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INTRODUCTION

Plants acquire mineral nutrients from their native soil environments. Most crop plants are
glycophytes and have evolved under conditions of low soil salinity. Consequently, they
have developed mechanisms for absorbing mineral nutrients in nonsaline soils. Under
saline conditions, which are characterized by low nutrient ion activities and extreme ratios
of Na+/Ca*+, Na+/K+, Ca*+/Mg*+, and Cl-/NOj-,  nutritional disorders can develop
and crop growth may be reduced. This is not surprising since under saline conditions,
Na+ and/or Cl- often exceeds macronutrient concentrations by one or two orders of
magnitude and even more in the case of micronutrients. Halophytes. native to saline
environments, may also show symptoms of nutrient imbalance despite their remark-
able ability to absorb nutrients selectively from soil solutions dominated by Na+
and Cl-.

Nutrient imbalance may result from the effect of salinity on nutrient availability,
uptake, or partitioning within the plant or may be caused by physiological inactivation of a
given nutrient, resulting in an increase in the plant’s internal requirement for that essential
element.

Nutrient availability and uptake by plants grown in saline environments is related to
(1) the activity of the nutrient ion in the soil solution, which depends upon pH, pE,
concentration. and composition, (2) the concentration and ratios of accompanying ele-
ments that influence the uptake and transport of this nutrient by roots, and (3) numerous
environmental factors. Despite these well-known factors, edaphology remains a relatively
unexploited resource among biotechnologists in the development of salt-tolerant crops
(1.2).

Plants vary not only in the rate at which they absorb an available nutrient element, but
also in the manner by which they spatially distribute the clement within the plant. These
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differences occur on all scales (e.g., cellular, organ, and whole plant) and at both the
intra- and inter-specific levels.

In the absence of salinity, plant growth response in relation to the concentration of an
essential nutrient element in the root media is often described by the function illustrated in
Figure I. This relationship is a modification of the “generalized dose-response curve”
illustrated by Berry and Wallace (3). Plant growth, usually expressed as absolute or
relative biomass, is suboptimal when the concentration or activity of the essential nutrient
element is less than A and optimal when the concentration is between A and B. Nutrient
concentrations that exceed B may inhibit growth as a result of either a toxicity or a
nutrient-induced deficiency.

A substantial body of information in the literature indicates that the plant may not
exhibit the same response function under saline conditions as under nonsaline conditions.
In some cases the optimal range may be widened or narrowed, or it may shift to the right
or left depending upon the plant species (or cultivar), the particular nutrient, the salinity
level, or the environmental condition. In most studies, salinity (either concentration or
composition) is a major variable and the experiment may have only a few treatments that
vary in nutrient concentration. Therefore, most reported studies present insufficient data
under saline and nonsaline conditions to develop response functions similar to Figure 1.
Nevertheless, many studies  demonstrated that an optimal concentration or activity of a
particular nutrient element in nonsaline conditions may be deficient, or in some cases
excessive, under saline conditions.

INTERPRETATION OF SALINITY AND NUTRIENT INTERACTIONS

Salinity and mineral nutrient interaction studies are conducted in the laboratory, in the
greenhouse, and in the field depending upon the agronomic or physiological objectives. In
each case, at least two factors can operate simultaneously to limit growth and develop-

100 -

I
I
I
I

I
I

I
I

I I

0 1 I
  A

Nutrient Element Concentration

B

Figure 1 Relative growth of plants in relation to a wide range of concentrations  of an essential
nutrient  element.
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ment:  the presence of salinity and the imbalance  of a particular nutrient element. The “salt
tolerance” of a crop, as defined by Mans and Hoffman (4), may vary depending upon
whether salinity or nutrition is the factor more limiting to growth. Bernstein et al. (5)
defined three different types of idealized salinity and nutrition interactions that could
occur: (I) no effect on salt tolerance, (2) increased salt tolerance, and (3) decreased salt
tolerance. In contrast to the definition of Bernstein et al. (5) as presented by Maas (6). we
prefer to define the interactions based on plant performance at optimal fertility relative to
the performance at suboptimal fertility, and this interpretation is shown in Figure 2.
Generally. plant growth is promoted more if the most limiting factor is relieved rather than
the less limiting factor. For example, if nutrient deficiency limits growth more than
salinity, a crop may appear more salt tolerant than it would if the plant were adequately
supplied with that nutrient. That is, improving soil fertility to an adequate level would
improve plant performance proportionally more under nonsaline conditions than under
saline conditions. This contribution by Bernstein et al. (5) is extremely valuable, and
these salinity and nutrient interaction functions can be useful, if used properly. in
interpreting data from experiments conducted by others.

Bernstein et al. (5) concluded that the effects of salinity and nutrition on grains and
several vegetables are independent and additive when stresses imposed upon them by
nutrient deficiency and salinity are moderate. When either of these factors severely limits
growth, the other has little influence on yield. A decade later, the work of Okusanya and
Ungar (7) with two halophytcs and a glycophyte gave results that support Bernstein’s
salinity and fertility interaction model. In the study by Okusanya and Ungar (7), nutrient
applications increased the growth of the halophytes in saline conditions, presumably
because salinity was moderately growth limiting. On the other hand, nutrient applications
did not improve the growth of the glycophyte under saline conditions, presumably
because salinity was severely growth limiting.

