99% purity) was obtained
from Great Lakes Chemical Company (West Lafayette, IN).

2.2. Bacterial strain and growth conditions

E. coli O157:H7 strain 72 pGFP was kindly provided by Dr. Pina
Fratamico (Fratamico et al., 1997). This strain contains Shiga-like
toxin genes 1 and 11 (stx1, stx2) and the pGFP expressing the green
fluorescent protein (GFP) containing an ampicillin resistance gene
andwas used for pathogen enumeration from soil. E. coliO157:H7was
cultured at 37 °C overnight in modified Tryptic Soy broth (mTSB)
(Difco Laboratories Inc., Cockeysville, MD) supplemented with 100 μg
of ampicillin ml−1 (Sigma, St Louis, MO). Cells were harvested by
centrifugation at 5000 xg for 10 min and resuspended in phosphate
buffered saline (PBS) (Fisher Scientific, Pittsburgh, PA) to a concen-
tration of ~108 CFU ml−1.
2.3. Microcosm experimental design

The microcosm experiment was set up in 1.0 l Mason Kerr self
sealing wide mouth glass containers (Lima, OH). The soil (1.5 kg) was
adjusted to a moisture content of about 12% (for equal distribution of
fumigant in soil) by adding E. coli O157:H7 inoculants or water and
mixing in a larger container before transfer to each microcosm. This
was to maintain the same level of pathogen concentrations and
moisture content. After the inoculation, fumigants were added. The
experimental design consisted of two fumigants at three different
concentrations in duplicates (0.5x, 1x, and 5x, where 1x is 48 kg ha−1

for MeBr and 40 kg h−1 for MeI). These resulted in spiking
approximately 1.73 g ml−1 of MeBr and 2.28 g ml−1 of MeI per
gram of soil into each microcosm for the 1x treatments. Microcosms
were sealed for 24 h after fumigant application, and vented
continuously through a small opening in the cover for the remainder
of the experiment as previously described (Ibekwe et al., 2001). Soil
samples were taken from individual microcosm (with a sterile
spatula) for heterotrophic bacteria, E. coli O157:H7 concentration,
and total bacterial DNA before fumigation and at days 1, 3, 7, 14, 21,
28, 35, 49, 56, and 86 after fumigant treatment. Bacterial concentra-
tions were determined by plating soil on Tryptic soy agar (TSA; Becton
Dickinson) plates containing 100 μg of ampicillin ml−1 (TSA-A). The
GFP-labeled E. coli O157:H7 colonies were counted under an UV light.
Total bacterial DNA was extracted from samples, and heterotrophic
bacteria were counted on TSA.
2.4. DNA extraction, PCR amplification, and DGGE analysis

Total bacterial community DNA was extracted from soil samples
(0.5 g) with the Power Soil DNA Kit (MoBio Laboratories, Solana
Beach, CA) and stored at –20 °C. A 236-bp DNA fragment in the V3
region of the small subunit ribosomal RNA genes of eubacteria was
amplified by using primer set PRBA338f and PRUN518r (Øverås et al.,
1997). Ready-To-Go PCR beads (GC Healthcare Biotech, Piscataway,
NJ) and 5 pmol of primers in a total volume of 25 μl were used in the
PCR reaction. PCR amplifications were done under the following
conditions: 92 °C for 2 min; 30 cycles of 92 °C for 1 min, 55 °C for 30 s,
72 °C for 1 min followed by a final extension at 72 °C for 6 min.

