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Mathematical models describing contaminant transport in heterogeneous porous media are often formu-
lated as an advection–dispersion transport equation with distance-dependent transport coefficients. In
this work, a general analytical solution is presented for the linear, one-dimensional advection–dispersion
equation with distance-dependent coefficients. An integrating factor is employed to obtain a transport
equation that has a self-adjoint differential operator, and a solution is found using the generalized inte-
gral transform technique (GITT). It is demonstrated that an analytical expression for the integrating factor
exists for several transport equation formulations of practical importance in groundwater transport mod-
eling. Unlike nearly all solutions available in the literature, the current solution is developed for a finite
spatial domain. As an illustration, solutions for the particular case of a linearly increasing dispersivity are
developed in detail and results are compared with solutions from the literature. Among other applica-
tions, the current analytical solution will be particularly useful for testing or benchmarking numerical
transport codes because of the incorporation of a finite spatial domain.

Published by Elsevier B.V.
1. Introduction

The literature contains many analytical solutions for solute
transport in homogeneous porous media. These solutions, which
have been collected in various compendiums (Codell et al., 1982;
van Genuchten, 1982; Javandel et al., 1984; Wexler, 1992), were
found by solving the linear advection–dispersion transport equa-
tion with constant coefficients, subject to appropriate boundary
and initial conditions. Solutions are available for one-, two-, and
three-dimensional spatial domains, with the vast majority being
applicable to semi-infinite or infinite media. However, the advec-
tion–dispersion equation with constant coefficients may not be
appropriate for transport in heterogeneous media, where transport
coefficients can be variable in space and/or time. Relatively few
analytical results are available for the case of non-constant coeffi-
cients, especially for the case of finite media.

Analytical solutions for heterogeneous porous media include
solutions obtained for transport equations with time-dependent
coefficients (Barry and Sposito, 1989; Basha and El-Habel, 1993;
Aral and Liao, 1996; Marinoschi et al., 1999; Kumar et al., 2010)
B.V.
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or distance-dependent coefficients (Yates, 1990; Chrysikopoulos
et al., 1990; Yates, 1992; Huang et al., 1996; Logan, 1996; Zop-
pou and Knight, 1997; Hunt, 1998, 1999, 2002; Pang and Hunt,
2001; Al-Humoud and Chamkha, 2007; Liu and Si, 2008; Chen,
2007; Chen et al., 2003, 2007, 2008a,b; Kumar et al., 2010).
While most of these solutions are applicable to a range of prob-
lems involving (effectively) semi-infinite or infinite media, other
applications require consideration of finite media, such as anal-
ysis of transport in lysimeters or columns, or benchmarking
numerical transport codes. In these types of problems, the effect
of the exit boundary may not be negligible.

One reason for the lack of progress in developing solutions for
finite domains is that the solution procedures tend to be relatively
complicated, requiring difficult or tedious mathematical deriva-
tions and manipulations. However, the advent of software such
as Mathematica (Wolfram Research, Inc., 2007) with capabilities
for symbolic manipulation has made these solution procedures
more tractable.

Also facilitating the development of new solutions are system-
atized integral transform techniques (ITTs) (Mikhailov and Ozisik,
1984). As noted by Ozisik (1993), the classic ITT (CITT) provides a
systematic, efficient, and straightforward approach for the analyt-
ical solution of both transient and steady problems, with both
homogeneous and non-homogeneous boundary conditions. A large
variety of heat and mass diffusion problems have been categorized
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Nomenclature

a slope of dispersivity–distance relationship
A00ðnÞ;A01ðnÞ
A10ðnÞ;A20ðnÞ

coefficients in generic transport equation

Bk mathematical operator specifying boundary conditions
c, C dimensionless and dimensional solute concentration
cI(x), CI dimensionless and dimensional initial solute concentra-

tion
C0 boundary (first-type) or influent (third-type) concentra-

tion
c1 steady state solute concentration (dimensionless)
D;D dimensionless and dimensional dispersion coefficient
dM, DM dimensionless and dimensional coefficient of molecular

diffusion
�f i integral transformed initial condition
g(nk) source term in generic boundary condition
Hk coefficient in boundary condition
Ir modified Bessel function of first kind and order r
Jr Bessel function of first kind and order r
Kr modified Bessel function of second kind and order r
k index denoting position
L advection–dispersion operator
L0 domain length
Ni norm of ith eigenfunction
p(n) integrating factor
q(n) coefficient in operator S
Q(n) source-sink term in the generic transport equation
R retardation coefficient
S self-adjoint operator

t, T dimensionless and dimensional time
U mean transport velocity
x, X dimensionless and dimensional space coordinate
Yr Bessel function of the second kind and order r
w(n) coefficient in self-adjoint equation

Greek symbols
a; �a dimensionless and dimensional dispersivity
bi eigenvalue
dij Kronecker delta
gk coefficient in boundary condition
h unknown function with homogeneous boundary condi-

tions
�hi integral transform of the function h
k decay constant
l ratio of generic transport coefficients, A00(n)/A01(n)
n space variable in generic transport equation
n0, n1 position of boundaries in generic transport equation
p 3.14. . .

r equal to 1/a
s time variable in generic transport equation
u(x) auxiliary function
wi eigenfunction
~wi normalized eigenfucntion
x(n, s) dependent variable in generic transport equation
x1(n) steady state (s ?1) of x(n, s)
xI(n) initial condition of x(n, s)
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and treated systematically using this technique, creating a unified
approach for solving those problems (Mikhailov and Ozisik, 1984).
Transport equations not immediately analytically solvable with the
CITT can often be transformed into an amenable form using tech-
niques such as algebraic substitution or integrating factor methods
(e.g. Pérez Guerrero et al., 2009a,b, 2010).