It should be made clear, however, that the salinity and fertility interactions described
by Bernstein et al. (5) are idealized and can therefore be misleading if used improperly.
These investigators emphasized that growth (or yield) is controlled by the factor (salinity
or nutrient deficiency)  that is most growth limiting. Yet, the interactions are based on
plant response to salinity as it increases from nonlimiting to severely limiting levels. In
many experiments. the nutrient concentration is the most limiting factor in nonsaline or
low-salinity conditions, yet when the identical concentration is present in a highly saline
environment, salinity is the limiting factor. This point was emphasized by Champagnol
(8) in his literature review on the relationship between salinity and phosphorus nutrition of
plants. A clear understanding of how this interaction changes from low to high salinity is
absolutely essential. Otherwise, it can be concluded by reviewing the salinity and
nutrition literature that many more contradictions exist than is in fact the case. Much of
the data in the literature that describe salinity X N or salinity X P response functions can
be reanalyzed by examining the interactions under low, moderate, and high salinity
levels. In many cases, a response function similar to that illustrated in Figure 3 is
obtained. Under low-salinity stress, nutrient deficiency limits plant growth more than
salinity and a positive (+) interaction or increased salt tolerance response occurs. Under
moderate salinity, nutrient deficiency and salinity stress may equally limit plant growth
and no interaction (0) occurs. Under high-salinity conditions, salinity limits growth more
than nutrient deficiency. In fact, plant performance would always exhibit a negative (-)
interaction or a “decreased salt tolerance” (Figure 2c)  response if a nutrient element was
limiting growth under nonsaline conditions and the upper salinity treatment was lethal or
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Salinity

Figure 3 Influence of low, moderate, and high levels of salinity at suboptimal and optimal levels
of nutrient supply on plant growth. +, 0, and -: increase, no effect, and decrease in plant tolerance
to salinity, respectively.

severely growth limiting. In this case, only plants grown in nonsaline environments would
respond to a nutrient addition.

In light of this discussion and the multitude of interactions that could occur, results
reported by various scientists on this subject may not be as contradictory as reviewers
(e.g., References 9-l 2) have suggested.

SOIL AND SOLUTION CULTURE STUDIES

Many of the studies in the area of plant nutrition and salinity interactions have been
conducted in sand or solution cultures. A major difficulty in understanding plant nutrition
as it is affected by soil salinity is reconciling the results obtained in experiments conducted
in the field and in solution cultures (9). In the field, the concentrations of some major
nutrients in the soil solution, particularly P and K+, are controlled by the solid phase and
are difficult to measure or predict. To complicate matters further, salinity and nutrient
concentrations vary spatially and temporally. In solution cultures, nutrient ratios are very
different from those found in soil solutions and root development is entirely different from
that in soils. It is obvious that plant responses and interactions observed in artificial media
may not necessarily occur, at least with the same magnitude, as they would under natural
conditions. Ncvcrthclcss, solution culture studies  are extremely beneficial since they have
advanced our understanding of plant salt tolerance and of the physiological mechanisms
responsible for nutrient uptake and discrimination.
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The remaining portion of this chapter is directed toward plant performance and
acquisition of the major nutrient elements (N, P, K+, Ca2+,  and Mg2+) and micronutrient
elements in saline environments. This review includes references to both soil and solution
culture studies. The emphasis is placed on glycophytes, since most work has been
conducted on this group of plants. Discussion on halophytes is included when appropriate
and when information is available.

NITROGEN

In most soils, saline or nonsaline, N is usually the most growth-limiting plant nutrient.
Consequently, the addition of N usually improves plant growth and yield. In many field
studies, researchers set out to test the hypothesis that N fertilizer additions alleviate, at
least to some extent, the deleterious effect of salinity on plants.

Most salinity and N interaction studies were conducted on soils deficient in N.
Therefore, additions of N improved growth and/or yield of barley (13). bean (14-16),
carrots, cowpea, tomato, corn, clover, beans, millet, and vetch (17),  coastal Bermuda
grass (18), corn and cotton (19),  corn and millet (20),  tomato (21),  spinach (22), and
wheat and rice (23) when the degree of salinity was not severe. In most of these studies,
the fact that applied N did not improve the growth under extreme saline conditions
suggests that applied N decreased plant salt tolerance (see response in Figure 2c). On the
other hand, only a few studies showed an increase in crop yield under saline conditions
when N was applied above a level considered optimal under nonsaline conditions (24,25).
In this case, additional N in fact incrcnscd the salt tolerance of millet and clover. Selassie
and Wagenet (26) also reported  that the salt tolerance of well-watered corn may have been
increased with urea additions up to 375 kg/ha to a soil initially supplied with sufficient N.
This practice is not necessarily practical, however, and would most likely be undesirable
from both economical and environmental perspectives.

Despite the-majority of evidence indicating that N applied to saline soils above a level
considered optimal under nonsaline conditions does not improve plant growth or yield, a
substantial number of laboratory and greenhouse studies have shown that salinity reduces
N accumulation in plants (27-30). This is not surprising since with few exceptions (31),
an increase in Cl- uptake and accumulation is accompanied by a decrease in shoot nitrate
concentration. Examples of this effect are also found in barley (32-35),  cotton (36),
tomato (37),  tomato and melon (38),  and wheat (39,40). Aslam et al. (32) reported that
Cl- inhibited N03-  uptake more than SO4 2- when these anions were present on an equal
osmolarity basis. Gorham et al. (41) observed that despite drastic reductions in leaf N03-
concentrations in response to salinity, other nitrogen-containing fractions either increased
(e.g., proline, glycine-betaine, and total soluble  protein) or were not greatly reduced
(e.g., total amino acid content). These results argue against N deficiency per se as a
mechanism of salt injury. This conclusion is also supported by Munns and Termaat (42).
In their review, these investigators suggested that although NaCl-treated plants may
contain less N than nonstressed plants, there is no strong evidence that this effect is
growth limiting.