DGGE was performed with 8% (wt/vol) acrylamide gels containing
a linear chemical gradient ranging from 30 to 70% denaturant with
100% defined as 7 M urea and 40% formamide. Gels were run for 3.5 h
at 200 V with the DCodeTM Universal Mutation System (Bio-Rad
Laboratories, Hercules, CA). DNA was visualized after ethidium
bromide staining by UV transillumination and photographed with a
Polaroid camera. Major bands were excised for identification of
bacterial species. Bands were placed into sterilized vials with 20 μl of
sterilized, distilled water and stored overnight at 4 °C to allow the
DNA to diffuse out of the gel strips. Ten microliter of eluted DNA was
used as the DNA template with the bacteria primers above but
without the GC-clamp. DNA was cloned into the TOPO TA cloning kit
(Invitrogen, Carlsbad, CA). Isolation of plasmids from E. coli was
performed using the Qiagen plasmid mini kit (Valencia, CA). Four
plasmids from each band were sequenced to check for purity of
clones. The purified plasmids were sequencedwith the ABI PRISMDye
Terminator Cycle Sequencing Kit with AmpliTaq DNA Polymerase, FS
(Applied Biosystems, Foster City, CA) with forward and reversed
primer M13. Sequence identification was performed by using the
BLAST database (National Center for Biotechnology Information:
www.ncbi.nlm.nih.gov) to identify the major bands excised from
DGGE.

http://www.ncbi.nlm.nih.gov
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2.5. Primer and probe design for real-time PCR

Genomic DNA was isolated from pure culture of E. coli O157:H7,
grown for 12 hat37°C andextractedwith theQiagen tissuekit (QIAamp
DNA Mini Kit; Valencia, CA). DNA extracted from E. coli O157:H7 was
used for the construction of a standard curve and for the determination
of detection limits of the pathogen by real-time PCR. Primers and probes
used for the detection and quantification of the stx1, stx2, and the eae
gene in E. coli O157:H7 were as described (Ibekwe et al., 2002; Sharma,
2002). Real-time, quantitative PCR was performed with the iCycler iQ
(Bio-Rad, Hercules, CA) as described by Ibekwe et al. (2002). Briefly, PCR
was performed in a total volume of 50 μl volume containing 200 μM of
dNTPs, 2 μl of genomic DNA from each concentration, 2.5 U of AmpliTaq
Gold polymerase, 5 μl of 10x TaqMan buffer (PE Applied Biosystems,
Foster City, CA), 0.3 μM of each primer, 0.1 μM of probe, and 3.5 mM of
MgCl2. Genomic DNA purified from E. coli O157:H7 was used as a
template for the positive control and no template for negative control.
PCR was performed using the following cycle conditions: denaturation
at 95 °C for 10 min, 50 cycles of 94 °C for 20 s, 55 °C for 30 s, 72 °C for
40 s, followed by a 5 min extension at 72 °C and a hold at 4 °C. Standard
curves generated from plotting the threshold cycle (CT) versus log10 of
starting DNA quantities (pg) were used for determining the detection
limit of the assay. The standard curveswere constructedbyusingknown
quantities of genomic DNA (2.5×100 to 2.5×10−9 pg ml−1) extracted
from samples containing 1.6×10−2 to 1.6×108 CFUml−1 of E. coli
O157: H7. Optimization of the multiplex assay was done as previously
discussed (Ibekwe et al., 2002; Sharma, 2002). For a comparison of PCR
amplification efficiency and detection sensitivity among different
experiments, slopes of the standard curves were calculated by
performing a linear regression analysis with the iCycle iQ software.
The 10-fold serial dilutions of genomic DNA were used to quantify the
concentration of the stx1, stx2, and the eae genes. Amplification
efficiency (E) was estimated by using the slope of the standard curve
and the formula: E=(10−1/slope) −1. Reaction with 100% efficiency
generated a slope of −3.32.

At the end of the study (86 days) soil samples were enriched in
a 10× volume of buffered peptone water (Lab M, Bury, United
Kingdom) supplementedwith vancomycin (8 mg l−1) for 6 h at 42 °C.
This was followed by immunomagnetic separation (IMS) by plating
onto Harlequin cefixime–tellurite sorbitol MacConkey (CT-SMAC)
agar with BCIG (5-bromo-4-chloro-3-indoxyl-ß-D-glucuronide)
containing 0.05 mg of cefixime l−1 and 2.5 mg of tellurite l−1

(LAB M; IDG). The main aim was to determine if viable cells were
still present in the soil after 86 days of incubation.