Cotta (1993) extended the CITT to develop the generalized inte-
gral transform technique (GITT). The GITT permits the analytical or
semi-analytical solution of more general parabolic or elliptic prob-
lems, both linear and nonlinear. In the GITT, the unknown function
is represented in terms of an eigenfunction series expansion. The
solution is obtained in the following steps (Cotta, 1993):

(a) Choose an appropriate auxiliary eigenvalue problem and
find the associated eigenvalues, eigenfunctions, norm, and
orthogonalization property.

(b) Develop the integral and inverse transforms.
(c) Transform the partial differential equation into a system of

ordinary differential or algebraic equations.
(d) Solve the ordinary differential or algebraic system.
(e) Use the inverse transform to obtain the unknown

function.

The aim of the present study is to develop an analytical solution
for solute transport in finite, heterogeneous porous media. For this
purpose, a general advection–dispersion transport equation with
distance-dependent coefficients is transformed through the use
of an integrating factor and a solution is obtained with the GITT.
We demonstrate that for a number of transport formulations of
practical importance, an analytical expression for the integrating
factor exists. The particular case of a linearly increasing dispersiv-
ity coefficient is developed in detail and the solution is compared
with results from the literature.
2. General problem formulation

Consider a one-dimensional finite medium with space variable
n and time variable s. For some quantity x �x(n, s), a generic
advection–dispersion transport equation with distance-dependent
transport coefficients can be formulated as:

A01ðnÞ
@x
@s
¼ @

@n
DðnÞ @x

@n

� �
� UðnÞ @x

@n
� A00ðnÞxþ QðnÞ;

n0 < n < n1 ð1Þ

where n0 and n1 are the locations of the boundaries, A01(n), D(n),
U(n), and A00(n) are distance-dependent coefficients, and Q(n) is a
source-sink term. On the right side of Eq. (1), the first term is the
dispersion term, the second is the advection term, and the third
term represents processes such as the first-order decay or produc-
tion. Eq. (1) is a generic transport equation which may be either
dimensional or dimensionless.

Expanding the dispersion term and grouping like terms gives,

A01ðnÞ
@x
@s
¼ A20ðnÞ

@2x
@n2 þ A10ðnÞ

@x
@n
� A00ðnÞxþ QðnÞ;

n0 < n < n1 ð2aÞ

where

A20ðnÞ ¼ DðnÞ; A10ðnÞ ¼
@DðnÞ
@n

� UðnÞ ð2b; cÞ

We define the advection–dispersion operator L with distance-
dependent coefficients A00(n), A10(n), and A20(n) to be

L � A20ðnÞ
@2

@n2 þ A10ðnÞ
@

@n
� A00ðnÞ ð3Þ
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Eq. (2) can then be written more compactly as:

A01ðnÞ
@x
@s
¼ Lxþ QðnÞ; n0 < n < n1 ð4Þ

The transport problem is completed by specifying initial and
boundary conditions, respectively, as:

xðn;0Þ ¼ xIðnÞ; n0 < n < n1 ð5Þ

Bkxðnk; sÞ ¼ gðnkÞ; k ¼ 0;1 ð6Þ

The operator Bk can represent a first, second, or third-type
boundary condition depending on the specification of the coeffi-
cients gk and Hk:

Bk � gk
@

@x
þ Hk ð7Þ
3. General analytical solution

An analytical solution of Eqs. (4)–(6) is obtained in several
steps. First the boundary conditions are homogenized using a ‘‘fil-
ter function” which is found by solving the transport problem in
the steady state regime. Next, the general non-self-adjoint trans-
port equation is transformed into an equivalent self-adjoint equa-
tion through the use of an appropriate integrating factor. Finally,
the resulting self-adjoint equation is solved using the GITT.

3.1. Steady state problem and homogenization of the boundary
conditions

For the asymptotic condition s ?1, the quantity x in Eqs. (4)–
(6) will tend to the steady state regime, x(n, s) ? x1(n). The
asymptotic system is given by:

Lx1 þ QðnÞ ¼ 0; n0 < n < n1 ð8Þ

Bkx1ðnkÞ ¼ gðnkÞ; k ¼ 0;1 ð9Þ

Solving Eqs. (8) and (9) gives x1(n), which may be used as a fil-
ter function to obtain a problem with homogeneous boundary con-
ditions. To this end, we express the unknown x(n, s) as the sum of
the filter x1(n) and an unknown function h(n, s):

xðn; sÞ ¼ x1ðnÞ þ hðn; sÞ ð10Þ

The unknown quantity x(n, s) is thus found by determining
h(n, s). A system of equations for h(x, t) is obtained by substituting
Eq. (10) into Eqs. (4)–(6). The resulting equations for h(n, s) are:

A01ðnÞ
@h
@s
¼ Lh; n0 < n < n1 ð11Þ

hðn;0Þ ¼ xIðnÞ �x1ðxÞ; n0 < n < n1 ð12Þ

Bkhðnk; tÞ ¼ 0; k ¼ 0;1 ð13Þ

where the boundary conditions Eq. (13) are homogeneous.
For situations where A00ðnÞ

A01ðnÞ
¼ l is a constant, a simplification is

possible. In this case, the last term in the operator L (as defined
in Eq. (3)) can be eliminated if the following expression is used in-
stead of Eq. (10):

xðn; sÞ ¼ x1ðnÞ þ expð�lsÞhðn; sÞ ð100 Þ

Substituting Eq. (100) into Eq. (4) yields the following equation
instead of Eq. (11):

A01ðnÞ
@h
@s
¼ Lh with A00ðnÞ ¼ 0; n0 < n < n1 ð110 Þ
3.2. Obtaining an equation with a self-adjoint operator

Depending on the functional form of the coefficients A00(n),
A10(n), and A20(n), the operator L may or may not be self-adjoint.
A second-order differential operator, S, is self-adjoint if and only
if it has the form (Sagan, 1961)

S � @

@n
pðnÞ @

@n

� �
þ qðnÞ ð14Þ

where p(n) is differentiable.
The form of S in Eq. (14) indicates that a self-adjoint second-or-

der transport equation is equivalent to a purely diffusive problem
such as commonly encountered in heat conduction. Such diffusion
equations have been categorized by Mikhailov and Ozisik (1984)
into seven classes, and the GITT can be used to obtain formal ana-
lytic solutions for each of them (Mikhailov and Ozisik, 1984).