In contrast to the effect of Cl- on N03- uptake, reported data indicate that increased
N03-  in the substrate decreased Cl- uptake and accumulation (5,37,38,43).

Although Cl- salts were primarily responsible for reduced NO1-  uptake by plants,
NOz-  reduction in plants was not affected by salinity in studies  with barley  seedlings (32).
The stimulation of nitrate reductase activity promoted NOz-  reduction and its
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subsequent assimilation into protein. Salinity also stimulated nitrate reductase activity in
peanut (44). However, when NaCl in the substrate was at stressful concentrations,
incorporation of labeled NH4N03  into protein was impaired in barley leaves (45). Salinity
decreased the nitrate reductase activity in tomato and cucumber (46) and sorghum (47).
Reduction in nitrate reductase activity in wheat plants grown for several weeks in saline
cultures was attributed to inhibition of N03- uptake by Cl- (48).

The form in which N is supplied to salt-stressed plants may be important (43,49),
although the form of N did not influence the yield of moderately salt-stressed wheat (50).
Lewis et al. (49) found that NH4+ -fed maize and wheat plants were more sensitive to
salinity than NO,--fed  plants grown in solution cultures. Similar responses were found in
melon (5 1). Addition of Ca*+ to the media improved the growth rate of the plants in the
NOj-  treatment but not those treated with NH4+ (49). In addition, Martinez and Cerda
(43) found that Cl- uptake was enhanced in cucumber when half the NO3-  in the solution
was replaced by NH4+. These investigators further noted that when NOj- was the only N
source, accumulation of Kf in the plant was increased under saline conditions. When the
media contained both N03-  and NH4+, K+ was reduced. Similar effects were found in
salt-stressed melon (51). As the NH4+/NOJ-  ratio was increased, plants accumulated
more Na+ and Cl- and less Ca*+ and Kf in their leaves. Based on the results of their
nutrient solution experiments, Leidi et al. (52) suggested that NO3  is a better N source
than NH4+ for wheat grown in salt-affected areas. This conclusion was supported by
Silberbush and Lips (53,54), who reported that the mean grain weight of wheat grown in
sand cultures was negatively correlated with the NH4+/N03- ratio. The results of salinity
and N source studies conducted in hydroponic or sand cultures, cited earlier, contrast
markedly with those in which plants were grown in soil. Shaviv et al. (55) found that
wheat grown in soil salinized with NaCl was more tolerant in terms of grain yield under a
combination of NH4+ and N03-. This is a classic example of how plant nutritional
experiments conducted in solution cultures alone may lead to poor fertilizer recommenda-
tions in the field.

Halophytes grown in highly saline, N-deficient environments and glycophytes grown
in mildly saline, N-deficient environments respond similarly to added N (7,56-59).
Skeffington and Jeffrey (58) found that N additions increased the growth of Plantago
maritima L. even when grown in seawater. Furthermore, N additions increased plant
survivability. Okusanya and Ungar  (7) found that the poor growth of two Spergularia
species grown in 50% seawater was improved by Ca(N03)*  additions. Naidoo (57)
studied the interactive effects of N and NaCl salinity on young mangroves [Avicennia
marina (Forsk.) Vierh]. The N was supplied as NH4+ rather than N03-  to simulate the
saturated, and thus anaerobic, environments typical of the natural habitat of mangroves.
Therefore, nitrate reduction is prominent and most plant-available N is in the NH4+ form.
Naidoo (57) found that increased salinity decreased N and K+ in tissues. The decrease in
tissue N is probably caused by NH4+/Na+  competition, since Bradley and Morris (60)
found that sea salt salinity reduced the kinetics of NH4+ uptake in Spartinu alterni’oru
Lois. Furthermore, as NH4+ N increased from 1.4 to 14 mg L-‘, shoot growth increased
in the 100 and 300 mM NaCl treatments but not in the 500 mM NaCl  treatment.
Therefore, in agreement with most of the work with glycophytes, it would be interpreted
that added N decreased salt tolerance of these halophytic species, if the response was
characterized over the entire range of salinity.

Some halophytes have salt glands, a unique  anatomical feature that allows the plant to
selectively  excrete salt (particularly, NaCl)  from its shoot. Not only does this feature
allow the plant to reduce its internal salt load, at least to some extent, it improves the
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nutrient relations within the plant. Waisel et al. (61) suggested that salt glands, by
selective removal of Na+ and Cl- from the leaves of A. marina (Forsk.) Vierh., may help
this mangrove species metabolize normally by decreasing the ratios of Cl-/NOJ-,
CI-/H2P0,,  and Na’/K+ within its leaves.

PHOSPHORUS
The interaction between salinity and phosphorus (P) nutrition of plants is perhaps as
complex or more confusing than that between salinity and N. The interaction is highly
dependent upon the plant species (or cultivar), plant developmental age (62),  the composi-
tion and level of salinity, and the concentration of P in the substrate. Therefore, depending
upon plants selected and conditions of the experiment, different results can be obtained.