2.6. Statistical analysis

The comparison of bacterial diversity was done using one-way
analysis of variance, and Tukey's studentized range test for post hoc
analysis (SAS Institute, 2009). Diversity was calculated by using the
Shannon index of diversity (H′) to compare changes in diversity of
microbial communities within all treatments at each time (Shannon
and Weaver, 1963) by using the following function:

H′ = −∑Pi log Pi

when Pi=ni/N, ni is the height of peak, and N is the sum of all peak
heights in the curve.

E. coli O157:H7 concentrations were converted to log CFU g−1 for
regression analysis. The population data were log transformed to
obtain a normal distribution of the data. Comparisons between pairs
of treatment means at any date were accomplished with the Tukey's
test. Plate counts and real time PCR data were transformed to Log10
values and survival curves were obtained by plotting the logarithm
of survivors against the treatment time. The survival data were fitted
to a biphasic model as proposed by Coroller et al. (2006) with the
Geeraerd and Van Impe inactivation model-fitting tool (GInaFiT) as
shown in Eqs. 1 and 2 and as described by Franz et al. (2008):
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where N is the number of survivors, N0 is the inoculums size; t is the
time; p is the shape parameter, when pN1 a convex curve is observed;
when pb1 a concave curve is observed, and when p=1a linear curve
is observed. The scale parameter, δ, represents the time needed for
first decimal reduction. The f, varying from 0 to 1, is the fraction of
subpopulation 1 in the population. Another parameter, α, varying
from negative infinity to positive infinity, is obtained by logit
transformation of f as shown in Eq. 2. The strong correlation between
the scale (δ) and the shape (p) parameters makes it possible for the
doubleWeibull model to fit most of the shapes of deactivation curves.
Additionally, when δ1=δ2, the double Weibull model can be
simplified into a single Weibull model, and the survival curve can
be described by only three parameters. A very important and useful
parameter, time to detection limit (Td) can also be calculated when
using GInaFiT to fit the experimental survival data.

3. Results

3.1. Changes in soil microbial community diversity following fumigation

In the microcosm study, PCR-DGGE was used to examine the
effects on soil microbial communities after fumigation with MeBr and
MeI. Fig. 1a and b shows the DGGE patterns of the 16S rRNA fragments
amplified from the sandy soil as an example, 1 and 12 weeks after
fumigation. DGGE patterns in sandy soil are shown because the
bacterial community did not completely recover after 12 weeks, as
was the case in clay soil (Fig. 1c and d). Diversity indices were
significantly higher (P=0.05) in clay soil than sandy soil (Fig. 1c and
d). Analysis of variance was performed on the total data set to
determine the effects of soils, time in weeks, fumigants, and fumigant
treatment rates on total microbial community diversity in the two
soils. Soil, time, treatment (Pb0.0001), and fumigant (P=0.05) were
significant factors affecting diversity indices (data not shown).Within
each soil, the Shannon-Weaver index of diversity (Fig. 1c and d)
showed that during the first week of the experiment microbial
diversity was higher in clay soil than sandy soil (Pb0.0001). MeBr
treated sandy soil with five times the normal application rate showed
the most significant decrease in diversity (Fig. 1d). The same
treatment during week 2 produced the lowest microbial diversity
for sandy soil. During week 5, instability was still observed as
differences were observed between treatments. This observation
continued during week 12 in sandy soil, but stability in diversity was
restored in clay soil (week 5; P=0.001; week 12; P=0.005 for sandy
soil). Major bands were excised, cloned, and sequenced. Most of the
bacteria recovered were dominated by Proteobacteria (M2, M5, M6,
M8, M9), Firmicutes (M1 and M4) phyla (Table 1), with some bands
from week one disappearing while new bands appeared during week
twelve, suggesting the formation of new communities.