When the operator L is non-self-adjoint, it may be possible to
transform the equation to obtain an equivalent problem with a
self-adjoint operator. For this purpose, we use an integrating factor
to transform Eq. (11). Eq. (11) can be written as:

A01ðnÞ
@h
@s
¼ Lh ¼ A20ðnÞ

@2h

@n2 þ A10ðnÞ
@h
@n
� A00ðnÞh ð15Þ

We multiply each term by pðnÞ
A20ðnÞ

, where p(n) is the unknown inte-
grating factor:

pðnÞ
A20ðnÞ

A01ðnÞ
@h
@s
¼ pðnÞ @

2h

@n2 þ
pðnÞ

A20ðnÞ
A10ðnÞ

@h
@n
� pðnÞ

A20ðnÞ
A00ðnÞh ð16Þ

The idea of the integrating factor is that Eq. (16) should reduce
to:

pðnÞ
A20ðnÞ

A01ðnÞ
@h
@s
¼ @

@n
pðnÞ @h

@n

� �
� pðnÞ

A20ðnÞ
A00ðnÞh ð17Þ

This requires that:

@pðnÞ
@n

¼ pðnÞ
A20ðnÞ

A10ðnÞ ð18Þ

Thus the integrating factor is given by:

pðnÞ ¼ exp
Z

A10ðnÞ
A20ðnÞ

dn

� �
ð19Þ

Note that the integrating factor depends only of the dispersion
and advection coefficients.

With the integrating factor defined, Eq. (11) can be written in
terms of the self-adjoint operator S Eq. (14):

wðnÞ @h
@s
¼ Sh ¼ @

@n
pðnÞ @h

@n

� �
þ qðnÞh ð20Þ

where the coefficients are given by:

wðnÞ ¼ pðnÞ
A20ðnÞ

A01ðnÞ; qðnÞ ¼ � pðnÞ
A20ðnÞ

A00ðnÞ ð21a;bÞ

It is important to note that the use of the integrating factor does
not alter the boundary and initial conditions, Eqs. (12) and (13).
Therefore, the unknown h(n, s) is found by solving Eq. (20) subject
to Eqs. (12) and (13). For the conditions leading to Eqs. (100) and
(110), the last term in Eq. (20) vanishes (q(n) = 0).

3.3. Application of the GITT

Having obtained a transport equation (Eq. (20)) with a self-ad-
joint differential operator and homogeneous boundary conditions
Eq. (13), the unknown h(n, s) is found by applying the systematized
GITT procedure.
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3.3.1. The auxiliary eigenvalue problem
Eigenvalue problems with self-adjoint operators have several

interesting properties, including (Zwillinger, 1992): the eigen-
values are real; the eigenvalues are enumerable (with no cluster
point); the eigenfunctions corresponding to distinct eigenvalues
are orthogonal; and the set of eigenfunctions are complete.

Many eigenvalue problems can be associated with Eq. (20) (sub-
ject to Eqs. (12) and (13)). We choose the following one which per-
mits an exact integral transform:

d
dn

pðnÞ dw
dn

� �
þ qðnÞwþwðnÞb2w ¼ 0 ð22aÞ

BkwðnkÞ ¼ 0; k ¼ 0;1 ð22bÞ

Eq. (22) is the Sturm–Liouville eigenvalue problem, where w � w(n)
is the eigenfunction and b is the eigenvalue. The orthogonality
property for the set of linearly independent eigenfunctions, wi(n),
associated with Eq. (22) is given by:Z n1

n0

wðnÞwiðnÞwjðnÞdn ¼ di;jNi ð23Þ

where Ni is the norm and di,j is the Kronecker delta. The normalized
eigenfunction is defined:

~wiðnÞ ¼
wiðnÞffiffiffiffiffi

Ni
p ; i ¼ 1;2;3; . . . ð24Þ
3.3.2. Development of the integral transform pair
The unknown function h(n, s) is represented as a series expan-

sion in terms of the eigenfunctions wi(x),

hðn; sÞ ¼
X1
i¼1

~wiðnÞ�hiðsÞ ðInverseÞ ð25Þ

where �hiðsÞ is the transformed ‘‘potential”. Eq. (25) is the inverse
transform rule. The corresponding transform rule is obtained by fol-
lowing the procedure of Ozisik(1993) and Cotta(1993), i.e. applying
the operator

R n1
n0

wðnÞ~wjðnÞð�Þdn to both sides of Eq. (20) and using Eq.
(23) (the orthogonality property) and (25) to obtain:

�hiðsÞ ¼
Z n1

n0

wðnÞ~wiðnÞhðn; sÞdn ðTransformÞ ð26Þ
3.3.3. Integral transform of the differential equation
Substituting the inverse formula into Eq. (20) results in:

wðnÞ @
@s
X1
i¼1

~wiðnÞ�hiðsÞ ¼ S
X1
i¼1

~wiðnÞ�hiðsÞ ð27Þ

Applying the operator
R n1

n0
~wjðnÞð�Þdn to both sides of Eq. (27) and

regrouping terms gives:

X1
i¼1

@�hiðsÞ
@s

Z n1

n0

wðnÞ~wiðnÞ~wjðnÞdn ¼
X1
i¼1

�hiðsÞ
Z n1

n0

~wjðnÞS~wiðnÞdn ð28Þ

This equation can be simplified using Eqs. (22a), (23), and (26):

d�hi

ds
¼ �b2

i
�hi ð29Þ

Analogously the initial condition is also transformed:

�hið0Þ ¼ �f i ¼
Z n1

n0

wðnÞ~wiðnÞðxIðnÞ �x1ðnÞÞdn ð30Þ
3.3.4. Analytical solution for the transformed and original problems
Eqs. (29) and (30) are a set of decoupled ordinary differential

equations, whose analytical solution is:
�hiðsÞ ¼ �f i exp �b2
i s

� �
ð31Þ

Finally, the original unknown x(n, s) can be calculated analytically
from the inverse transform rule and Eq. (10):

xðn; sÞ ¼ x1ðnÞ þ
X1
i¼1

~wiðnÞ�f i exp �b2
i s

� �
ð32Þ

For situations in which Eqs. (100) and (110) are applicable, the
solution is given by:

xðn; sÞ ¼ x1ðnÞ þ expð�lsÞ
X1
i¼1

~wiðnÞ�f i exp �b2
i s

� �
ð33Þ
4. Application of the general analytical solution to
heterogeneous groundwater systems

The general analytical solution developed above for the advec-
tion–dispersion equation with distance-dependent coefficients de-
pends on the existence of an analytical expression for the
integrating factor defined in Eq. (19). Such an expression cannot
be guaranteed for arbitrary functional forms of the dispersion
and advection coefficients. However, in this section we show that
for many cases of practical interest in groundwater hydrology,
the integrating factor exists.

Contaminant transport in heterogeneous aquifer systems is of-
ten modeled in terms of a constant average transport velocity, lin-
ear equilibrium sorption, and first-order decay. For a finite medium
of length L0, this problem can be formulated as:

R
@C
@T
¼ @

@X
DðXÞ @C

@X

� �
� V

@C
@X
� kRC; 0 < X < L0 ð34Þ

Cð0; TÞ ¼ C0 or � Dð0Þ @Cð0; TÞ
@T

þ VCð0; TÞ ¼ VC0 ð35;36Þ

@CðL0; TÞ
@X

¼ 0 ð37Þ

CðX;0Þ ¼ 0 ð38Þ

where C(X, T) is the dimensional concentration (M L�3), C0 is the
boundary Eq. (35) or influent Eq. (36) concentration (M L�3), R is
the constant retardation coefficient (–), V is the average constant
flow velocity (L T�1), k is the first-order decay constant (T�1), and
DðXÞ is the longitudinal hydrodynamic dispersion coefficient
(L2 T�1). The hydrodynamic dispersion coefficient is defined as the
sum of the mechanical dispersion and the molecular diffusion, DM

(L2 T�1):

DðXÞ ¼ V �aðXÞ þ DM ð39Þ

where �aðXÞ is the dispersivity (L).
We define the following dimensionless variables:

x ¼ X
L0

; t ¼ T
RL0
V

� � ; c ¼ C
C0

; c ¼ kRL0

V
ð40a—dÞ

Eqs. (34)–(38) can then be written in dimensionless form:

@c
@t
¼ @

@x
DðxÞ @c

@x

� �
� @c
@x
� cc; 0 < x < 1 ð41Þ

cð0; tÞ ¼ 1 or � Dð0Þ @cð0; tÞ
@x

þ cð0; tÞ ¼ 1 ð42;43Þ

@cð1; tÞ
@x

¼ 0 ð44Þ

cðx;0Þ ¼ 0 ð45Þ
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where the dimensionless distance-dependent dispersion parameter
D(x) is given by:

DðxÞ ¼ DðxL0Þ
VL0

¼
�aðxL0Þ

L0
þ DM

L0V
¼ aðxÞ þ dM ð46aÞ

aðxÞ �
�aðxL0Þ

L0
; dM �

DM

L0V
ð46b; cÞ

where a(x) is the dimensionless dispersivity and dM the dimension-
less diffusion coefficient.

For heterogeneous aquifers, Pickens and Grisak (1981) proposed
that the spatial dependence of the dispersivity, �aðXÞ, may be linear,
parabolic, exponential, or asymptotic. Table 1 presents these model
dispersivity functions along with the corresponding dimensionless
representations, a(x). Note that in each case �aðXÞ and a(x) have the
same functional form.

To see if the integrating factor exists for the four model func-
tions, Eq. (19) was evaluated analytically for each of the dimen-
sionless models (with the evident variable equivalencies being
n = x, A20(n) = D(x), and A10(n) = 1). Table 2 shows that indeed the
integrating factor exists for all four cases, with analytical results
being given for both non-negligible (dM – 0) and negligible
(dM = 0) molecular diffusion (the latter situation yielding less com-
plex mathematical expressions). Hence for each of the forms pro-
posed by Pickens and Grisak (1981) for practical groundwater
transport problems, the integrating factor exists and the general
analytical solution may be applied. In the remainder of this paper,
we apply the general analytical solution to the particular case of
groundwater contaminant transport with a linearly increasing
dispersivity.

In the event that an analytical expression for the integrating
factor is not available, the solution presented in Section 2 may be
regarded as a formal solution. In this case, it is possible to evaluate
the integrating factor numerically. This formal analytical approach
is the subject of ongoing research and will be documented in a fu-
ture publication.

5. Example: linearly increasing dispersivity

Using the Laplace transform technique, Yates (1990) obtained
an analytical solution for advective–dispersive transport in heter-
ogenous, semi-infinite media in which dispersion increases line-
arly with transport distance. The equation solved by Yates (1990)
is equivalent to our Eq. (41) with D(x) = ax + dM. As a demonstration
of the current methodology, we apply our general analytical solu-
tion to the specific problem solved by Yates (1990), except that the
solution is obtained in the present work for a finite medium of
length L0.