It has been more than a decade since Champagnol (8) reviewed 17 publications and
found that P added to saline soils increased crop growth and yield in 34 of the 37 crops
collectively studied. However, added P did not necessarily increase crop salt tolerance as
defined by the nutrient-salinity response model originally developed by Bernstein et al.
(5). After analyzing studies with barley, carrot, clover, maize, millet, sorghum, sugar
beet, tomato, vetch, and wheat, Champagnol (8) concluded that added P increased, had
no effect, or decreased salt tolerance as salinity increased from low, to moderate, to high
levels, respectively. This is perhaps the most convincing evidence that supports the
supposition that the simple application of the model to describe salinity and nutrient
interactions introduced by Bernstein et al. (5) can be extremely misleading. It is therefore
important that the model be used only when specific salinity levels are identified. This
approach was used to a limited extent by Peters (63). He evaluated the salt tolerance of
barley under control and added P conditions. Linear regression equations of barley grain
yields and soil salinity were compared when average soil salinity was equal to or greater
than 0.4 and 6 dS m-‘.  Unfortunately, Peters (63) did not evaluate the effect of added P
on crop salt tolerance separately under low, moderate, and high levels of salinity. The
most useful conclusion from studies reviewed by Champagnol (8) is that P additions to
P-deficient soils are beneficial provided that the crop is not experiencing severe salt stress.

Recent evidence indicates that salinity may increase the P requirement of certain
plants. Awad et al. (64) found that when NaCl increased in the substrate from 10 to 50 and
100 mM, the P concentrations in the youngest mature tomato leaf necessary to obtain 50%
yield increased from 58 to 77 and 97 mmol kg -’ dry weight. Their conclusion was also
supported by foliar symptoms of P deficiency that were evident on plants grown at high
NaCl concentrations at a given leaf P concentration.

The influence of salinity on P accumulation in crop plants is variable and depends
upon the plant and experimental conditions (8). In many cases, salinity decreased the P
concentration in plant tissue (65); in others salinity increased P or had no effect. It is not
surprising that these differences among studies occur since P concentrations vary widely
in different experiments and other nutrient interactions could be occurring simultaneously.
Champagnol(8) concluded that it is unlikely that Cl- and H2P04-  ions are competitive in
terms of plant uptake. However, Papadopoulos and Rendig (21) concluded that Cl- may
have suppressed P uptake and accumulation in tomato shoots. Zhukovskaya (62) found
that Cl- as well as Sod*- salts reduce P uptake in barley and sunflower. In other cases,
reduction in plant P concentration by salinity may result from reduced activity of P in the
soil solution due to the high ionic strength of the media (64).

Most of the studies that show salinity-reduced P concentrations in plant tissues were
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conducted in soils. Phosphate availability is reduced in saline soils not only because of
ionic strength  effects that reduce the activity of phosphate but also because P con-
centrations in soil solution are tightly controlled by sorption processes and by the low
solubility of Ca-P minerals. Therefore, it is understandable that P concentrations in
field-grown agronomic crops decreased as salinity (NaCl  + CaCl*) increased (65). In
many cases, tissue P concentration was reduced between 20 and 50%, yet there was no
evidence of P deficiency in the crops. When plants are P deficient, they may be more
sensitive to salinity. Gibson (66) found that P-deficient wheat plants were more sensitive
to salinity than those with adequate P and that deficient plants had a lower cellular
tolerance for the accumulated ion.

Since the solubility of P in the solutions of saline soils containing high levels of Ca2+
is controlled by sorption processes on Al hydroxides and by the solid phase of Ca-P
minerals, it is reasonable to question why some plants respond positively to added P.
Evidently, the kinetics of sorption and/or precipitation are relatively slow and initial forms
of calcium phosphate are thermodynamically unstable (D. L. Suarez, U.S. Salinity
Laboratory, personal communication, 1990). Later, more stable phases are formed, plant
availability decreases. and repeated P applications to saline-calcareous soils are required.

Unlike  studies conducted in the field, most studies that demonstrated that salinity
increased tissue P were conducted in sand or solution cultures. Phosphate concentrations
in solution cultures are often orders of magnitude higher than those in soil solutions (e.g.,
2 mM versus 2 PM). Several studies conducted in solution cultures have shown that P
concentrations that are optimal in nonsaline solutions may adversely affect growth or be
toxic to corn (5,67), lupin (68),  sesame (69).  and certain soybean cultivars (70) when
grown in saline solutions. This is evidence that the optimal P range (A to B in Figure l), in
these instances, narrows under saline conditions. In all these studies, salinity increased P
accumulation in plants at the highest substrate P level. The increased P accumulation in
the shoot is presumably controlled at the root level (71) and is caused by a salinity-
enhanced uptake rate of P by roots (72).