3.2. Impact of fumigants on survival E. coli O157:H7 in laboratory
microcosm

The survival of the pathogens was studied for 86 day in the
microcosm. This provided us with the opportunity to study the
relationship between time of survival (days) and population over a
longer period of time that maymimic a contamination event in an open
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environment or soil in the presence of other bacterial populations. To
this end, background concentrations of heterotrophic bacteria were
determined. The initial heterotrophic plate count in soil was
2.1×108 CFU g−1. After storage at room temperature in themicrocosm,
the total aerobic plate counts decreased steadily from ca. 108 to ca.
106 CFU g−1±102 during the experimental period in both soils. There
were no differences in the levels of heterotrophic plate count in the two
soils during the studyperiod (data not shown). Regression analysiswith
non-linear fittingwas used to determine survival of the pathogen in soil
Table 1
Sequence analysis of bands excised from DGGE gels derived from bacterial 16S rRNA
extracted from microcosm soil.

Bands Related bacterial sequences Sequence
similarity

Accession
no.

MI Bacillus sp. 12 100 AY269875
M2 Gamma Proteobacteria MS-1 100 AF005656
M3 Unidentified eubacterium (clone LRE12) 99 AJ232875
M4 Painibacillus lactis strain MB 1871 99 AY257868
M5 Photorhabdus luminescens 100 AY444555
M6 Uncultured Gamma Proteobacteria 100 AY911444
M7 Uncultured Bacterium 100 AY853674
M8 Pseudomonas sp. 4 98 AY269867
M9 Pseudomonas aeruginosa 97 X06684
after 86 days incubation. Overall, the numbers of E. coli O157 showed a
significant non-linear decline over time using plate count method
(P=0.029 to 0.0018 and r2=0.47 to 0.68; Table 2 and Fig. 2). When
soils were kept without fumigation, E. coli O157 showed a significant
decline in population for both sandy (except stx1 gene) and clay soils
(Table 2). Based on regression analysis, soils fumigated with MeI
showed a greater decline in pathogen population than soils fumigated
with MeBr. Since there was a non-linear significant fitting in our data,
enrichment of the soil samples with IMS showed that the pathogenwas
still present in our soils (data not shown) thereby confirming the
accuracy of statistical analysis and RT-PCR.

Effect of soil type on the survival of E. coliO157:H7 in clay and sandy
soils after fumigation was modeled by fitting the experimental data to
the double Weibull equation shown in Eqs. 1 and 2. Mean comparison
was used to determine the impact of fumigants on the survival of E. coli
O157:H7 in the two soils after fumigation (data not shown). Direct
comparison of the two fumigated treatments and the control was done
using plate count and real-time PCR to quantify the concentrations of
E. coli O157:H7. The majority of the survival curves (Fig. 2) showed a
concave shape, with a relatively fast initial decline followed by a slower
decline phase. Survival reached the detection limit faster in sandy soil
(21 days) than in clay soil (28 days) without fumigation using plate
counts (Fig. 2a and b). When the pathogen was exposed to MeBr, at the
normal application rate, inactivation was faster than in the control,



Table 2
Concentration of E. coli O157:H7 recovered from microcosm soils after 86 days of incubation.

Treatments/concentration Analysis techniques Regression equation PrNF R2

S-MB-1x Plate count 5.59−0.32 x+0.003x2 0.0072 0.59
Stx1 8.01−0.07x+0.0008x2 0.2738 0.25
Stx2 6.46−0.15x+0.0014x2 0.4030 0.18
eae 9.01−0.04 x+0.0004x2 0.0001 0.99

S-MB-5x Plate count 6.30−0.34 x+0.0032x2 0.0097 0.64
Stx1 7.72−0.015x+0.0013x2 0.0679 0.45
Stx2 7.48−0.15x+0.0014x2 0.2746 0.25
eae 7.15−0.16x+0.0017x2 0.3517 0.21