Two different problems can be formulated depending on the
boundary conditions imposed. The first case has the entrance
boundary specified by a first-type condition Eq. (42) and the exit
boundary by a second-type condition Eq. (44). Signifying the
boundary types, we call this formulation ‘‘Case 1–2”. The second
Table 1
Functional forms for the dimensional (�a) and dimensionless (a) dispersivities.a

Type �a(X) a(x) Coefficients

Linear aX ax
Parabolic �bXn bxn

b ¼ �bLn�1
0

Exponential A 1� B
XþB

� �
A 1� B

xþB

� �
A ¼ A

L0
; B ¼ B

L0

Asymptotic E½1� expð�FXÞ� E½1� expð�FxÞ� E ¼ E
L0

; F ¼ FL0

a a, b, A, B, E, and F are dimensionless constants, whereas the same symbols with
overbars are dimensional constants; n is a dimensionless constant; L0 is the domain
length.
case, with entrance boundary given by a third-type condition Eq.
(43) and exit boundary by a second-type condition Eq. (44), is
called ‘‘Case 3–2”.

5.1. Steady transport

Applying the general discussion of Section 3.1 to the current
problem, the dimensionless steady state concentration is found
by solving:

d
dx

DðxÞdc1
dx

� �
� dc1

dx
� cc1 ¼ 0 ð47Þ

c1ð0Þ ¼ 1 or � Dð0Þdc1ð0Þ
dx

þ c1ð0Þ ¼ 1 ð48;49Þ

dc1ð1Þ
dx

¼ 0 ð50Þ

where D(x) = ax + dM. A solution to this problem was obtained using
the ‘‘DSolve” function of the Mathematica software package, version
6.0 (Wolfram Research, Inc., 2007). The closed-form analytical solu-
tions for Cases 1–2 and 3–2 are, respectively:

c1ðxÞ ¼
DðxÞ
Dð0Þ

� �r=2 Ir½uðxÞ�Kr�1½uð1Þ� þ Ir�1½uð1Þ�Kr½uðxÞ�
Ir½uð0Þ�Kr�1½uð1Þ� þ Ir�1½uð1Þ�Kr½uð0Þ�

ð51Þ

c1ðxÞ ¼
1

cDð0Þ

� �1=2 DðxÞ
Dð0Þ

� �r=2

� Ir½uðxÞ�Kr�1½uð1Þ� þ Ir�1½uð1Þ�Kr½uðxÞ�
Ir�1½uð1Þ�Krþ1½uð0Þ� � Irþ1½uð0Þ�Kr�1½uð1Þ�

ð52Þ

where

uðxÞ ¼ 2r
ffiffiffiffiffiffiffiffiffiffiffiffi
cDðxÞ

p
; r ¼ 1

a
ð53a;bÞ

and where Ir and Kr are modified Bessel functions of the first and
second kinds, respectively.

5.2. Transient transport

To apply the general solution developed in Section 2, we make
the following variable equivalencies (with n ? x and s ? t):

A01ðxÞ ¼ 1; A20ðxÞ ¼ DðxÞ;

A10ðxÞ ¼
dDðxÞ

dx
� 1; A00ðxÞ ¼ c ð54a—dÞ

Because the ratio A00ðxÞ
A01ðxÞ

¼ c is a constant, c(x, t) will be represented

according to Eq. (100). For Cases 1–2 and 3–2, the resulting system
of equations for the unknown h is:

@h
@t
¼ DðxÞ @

2h
@x2 � A10ðxÞ

@h
@x

ð55Þ

hð0; tÞ ¼ 0 or � Dð0Þ @hð0; tÞ
@x

þ hð0; tÞ ¼ 0 ð56;57Þ

@hð1; tÞ
@x

¼ 0 ð58Þ

hðx;0Þ ¼ �c1ðxÞ ð59Þ

The integrating factor p(x) and the coefficient w(x) are (Table 2):

pðxÞ ¼ ðaxþ dMÞ1�1=a ¼ DðxÞ1�r; wðxÞ ¼ DðxÞ�r ð60;61Þ

The Sturm–Liouville problem for Cases 1–2 and 3–2 takes the
form:



Table 2
Integrating factor p(x) for various model dispersivity functions a(x).a

a(x) p(x) (non-negligible diffusion, dM – 0) p(x) (negligible diffusion, dM = 0)

ax (ax + dM)1�1/a x1�1/a

bxn
ðbxnþdM Þ

dM
exp x

ðnþ1Þd2
M
½bxn

2F1 1;1þ 1
n ; 2þ 1

n ;� bxn

dM

� �
� dMðnþ 1Þ�

� �
xn exp x1�n

bðn�1Þ

h i

A 1� B
xþB

� �
½AxþðBþxÞdM �

1� AB
ðAþdM Þ

2

Bþx exp � x
AþdM

� � exp � xþðB�AÞ lnðxÞþA lnðBþxÞ
A

h i
E½1� expð�FxÞ� expð�FxÞ½ðEþ dMÞ expðFxÞ � E�1�

1
FðEþdM Þ ½expðFxÞ � 1�1�

1
EF expð�FxÞ

a dM is the coefficient of molecular diffusion; a, b, A, B, E, and F are numerical constants; 2F1(�) is the hypergeometric function.
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d
dx