Certain soybean cultivars are particularly sensitive to salinity in the presence of 0.2
mM P (70),  which is only 40% of that in half-strength Hoagland’s solution (73). It is
likely that susceptible cultivars would be ranked P sensitive as defined by Howell and
Bernard (74). In the experiments conducted by Grattan and Maas (70),  three of the
soybeans tested were ranked for P tolerance. The two that were ranked P tolerant did not
exhibit the salinity and P interaction, whereas the one ranked P sensitive was extremely
sensitive. Phosphorus-susceptible cultivars absorbed and accumulated P at a rate greater
than P-tolerant cultivars. Evidently, salinity by some unexplained mechanism caused the
sensitive cultivars to accumulate abnormally large quantities of P in the leaf tissue (i.e.,
600-900 mmol kg-’ dry weight) and even higher concentrations in the root tissue
(i.e., 1000-1400 mmol kg-‘) when substrate P was above some threshold concentra-
tion (i.e., concentration B in Figure 1). This threshold concentration varies not only
among cultivars of soybean at a given salinity level but among species as well. The
threshold concentrations for the other sensitive species of corn, sesame, and lupin are
higher than those for sensitive soybean cultivars. For sensitive soybean cultivars,
threshold P concentrations were less than 0.12 mM but above 0.02 mM.

These studies with soybean demonstrate a unique salinity-induced nutritional dis-
order. Direct ion interactions play a minor role. Excessive P accumulates in sensitive
cultivars regardless of the Ca*+/Na+  ratio (75) and is dependent upon the ionic strength or
osmotic potential of the solution regardless of the types of salts used. Combinations of
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NaCl + CaCl*, KC1 + CaClz,  or NaN03 + Ca(NO& all produced similar effects (76).
Plant mortality, on the other hand, is related to high levels of both P and Cl in the leaf
tissues.

It should be emphasized, however, that these adverse interactions observed with
corn, sesame, lupin, and soybean rarely occur under field conditions, since P con-
centrations in soil solutions are usually orders of magnitude less than those used in these
studies. Nevertheless, these interactions are important from an academic viewpoint and
pose interesting questions regarding the mechanisms of P uptake and transport within the
plant. For example, what physical or chemical changes are occurring at the membrane
level that cause excessive or uncontrolled P uptake despite a decrease in the activity of P
as a result of the presence of salinity?

Phosphate additions to halophytes grown in highly saline environments have also
resulted in increased plant growth. Okusanya and Fawole (77) showed that phosphate
stimulated the growth of Lavatera  arborea L. much more at 40 and 50% strength seawater
than under nonsaline conditions. The magnitude of this effect may be partly due to the
increase in the shoot-root ratio by salinity. When no phosphate was added, salinity
reduced plant growth. However, when 0.05 and 0.25 mM phosphate were added to the
nutrient sand culture, salinity, at the concentration of 40% seawater, actually in-
creased plant growth. Therefore, addition of phosphate increased the salt tolerance of
L. arborea L.

POTASSIUM
Potassium, like P, is present in relatively low concentrations in the soil solution. Potas-
sium is readily adsorbed onto the surface of soil particles and is fixed, and thus unavail-
able, within layers of expandable 2:l clay minerals. In some vermiculitic soils, applica-
tions of K as high as 700 kg ha-’ were ineffective at correcting visually obvious symptoms
in K-deficient cotton (78). Because of the plant’s requirement for an adequate amount of
K+, it is fortunate that the plasma membranes of root cortical cells have a high affinity for
K+ over Na+, even though the degree of selectivity can vary quite drastically among
species (79). This is particularly important in saline-sodic and sodic environments, in
which concentrations of Naf in the soil solution are orders of magnitude higher than those
of K+. The high K+/Na+ selectivity within plants is maintained, provided that the
calcium status in the root is adequate (80-83) and the roots have a sufficient supply of O2
(84).

Although plants selectively absorb and translocate K+ in preference to Na+,  the
degree of selectivity varies among species as well as among cultivars within a species.
Kafkafi (12) reported the data of Bower and Wadleigh (85) as the fraction of monovalent
cations [Na(Na + K)or K(Na + K)] in _the  exchange complex versus that within the roots
of bean and beet. Kafkafi (12) then concluded that the roots of the salt-tolerant species
(beet) had a higher affinity for K+, in exchange for Na+, than the salt-sensitive species
(bean). Rathert (86) found that salinity (Na+/K+ = 9) reduced the concentration of K+ in
the leaves of the salt-sensitive cotton cultivar (Dandara) more than that in the salt-tolerant
cultivar (Giza 45).

There is evidence that Na+ can partially substitute for K+ in many glycophytic
species without affecting growth. Marshner (87) classified many crop species into four
groups depending upon the extent b y  which Na+ can replace K+. Crop species in group A
can replace a high proportion of K+ by Na+ (e.g., beets, turnip, and Swiss chard),
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whereas with crop species in group D (e.g., maize, bean, and lettuce) no substitutions of
K+ is possible.

Rice has been classified as a group C crop when only a minor substitution of K+ by
Naf is possible and Na+ has no specific effect on growth, unlike those crops in groups A
and B (87). However, the addition of 17 mM NaCl to solution cultures low in available
K+ improved vegetative growth and increased panicle yield (88). Sodium chloride
decreased the K+ content only when the K+ supply was low. Thus, a relatively high Na+
content may benefit rice nutrition under saline conditions when the supply of Kf is low
(88). Despite the plant’s high affinity for K+ over Na+, the K+ status in plants is related
to the ratio of Na+/K+ in the saturated soil extract (89). If it is assumed that the
composition of the soil solution is at least close to equilibrium with that on the exchange
phase, then it follows that Kf accumulation by the root is reduced if the exchangeable
sodium percentage (ESP) on the exchange phase is increased. This effect was observed in
bean and beet (85).