S-MI-1x Plate count 4.93−0.29 x+0.0027x2 0.0292 0.47
Stx1 8.37−0.11 x+0.0008x2 0.0009 0.79
Stx2 7.59−0.21x+0.0021x2 0.0742 0.44
eae 9.19−0.06x+0.0004x2 0.0028 0.73

S-MI-5x Plate count 5.12−0.30 x+0.0028x2 0.0195 0.51
Stx1 8.37−0.11x+0.0008x2 0.0009 0.79
Stx2 8.20−0.22x+0.0019x2 0.0560 0.47
eae 8.43−0.19 x+0.0023x2 0.0039 0.71

S-0x Plate count 8.76−0.28 x+0.0021x2 0.0001 0.90
Stx1 8.37−0.09 x+0.0009x2 0.2754 0.25
Stx2 9.21−0.21 x+0.0018x2 0.0391 0.51
eae 9.19−0.11 x+0.0012x2 0.0025 0.73

C-MB-1x Plate count 6.69−0.36 x+0.0033x2 0.0020 0.68
Stx1 7.69−0.10 x+0.0007x2 0.0980 0.40
Stx2 7.31−0.21 x+0.0018x2 0.0172 0.60
eae 7.89−0.11 x+0.0012x2 0.5530 0.12

C-MB-5x Plate count 6.40−0.35 x+0.0032x2 0.0021 0.68
Stx1 7.64−0.11x+0.0010x2 0.1245 0.37
Stx2 7.03−0.25 x+0.0023x2 0.0097 0.64
Eae 8.04−0.07x+0.0002x2 0.0026 0.73

C-MI-1x Plate count 6.47−0.35 x+0.0032x2 0.0019 0.68
Stx1 9.03−0.24 x+0.0025x2 0.0073 0.67
Stx2 8.65−0.29x+0.0031x2 0.0001 0.94
eae 9.67−0.26x+0.0028x2 0.0193 0.58

C-MI-5x Plate count 6.67−0.35x+0.0033x2 0.0018 0.68
Stx1 8.10−0.13x+0.0013x2 0.2763 0.25
Stx2 8.85−0.29 x+0.0029x2 0.0001 0.94
eae 9.35−0.27x+0.0029x2 0.0305 0.54

C-0x Plate count 6.71−0.36 x+0.0033x2 0.0018 0.68
Stx1 9.65−0.25x+0.0026x2 0.0060 0.68
Stx2 8.90−0.23x+0.0024x2 0.0130 0.62
eae 9.49−0.24x+0.0022x2 0.0462 0.50

S or C represents sandy or clay soil; MB or MI represent methyl bromide or methyl iodide. The numbers 5x, 1x, and 0x represent five times the normal application rate, normal
fumigant application rate, and no fumigant application, respectively. E. coliO157:H7were enumerated frommicrocosm soils by plate count and by real-time PCR (RT-PCR) using stx1,
stx2, and the eae genes. Regression equations are log10 data showing all the treatments presented in Fig. 2.
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especially using plate counts (Fig. 2c and d). The same pattern was
observedwithMeI (Fig. 2e and f). However, for both control treatments
the population size did not reach the detection limit (ttd) of
102 CFU g−1 during the experiment due to an earlier onset of tailing
at about 35 days using real-time PCR. Furthermore, both soils showed
that it took less than a day to inactivate the first log10 of microbial
population in most of the fumigated samples. At a higher concentration
of fumigants (5x), it took less than 10 days for the inactivation of the
pathogen to fall below the detection limit of 102 CFU g−1 (Fig. 2g and h)
using plate counts.