DðxÞ1�r dw
dx

� �
þ DðxÞ�rb2w ¼ 0 ð62Þ

wð0Þ ¼ 0 or � Dð0Þ @wð0Þ
@x

þ wð0Þ ¼ 0 ð63;64Þ

@wð1Þ
@x

¼ 0 ð65Þ

This eigenvalue problem was solved in Mathematica using the
‘‘DSolve” function in combination with other commands for alge-
braic simplifications. The set of eigenfunctions are given in terms
of Bessel functions of the first (Jr) and second (Yr) kind. The result
for Case 1–2 is:

wiðxÞ ¼ DðxÞr=2 Jr½2rbi

ffiffiffiffiffiffiffiffiffiffi
DðxÞ

p
�

Jr½2rbi

ffiffiffiffiffiffiffiffiffiffi
Dð0Þ

p
�
� Yr½2rbi

ffiffiffiffiffiffiffiffiffiffi
DðxÞ

p
�

Yr½2rbi

ffiffiffiffiffiffiffiffiffiffi
Dð0Þ

p
�

 !
;

i ¼ 1;2;3; . . . ð66Þ

whereas for Case 3–2 it is:

wiðxÞ ¼ DðxÞr=2 Jr½2rbi

ffiffiffiffiffiffiffiffiffiffi
DðxÞ

p
�

Jrþ1½2rbi

ffiffiffiffiffiffiffiffiffiffi
Dð0Þ

p
�
þ Yr½2rbi

ffiffiffiffiffiffiffiffiffiffi
DðxÞ

p
�

Yrþ1½2rbi

ffiffiffiffiffiffiffiffiffiffi
Dð0Þ

p
�

 !

i ¼ 1;2;3; . . . ð67Þ

The eigenvalues, bi, for Cases 1–2 and 3–2 must be calculated,
respectively, from the following transcendental equations:
Jr�1½2rbi

ffiffiffiffiffiffiffiffiffiffi
Dð1Þ

p
�

Jr½2rbi

ffiffiffiffiffiffiffiffiffiffi
Dð0Þ

p
�
� Yr�1½2rbi

ffiffiffiffiffiffiffiffiffiffi
Dð1Þ

p
�

Yr½2rbi

ffiffiffiffiffiffiffiffiffiffi
Dð0Þ

p
�
¼ 0 ð68Þ

Jr�1½2rbi

ffiffiffiffiffiffiffiffiffiffi
Dð1Þ

p
�

Jrþ1½2rbi

ffiffiffiffiffiffiffiffiffiffi
Dð0Þ

p
�
� Yr�1½2rbi

ffiffiffiffiffiffiffiffiffiffi
Dð1Þ

p
�

Yrþ1½2rbi

ffiffiffiffiffiffiffiffiffiffi
Dð0Þ

p
�
¼ 0 ð69Þ
The analytical expression for the norm (see Eq. (23)) is given by
Eq. (70) for Case 1–2 and by Eq. (71) for Case 3–2:

Ni ¼
X4

m¼1

N12i
ðmÞ ð70aÞ

N12i
ð1Þ ¼ rDð0Þ Jr�1½2rbi

ffiffiffiffiffiffiffiffiffiffi
Dð0Þ

p
�Jrþ1½2rbi

ffiffiffiffiffiffiffiffiffiffi
Dð0Þ

p
�

Jr½2rbi

ffiffiffiffiffiffiffiffiffiffi
Dð0Þ

p
�

� 1

 !
ð70bÞ

N12i
ð2Þ ¼

½1þ rDð0Þ� J2
r½2rbi

ffiffiffiffiffiffiffiffiffiffi
Dð1Þ

p
� � J2

r�1½2rbi

ffiffiffiffiffiffiffiffiffiffi
Dð1Þ

p
�Jrþ1½2rbi

ffiffiffiffiffiffiffiffiffiffi
Dð1Þ

p
�

� �
J2
r½2rbi

ffiffiffiffiffiffiffiffiffiffi
Dð0Þ

p
�

ð70cÞ

N12i
ð3Þ ¼ rDð0Þ Yr�1½2rbi

ffiffiffiffiffiffiffiffiffiffi
Dð0Þ

p
�Yrþ1½2rbi

ffiffiffiffiffiffiffiffiffiffi
Dð0Þ

p
�

Yr½2rbi

ffiffiffiffiffiffiffiffiffiffi
Dð0Þ

p
�

� 1

 !
ð70dÞ
N12i
ð4Þ ¼

½1þ rDð0Þ� Y2
r½2rbi

ffiffiffiffiffiffiffiffiffiffi
Dð1Þ

p
� � Yr�1½2rbi

ffiffiffiffiffiffiffiffiffiffi
Dð1Þ

p
�Yrþ1½2rbi

ffiffiffiffiffiffiffiffiffiffi
Dð1Þ

p
�

� �
Y2

r½2rbi

ffiffiffiffiffiffiffiffiffiffi
Dð0Þ

p
�

ð70eÞ

Ni ¼
X4

m¼1

N32i
ðmÞ ð71aÞ

N32i
ð1Þ ¼

rDð0Þ Jr�1½2rbi

ffiffiffiffiffiffiffiffiffiffi
Dð0Þ

p
�Jrþ1½2rbi

ffiffiffiffiffiffiffiffiffiffi
Dð0Þ

p
� � J2

r½2rbi

ffiffiffiffiffiffiffiffiffiffi
Dð0Þ

p
�

� �
J2
rþ1½2rbi

ffiffiffiffiffiffiffiffiffiffi
Dð0Þ

p
�

ð71bÞ

N32i
ð2Þ ¼

½1þ rDð0Þ� J2
r½2rbi

ffiffiffiffiffiffiffiffiffiffi
Dð1Þ

p
� � Jr�1½2rbi

ffiffiffiffiffiffiffiffiffiffi
Dð1Þ

p
�Jrþ1½2rbi

ffiffiffiffiffiffiffiffiffiffi
Dð1Þ

p
�

� �
J2
rþ1½2rbi

ffiffiffiffiffiffiffiffiffiffi
Dð0Þ

p
�

ð71cÞ

N32i
ð3Þ ¼

rDð0Þ Yr�1½2rbi

ffiffiffiffiffiffiffiffiffiffi
Dð0Þ

p
�Yrþ1½2rbi

ffiffiffiffiffiffiffiffiffiffi
Dð0Þ

p
� � Y2

r½2rbi

ffiffiffiffiffiffiffiffiffiffi
Dð0Þ

p
�

� �
Y2

rþ1½2rbi

ffiffiffiffiffiffiffiffiffiffi
Dð0Þ

p
�

ð71dÞ

N32i
ð4Þ ¼

½1þ rDð0Þ� Y2
r½2rbi

ffiffiffiffiffiffiffiffiffiffi
Dð1Þ

p
� � Yr�1½2rbi

ffiffiffiffiffiffiffiffiffiffi
Dð1Þ

p
�Yrþ1½2rbi

ffiffiffiffiffiffiffiffiffiffi
Dð1Þ

p
�

� �
Y2

rþ1½2rbi

ffiffiffiffiffiffiffiffiffiffi
Dð0Þ

p
�

ð71eÞ

The normalized eigenfunction is computed according to
Eq. (24).

The transformed initial condition Eq. (30) was determined ana-
lytically using the ‘‘Integrate” function in Mathematica. Eqs. (72)
and (73) give expressions of the transformed initial conditions
for Cases 1–2 and 3–2, respectively:

�f i ¼
auð1ÞT1 þ p

ffiffiffiffiffiffiffiffiffiffi
Dð1Þ

p
T2bi

pðT1 þ T2ÞJr uð0Þffiffi
c
p bi

h i
Yr

uð0Þffiffi
c
p bi

h i
uð1ÞDð0Þr=2 b2

i þ c
� � ffiffiffiffiffi

Ni
p ð72aÞ

T1 ¼ Ir½uð0Þ�Kr�1½uð1Þ� þ Ir�1½uð1Þ�Kr½uð0Þ� ð72bÞ

T2 ¼ Jr�1
uð1Þffiffifficp bi

	 

Yr

uð0Þffiffifficp bi

	 

� Jr

uð0Þffiffifficp bi

	 

Yr�1

uð0Þffiffifficp bi

	 

ð72cÞ

�f i ¼
2
ffiffifficp

pJrþ1
uð0Þffiffi

c
p bi

h i
Yrþ1

uð0Þffiffi
c
p bi

h i
uð0ÞDð0Þr=2biðb2

i þ cÞ
ffiffiffiffiffi
Ni
p ð73Þ

uðxÞ ¼ 2r
ffiffiffiffiffiffiffiffiffiffiffiffi
cDðxÞ

p
: ð74Þ

Finally, the solute concentration is found according to Eq. (33).

6. Results for test-case

The GITT analytical solution developed in the previous section
was evaluated for a hypothetical test-case whose parameter values



Table 3
Data values for test-case.

Parameter Value

Domain length, L0 100 m
Retardation factor, R 1
Molecular diffusion,

dM

10�4 m2 d�1

Average velocity, u 0.25 m d�1

Decay coefficient, k 0.05 d�1
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Fig. 1. Steady state concentration profiles for finite (GITT) and semi-infinite (Yates,
1990) domains and for various values of dispersion spatial dependence parameter a.
Inlet boundary is a first-type condition.

Table 5
Concentration profiles for t = 0.1 and a = 0.1.

X (m) Dimensionless concentration

GITT Yates (1990) GITT Yates (1990)
Case 1–2 Case 1–2 Case 3–2 Case 3–2

0 1. 1. 9.99911E�11 9.99911E�11
10 9.41422E�2 9.41422E�2 9.41263E�2 9.41263E�2
20 7.8846E�4 7.8846E�4 7.8804E�4 7.8804E�2
30 1.05935E�6 1.05936E�6 1.05834E�6 1.05835E�6
40 5.71943E�10 5.71614E�10 5.71138E�10 5.70811E�10
50 0 3.28618E�13 0 3.23334E�13
60 0 2.14595E�13 0 1.32517E�13
70 0 �3.86535E�13 0 �3.6215E�13
80 0 6.37506E�14 0 7.92379E�14
90 0 3.91891E�13 0 7.30922E�13

100 0 9.99429E�14 0 1.95371E�15

Table 6
Concentration profiles for t = 0.1 and a = 0.5.

X (m) Dimensionless concentration

GITT Yates (1990) GITT Yates (1990)
Case 1–2 Case 1–2 Case 3–2 Case 3–2

0 1. 1. 9.9984E�1 9.9984E�1
10 1.15427E�1 1.15427E�1 1.15402E�1 1.15402E�1
20 1.93139E�2 1.93139E�2 1.93076E�2 1.93076E�2
30 3.21145E�3 3.21145E�3 3.20998E�3 3.20998E�3
40 5.19991E�4 5.19991E�4 5.19677E�4 5.19677E�4
50 8.22096E�5 8.22096E�5 8.21477E�5 8.21477E�4
60 1.2749E�5 1.2749E�5 1.27375E�5 1.27375E�5
70 1.94688E�6 1.94685E�6 1.9448E�6 1.9448E�6
80 2.93698E�7 2.93614E�7 2.9332E�7 2.93258E�7
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are given in Table 3. The solution was implemented in Mathemat-
ica. The eigenvalues were calculated from the transcendental Eqs.
(65) and (66) using the Mathematica function ‘‘FindRoot”. Solu-
tions were computed using default settings for Mathematica sys-
tem parameters. The GITT solution was programmed such that
dimensionless concentration values less than 10�10 were taken to
be zero.

For comparison purposes, the formal solution of Yates (1990)
for a semi-infinite domain was also implemented in the Mathem-
atica platform. The integrals in the Yates (1990) solution were
evaluated numerically using the Mathematica function
‘‘NIntegrate”.