Numerous studies have shown that the K+ concentration in plant tissue is reduced as
the NaC  salinity or the Na+/Ca*+ ratio in the root media is increased (e.g., References
7,82,83,90,  and 91). Reduction in K+ uptake in plants by Na+ is a competitive process
and occurs regardless  of whether the solution is dominated by Na+ salts of Cl- or S04’-.
Janzen and Chang (9 I) found that barley plants exposed to Na2S04  salinity contained only
one-third the concentration of K+ in their shoots compared to those grown in nonsalinized
solutions.

Haiophytes, like glycophytes, have also shown a high degree of K+ selectivity and
increasing Na+ concentrations in the substrate have caused reduced K+ concentrations in
their shoots. Excised leaf tissue of the mangrove, A. marina (Forsk.) Vierh, was highly
selective for Kf over Na+ (92),  and Hordeum jubatum  L. was found to selectively
transport K+ to the shoot against a strong external concentration gradient of Na+ (93).
Nevertheless, increased NaCl salinity decreased shoot K+ in the same mangrove species,
even though there was no effect on root K+ (57). In contrast, Clough (94) found no
differences in leaf or stem K+ in A. marina when plants were grown in different dilutions
of seawater. The author noted, however, that the K+ concentration in the media increased
ninefold as the percentage of seawater increased from 0 to 100. Bail et al. (95) concluded
that NaCl  salinity produced a salinity-induced K+ deficiency in A. marina (Forsk.) Vierh.
by reducing the atrazine binding sites in isolated thyiakoids. This caused a loss of
functional photosystem II in the leaves of this mangrove species.

Although plants show high selectivity of Kf over Na+,  excessive amounts of K+
may be detrimental to some plants. Rush and Epstein (96) found that the wild tomato
species (Lycopersicon cheesmanii ssp. minor (Hook.) C. H. Mull.) could tolerate 200
mM Na+, but 200 mM K+ was toxic. On the other hand, the domestic and more salt
sensitive tomato species (Lycopersicon esculentum Mill.) showed the opposite behavior; it
could tolerate K+ but not Na+ at the same concentration. In regard to halophytes,  the
adverse effects of high K+/Na+ at high total salt concentrations have been observed in
Atriplex  amnicola, Atriplex inflata, Atriplex nummularia Lindl., Suaeda maritima (L.)
Dum., and Vigna radiata (97).

Despite the overwhelming amount of data that shows reduced uptake and transloca-
tion of K+ by plants grown in high-Na+ substrates, there are few data that show that the
addition of K+ to sodium-dominated soils improved plant growth or yield. Bernstein et al.
(5) found that increasing solution K+ from 0.4 to 2 mM did not affect leaf K+‘or yield of
corn. Bar-Tal  et al. (98) found an increase in the yield of corn grown in sandy soil, but
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the response was proportional at all salinity levels. These investigators concluded that
despite its beneficial effects on increasing K+/Na+ within the plant, K fertilization did not
reduce the deleterious effects of salinity. Using solution cultures, Muhammed et al. (99)
found that shoot and root growth of rice plants grown in 100 mM NaCl solutions were
increased when substrate K+ increased from 1 to 7 mM. In other nutrient culture studies,
Chow et al. (100) showed that differences in the shoot growth of spinach between plants
grown at low (50 mM NaCl) and high (250 mM NaCl) salinity at a given level of K+ can
be reduced when K+ is added to the highest salinity treatment. However, plant growth at
the low salinity level only doubled when K+ in the solution was increased from 0.01 to
10.0 mM. Under field conditions, soil solution K+ remains relatively low even after
fertilizer additions of K+. Therefore, it is difficult to imagine many situations in which
reasonable amounts of K+ added to the soil would completely correct Na+-induced  K+
deficiencies in plants suffering from this disorder.

CALCIUM
Calcium plays a vital nutritional and physiological role in plant metabolism. It is essential
in processes that preserve the structural and functional integrity of plant membranes (101),
stabilize cell wall structures, regulate ion transport, and control ion-exchange behavior as
well as cell wall enzyme activities (102). Because Ca2+  is readily displaced from its
extracellular binding sites by other cations, these functions may become seriously im-
paired by reduced Ca*+ availability. Root growth and function may be restricted by high
Na+/Ca*+  (81,103-106).  Solomon et al. (107) observed abnormal root morphology and
anatomy of pea (Pisum sativum L.) grown in nutrient cultures containing 120 mM NaCl  as
the sole salinizing salt. These “salinity induced” changes, characterized by curvature of
the root tip as well as constriction and thickening above the apex, were completely
reversed by the addition of 10 mM Ca’+ (108). Sodium-induced Ca*+  deficiencies have
notorious growth-distorting effects on developing leaves, as illustrated in several grass
species grown in solution cultures (109-l 11).

The presence of Ca*+ as the dominant cation in agricultural soils generally ensures
that the absolute Ca*+  level is not a primary growth-limiting factor. As salinity increases,
the requirements of plants for Ca*+ increases (I 12). In saline soils, contrasted with sodic
soils, Ca*+  concentrations usually increase as the total salt concentration increases. At the
same time, however, the uptake of Ca*+ from the soil solution may decrease because of
ion interactions, precipitation, and increases in ionic strength that reduce the activity of
Ca*+. These combined effects are at least partially responsible for reduced yields under
saline or sodic conditions (91,113-l 15). Therefore, in reference to Figure 1, the optimum
range is shifted to the right for most crops grown under saline conditions, particularly if
the solution is dominated by Na+ salts.