Modeling parameters (alpha (α), delta (δ), and the shape
parameter-p) were calculated from Eqs. 1 and 2 and used to explain
the inactivation kinetics. More variations were observed in δ values
from different soils (Fig. 3). When the strain was characterized in
sandy and clay soils, distinct δ1 and δ2 were observed (as indicated by
the differences in bar and error bar sizes) indicating the existence of
two subpopulations and these behaved differently in both soils, thus
the survival data in both soils might not be simplified into the single
Weibull model that can be described by only three parameters, α, δ
and p, in the majority of the cases. The initial sharp decrease in cell
numbers in sandy soil (concave shape; Fig. 2) is attributed to the faster
decline of the initial subpopulation as shownwith smaller δ1(Figs. 2 and
3). However, with longer incubation time, the subpopulation with
greater δ2 (i.e. the more resistant population to fumigants) dominated
the cell population, leading to a slower and steady decline of the cell
concentration as the curves showed little or no decline, especially with
the real time PCR method. Similar modeling parameters (α, δ, and p)
were calculated when they were inoculated into the same soil
(Fig. 3a–h). When the pathogen was characterized in sandy and clay
soils, distinct δ1 and δ2 were observed indicating that the two
subpopulations behave differently in both soils.

3.3. Influence of microbial diversity on E. coli O157:H7 survival

Bacterial species richness andmicrobial diversity as determined by
Shannon Weaver index of diversity, H, from DGGE was significantly
lower in sandy soil than in clay soil (data not shown). Microbial
diversity was negatively correlated with survival of E. coli O157:H7 in
the clay soil (r2=0.39; P=0.019), but positively correlated with
survival of E. coli O157:H7 in sandy soil (r2=0.49, P=0.043) using
the plate count method (Fig. 4a and b). However, survival of E. coli
O157:H7 using data from real-time PCR analysis were positively
correlated with microbial diversity in both clay and sandy soils (data
not shown).

4. Discussion

We have shown from this study that E. coli O157:H7 can persist for
more than 86 days in soils under different rates of MeBr and MeI
application and different soil types. Our study showed that MeI
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Fig. 2. Quantification of E. coli O157:H7 persistence in soil microcosms after 86 days in non-fumigated and fumigated soils inoculated with E. coli O157:H7. None fumigated control: a
(clay soil), b (sandy soil) without fumigant treatments; c (clay soil), d (sandy soil) with normal application rate of MeBr; e (clay soil), f (sandy soil) with normal application rate of
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plate count method in clay and sandy soils, respectively.
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fumigation had a greater impact on E. coli O157:H7 population decline
thanMeBr in sandy soil but no differences were found in clay soil. The
main reasons for this may be soil texture and microbial diversity. In
soil, E. coli O157:H7 will interact with the local biota, including the
microbial communities, and the cumulative effect of the total
indigenous microflora on E. coli survival is often negative as a result
of predation, substrate competition and antagonism (Jiang et al.,
2002; Unc et al., 2006; Semenov et al., 2007). The diversity of the
indigenous microbial communities has been brought up as an
important factor that regulates the population dynamics of E. coli
(van Elsas et al., 2007). According to these authors, ecosystems with a
higher level of biodiversity are more resistant to perturbances than
those with a lower diversity (Tilman, 1997; Trevors, 1998). Conse-
quently, the former habitats would be less susceptible to invasion by
E. coli than the latter (Girvan et al., 2005; Semenov et al., 2008).