Table 4 presents the dimensionless steady state concentration
c1 with the linear dependence of the dispersion coefficient speci-
fied by a = 0.1. For both Cases 1–2 and 3–2, the results for the finite
domain (the current GITT solution) and the semi-infinite domain
(the Yates (1990) formal analytical solution) are identical at the en-
trance boundary and for over more than half of the spatial domain.
As expected, however, the solutions diverge further along the do-
main where the effect of the finite boundary condition becomes
apparent. Fig. 1 shows steady state results for different values of
a. Field observations of contaminant dispersion, as well as theoret-
ical considerations, indicate that the value of a should be in the
range 0 6 a 6 1 (Huang et al., 1996). Fig. 1 demonstrates that the
effect of the finite domain, and hence the disagreement with the
semi-infinite solution, increases when the value of a increases.

Tables 5–7 show results for the transient concentration at the
dimensionless time t = 0.1 and various values of the parameter a.
The parameter values in Table 4 were again used. Results for finite
and semi-infinite domains are presented. The numbers of terms, N,
required for convergence of the GITT solution depended on the va-
lue of a: N = 50 for a = 0.1 (Table 5); N = 30 for a = 0.5 (Table 6);
and N = 10 for a = 1 (Table 7). Increasing a has the effect of increas-
ing dispersion relative to advection, and consequently the number
of terms required for convergence is lower. As was the case with
the steady state results, the concentration profiles in Tables 5–7
for the finite and semi-infinite domains differ only in the vicinity
of the exit boundary.
Table 4
Steady state concentration profiles for a = 0.1.

X (m) Dimensionless concentration

Eq. (51) Yates (1990) Eq. (52) Yates (1990)
Case 1–2 Case 1–2 Case 3–2 Case 3–2

0 1. 1. 9.99911E�1 9.99911E�1
10 1.35955E�1 1.35955E�1 1.35943E�1 1.35943E�1
20 2.46503E�2 2.46503E�2 2.46481E�2 2.46481E�2
30 5.32019E�3 5.32019E�3 5.31971E�3 5.31971E�3
40 1.29868E�3 1.29868E�3 1.29856E�3 1.29856E�3
50 3.48248E�4 3.48248E�4 3.48217E�4 3.48217E�4
60 1.00682E�4 1.00682E�4 1.00673E�4 1.00673E�4
70 3.09787E�5 3.09779E�5 3.09759E�5 3.09751E�5
80 1.00565E�5 1.00476E�5 1.00556E�5 1.00467E�6
90 3.49118E�6 3.4108E�6 3.49086E�6 3.4105E�6

100 1.82775E�6 1.20497E�6 1.82759E�6 1.20487E�6

90 4.45395E�8 4.38308E�8 4.44581E�8 4.3771E�8
100 1.25334E�8 6.48763E�9 1.24949E�8 6.47779E�9
Fig. 2 shows the solute concentration profiles for Case 1–2, cal-
culated with different values of the parameter a and at various
dimensionless times t. Results for Case 3–2 are also included in
Fig. 2, but at the scale of the figure, they superimpose on the results
for the first case and cannot be distinguished. For realistic levels of
dispersion (0 6 a 6 1), the different inlet conditions led to only
minor differences in the computed solution. Also shown in Fig. 2
are results computed for constant dispersion, D = a + dM. In com-
paring the plots of Fig. 2, it can be seen that increasing the value
of a increases dispersion and creates a more diffuse concentration
front that penetrates more quickly into the finite domain. Also, the
divergence from the constant dispersivity case is greater for larger
values of a.



Table 7
Concentration profiles for t = 0.1 and a = 1.

X (m) Dimensionless concentration

GITT Yates (1990) GITT Yates (1990)
Case1–2 Case 1–2 Case 3–2 Caes 3–2

0 1. 1. 9.99336E�1 9.99336E�1
10 1.22758E�1 1.22757E�1 1.2266E�1 1.2266E�1
20 3.41618E�2 3.41612E�2 3.41274E�2 3.41274E�2
30 1.08658E�2 1.08656E�2 1.08525E�2 1.08525E�2
40 3.6527E�3 3.65272E�3 3.64748E�3 3.64748E�3
50 1.26362E�3 1.26374E�3 1.26164E�3 1.26164E�3
60 4.4454E�4 4.44671E�4 4.43865E�4 4.4383E�4
70 1.58159E�4 1.58164E�4 1.57997E�4 1.57829E�4
80 5.71682E�5 5.66704E�5 5.7204E�5 5.65375E�5
90 2.25485E�5 2.04106E�5 2.26559E�5 2.03582E�5

100 1.42596E�5 7.3792E�6 1.43845E�5 7.35863E�6
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Fig. 2. Concentration distributions in a finite domain at various values of the
dimensionless time, t. Inlet boundary is a first-type condition. The thick lines are for
a linearly increasing dispersivity, D(x) = ax + dM, whereas the thin lines are for
constant dispersivity, D(x) = a + dM.
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7. Summary and conclusions

A general analytical solution for solute transport in finite, het-
erogeneous porous media was developed. The linear advection–
dispersion equation with distance-dependent coefficients was
solved using an integrating factor in combination with the gen-
eralized integral transform technique (GITT). For a number of
parameterizations of practical importance to groundwater con-
taminant transport, we demonstrated that an analytical expres-
sion for the integrating factor exists. For the particular case of
a linearly increasing dispersivity, solutions were developed in
detail and compared with solutions from the literature obtained
for semi-infinite media. As expected, the results differed only in
the vicinity of the exit boundary. Among other applications, the
new solution will be particularly useful analyzing problems were
the exit boundary is significant, such as transport in soil columns
or lysimeters, or testing and validating numerical transport
codes.
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