The critical Ca*+  requirement for plants has deen estimated as the ratio of soluble
Ca*+  to the total cations (Ca*+/TC)  rather than to the absolute concentration of Ca*+  in
the soil solution. Physiological disorders that are related to Ca*+  deficiency occur when
the Ca*+/TC  falls below a critical level (116,117). In the Solonetzic soils of the Canadian
prairie, ion imbalances result from high Na+ and low Ca*+  together with predominant
sulfate salinity. Severe Ca*+ deficiency in barley occurs in these regions when the
Ca2+/Mg2+ molar ratio or the Ca*+/TC  ratio is less than 0.15 (118). The critical Ca*+
requirement for the  optimum rate of extension of cotton root has been related to the  molar
Ca*+/TC  ratio (119). Later, the Ca*+/TC  ratio, expressed in terms of ion activity, was
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considered a more accurate measure of Ca*+ availability (120-122). However, it seems
preferable to distinguish specific ion competition, for example, Ca*+/Na+  and Ca*+/
Mg*+, rather than Ca*+iTC.

The Ca*+ITC  in the soil solution has been related to the Ca*+/TC  in saturated paste
extracts (91). Carter and Webster (123) used this relationship to predict plant-available
Ca*+  as well as Ca*+  accumulation in plant tissues. Critical levels of Ca*+  in barley and
wheat (63 mM kg-’ dry weight) and alfalfa (250 mM kg-’  dry weight) corresponded to a
Ca*+/TC  ratio of 0.10 in the soil extract.

Although NaCl  salinity reduced shoot Ca concentration in barley, this decrease was
not due to reduced influx of Ca*+ into the roots by the salinizing salts (124). Lynch and
Lauchli (124) proposed that sodium may inhibit the radial movement of Ca*+ from the
external solution to the root xylem by screening of cation-exchange sites in the apoplast.
Cramer et al. (90,125) concluded that the primary response to NaCl stress in cotton roots
is the displacement of membrane-associated Ca*+  by Na+, leading to increased mem-
brane permeability and to loss of K+/Na+ selectivity. The addition of 10 mM Ca*+  to the
saline cultures preserved membrane integrity and prevented leakage of K+. Exchange
constants, calculated from the relationship between the activities of Ca*+ and Na+ in
nutrient cultures and the equivalent fraction of Ca*+  and Na+ in corn shoots, indicated
that the cation uptake process is strongly selective for Ca*+  against Na+. As the activity
of Na+ in the substrate increases, however, the system becomes less discriminating and
the selectivity for Ca*+  is impaired (126).

Nutritional imbalances in salt-stressed cereals have been studied in isosmotic nutrient
solutions salinized with various molar ratios of Na+ and Ca*+.  This investigation
included corn (1 I I), rice (127),  and sorghum (1 l0), as well as wheat, barley, rye, and
oats (E. V. Maas and C. M. Grieve, unpublished data, 1984). The cereals show striking
intergeneric differences in their response to different Na+/Ca*+  molar ratios in cultures of
equal osmotic potential (OP). A salt stress OP = -0.6 MPa with Na+/Ca*+  = 52 reduced
the relative dry matter yield of wheat less than that of rye or oats. At -0.4 MPa, rice was
more sensitive at Na+/Ca*+  = 5 than corn.

In a comparative study of a cultivated barley and a wild barley variety that exhibits
higher salt tolerance, the wild species was able to maintain higher tissue concentrations of
calcium and was more effective at compartmentalizing Na+ in the root rather than the
shoot ( 128). This difference between barley species may partly explain why increasing the
Ca’+l(Ca*+ + Mg*+ + Na+)  ratio from 0.02 to 0.09 in the solution culture benefited
only the cultivated species. Wild barley (H. jubatum L.) populations also differ in their
response to salinity. Wang et al. (129) identified three ecotypes, two of which were more
tolerant of magnesium-sulfate salinity and high Na+ than the third. The investigators
attributed the enhanced growth of the tolerant ecotypes to their superior Ca*+  use
efficiency and their ability to restrict Na+ and Mg*+ translocation to the leaves.

Genotypes within a given cereal species may also vary in their susceptibility to Ca*+
disorders at high substrate Na+/Ca*+. Grieve and Maas (110) compared the response of
three sorghum cultivars and suggested that the Na+ tolerance of Hegari was related to the
efficiency of Ca*+ transport to the developing leaves. At Na+/Ca’+  = 34.6 and OP =
-0.40 MPa, many of the expanding blades of the sensitive cultivars NK 265 and NB 9040
were deeply serrated and tightly rolled, with withered, often necrotic tips. These symp-
toms have been associated with severe Ca*+  deficiency (130),  and this diagnosis was
confirmed  by mineral analysis. Yeo and Flowers (13 1) reported  that the elite breeding line
(IR 2 153) of rice was very unresponsive to external Ca *+ Shoot growth of this line was.
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not affected over a wide range (5-500) of Na+/Ca’+ ratios, and Ca2+  concentration had a
limited effect on NaCl uptake. In contrast, high Na+/Ca’+ inhibited shoot growth in two
rice cultivars (M9 and M201) developed for specific regions of California (127). Ca*+
deficiency symptoms were observed at OP -0.4 MPa and Na+/Ca’+ molar ratios of 198
and 78. Shoot growth improved and the Ca*+ disorder was eliminated when the Na+/
Ca2+ ratio was reduced to 17.8 (127). The shoot and root growth of the rice cultivar
KS282 was significantly influenced by external Na+/Ca*+  (99). Rolling and bleaching of
the young leaves occurred when the Na+/Ca*+ ratio exceeded 100. Muhammed et al. (99)
also attributed differences in root growth to an interaction between Na+/Ca*+  and
Na+/K+ ratios in the root media. Norlyn and Epstein (132) observed that triticale lines
differed in tolerance to high (500) Na+/Ca 2+ during emergence and germination. Emer-
gence of only one line improved when the Na+/Ca*+ was reduced to 37; the other lines
showed no effect of added Ca *+ Kingsbury and Epstein (133) contrasted the response of.
two wheat genotypes to isosmotic solutions that varied in ionic composition. One line was
highly resistant to Na+ toxicity and, in response to high external Mg*+/Ca*+.  showed
superior Ca*+ use efficiency.