For field plots located in the main strawberry production areas of
California, Stromberger et al. (2005) reported that, MeI eliminated soil-
borne fungal pathogens and reducedculturable fungal populationsup to
4 weeks after fumigation. Soil microbial respiration, enzyme activity,
and potential nitrification rates were also decreased with fumigant
application, indicating a significant impact of the fumigants on the
microbial flora and fauna. Comparative studies of MeBr and MeI
(Hutchinson et al., 2000) showed that MeI was, on average, 2.7 times
more efficacious than MeBr at killing fungal species. These studies and
others from our laboratory and review papers have confirmed the
efficacious abilities ofMeI compared toMeBr in preplant fumigation as a
strong alternative replacement for MeBr (Ashworth and Yates, 2010;
Luo et al., 2010). It has also been shown that MeBr and MeI behave
differently in soils under the same environmental conditions because
MeI degrades rapidly by photolysis and has an estimated atmospheric
lifetime of b10 days, compared to 1.5–2 years for MeBr (Ruzo 2006).
Ibekwe et al. (2007) reported that MeI and MeBr were effective in
reducing both the concentration of E. coli 0157 in soil, and the survival of
the pathogen on lettuce leaf surface (Ibekwe et al., 2009), suggesting
that the fumigantsmayhaveplayed somerole in reducing the transfer of
E. coli 0157 from soil to leaf. This was a short term studywith plants and
did not show if the pathogen could persist in soil after fumigation for
more than the five weeks used in the growth chamber study. However,
the detection of the pathogen by IMS and by RT-PCR during the long
term microcosm study suggests that very few cells were still viable in
the soil after 86 days, but at numbers below the detection limit of
102 CFU g−1. This result was confirmed by the non-linear fitting of our
data in Table 2 and in Fig. 2. This was also confirmed by the presence of
distinct δ1 and δ2 subpopulations (Fig. 3). Most of the subpopulations in
δ2may be viable but non-culturable cells (dormant) as cells at this stage
cannot be easily recovered on standard laboratory media, but are still
present as viable cells. For instance, in an experiment with E. coli O157:
H7 inmanure, significantly higher numbers of the organismwere found
by direct microscopic counts than by plating on a selective medium
(Semenov et al., 2007). The state can be triggered by stress conditions
that are imposed on the pathogen, for instance, as in our study;
application of fumigants to the soilmay induce stress on E. coliO157:H7.

We have shown from this study that E. coli O157:H7 will persist for
over 86 days due to the presence of dormant but viable cells that were
resuscitated by enrichment. We did not study the genetic mechanisms
of the subpopulations responsible for long term persistence in the
fumigated soils. However, in a biofilm environment, bacterial tolerance
to antimicrobials has been hypothesized to involve growth-stage
dependent production of specialized survivor cells termed ‘persisters’
(Harrison et al., 2005; Spoering and Lewis, 2001; Keren et al., 2004). It
has alsobeenshown thatgenetically homogenousbacterial populations,
grown in planktonic culture or surface adherent biofilm, produce
subpopulations that survive exposure to high concentrations of
bactericidal antibiotics (Stewart, 2003; Balaban et al., 2004). These
authors have concluded that persisters are highly tolerant of antimi-
crobials because they do not die, and further, may represent a
recalcitrant population that can seed a new culture with normal
susceptibility. In E. coli, Balaban et al. (2004) associated persister
populations with slow growth phenotypes. It has also been suggested
that persisters represent the stationary phase bacterial population
relative to the logarithmic-growing bacterial cultures (Keren et al.,
2004; Mulcahy et al., 2010; Spoering and Lewis, 2001). Persistence was
therefore linked to preexisting heterogeneity in bacterial populations
because phenotypic switching occurred between normally growing
cells and the persister cells having reduced growth rate. Data from our
study has shown that persistence phenomenon observed in biofilm
(Harrison et al., 2005) and microfluidic devices (Balaban et al., 2004)
may be likely occurring in soil. It is also of great concern when dealing
with pathogens such as E. coli O157:H7 where cattle are the main
reservoir, becausemanuremanagement to kill off this pathogen remains
an unresolved issue both in developed and developing countries.

In conclusion, the non-linear fitting observed in the study
suggested that E. coli O157:H7 persisters may have been selected
during the long incubation period with fumigants, and this may have
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increased the chances of E. coli O157:H7 population survival in the
microcosm soils. Further studies are needed on treatment technolo-
gies that will kill 100% of the pathogen inmanure waste on site. In this
way, the potential for leaching to sub-surface soil from the manure
pile, and for runoff to surface water, could be prevented. The observed
persistence of E. coli O157:H7 in soil may be a significant factor in its
contamination cycle that may result in recontamination of produce,
surface, and ground water after the initial contamination event.
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