Several studies (99,110) have shown that as the injured cereal leaves mature and
become less dependent on root pressure for their supply of water and nutrients, their Ca2+
demands are then met via increased transpiration rates. Eventually, the Ca*+  concentra-
tion in the older blades of salinized plants was as high as in those in the nonsaline controls.
The limited capacity of plants to regulate Ca*+ distribution internally in relation to the
demands of low-transpiring organs (leaves, fruits, and tubers) has been implicated in such
typical Ca2+-related  physiological disorders as blossom-end rot of tomatoes and peppers,
black heart of celery, and internal browning of lettuce (87,117) and artichokes (134).

Increased root permeability caused by a reduction in the availability of external Ca*”
may lead to increased Cl- uptake. Elevated internal Cl- concentrations have been associ-
ated with decreased shoot growth in several species, including cowpea (135),  tobacco
(136),  pigeon pea (83),  and Leucaena  1eucocephala (105,106).

Maintaining an adequate supply of Ca2+ in the soil solution is an important factor in
controlling the severity of specific ion toxicities (137). This is particularly important for
tree and vine crops, which are more prone to Na+ and Cl- injury than most annual crops.
In citrus, calcium was found to be effective at reducing the transport of both Na+ and Cl-
from the roots to leaves, thereby reducing foliar injury (138-140).

The importance of maintaining a balanced nutrient solution to optimize plant per-
formance of glycophytes under saline conditions has been known for over 80 years (see
Reference 141),  yet an alarming percentage of salinity studies conducted to date use NaCl
as the only salinizing salt. We must therefore emphasize that the use of extreme ratios of
Na+ and Ca*+  may introduce unique nutritional problems and result in misleading and
erroneous interpretations about plant response to salinity.

MAGNESIUM
Calcium is strongly competitive with Mg*+, and the binding sites on the root plasma
membrane appear to have less affinity for the highly hydrated Mg2+  than for Ca2+ (87).
Thus, high concentrations of substrate Ca2+ usually result in increased leaf Ca along with
a marked reduction in leaf Mg (142). Increased concentration of CaS04 in the nutrient
solution decreased MgZt in roots, stems, and leaves of L. leucocephala (106). Calcium-
induced Mg*+  deficiency has been observed in sesame (143),  and Carter et al. (118)
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found that barley growth was reduced as the Mg*+/Ca*+  ratio increased above 10. Both
photosynthetic rate and water use efficiency declined in salt-stressed corn (OP = -0.4
MPa) as the external Ca*+/Mg*+ ratio increased (144). Excessive leaf Ca concentrations
may interfere with CO2 fixation by inhibition of stroma enzymes, particularly those that
are Mg2+ activated (145).

For plants grown in seawater or dilutions of seawater, it is possible that nutrient
disorders could develop because of the high Mg*+/Ca*+ ratio. In most seawater composi-
tions, Mg*+/Ca’+ .i s  5:l on a molar basis. It has been known for over 30 years that
solutions with a Mg*+/Ca*+ ratio greater than 1 reduce the growth of corn and soybean
(146). In a more recent study, Mg salts reduced the root growth of eucalyptus more than
Na salts (147). Reduced root growth was associated with low Ca concentrations in the
root.

MICRONUTRIENTS

The concentrations of micronutrients in soil solutions, with the exception of Cl-, are low
(PM range) and depend on the physical and chemical characteristics of the soil. The
availability of most micronutrients depends on the pH and pE of the soil solution, as well
as the nature of binding sites on organic and inorganic particle surfaces. Consequently, the
relationship between salinity and trace element nutrition is complex (148). In saline and
sodic soils, the solubility of micronutrients (e.g., Cu, Fe, Mn, and Zn) is particularly low
and plants grown in these soils often experience deficiencies in these elements (149).
Nevertheless, the micronutrient concentration in plant shoots may increase, decrease, or
have no effect, depending upon the type of plant, tissue, salinity, micronutrient concentra-
tion, and environmental conditions. Zinc (Zn) concentration has been found to increase in
shoots of salt-stressed barley (148,150), bean (15 l), soybean, squash, tomato (152),  and
rice grain (153) but to decrease in corn (154) and mesquite (155). Salinity increased the
manganese (Mn) concentration in the shoots of barley (148,150), rice (153),  sugar beet
(156),  and tomato (152) but decreased its concentration in the shoots of barley (cv.
CM72)(  157),  squash (152),  pea (158),  and corn (154). In the study with sugar beet (156),
NaCl-CaC12  additions increased Mn in the saturated soil extract. Other investigators did
not find an effect of salinity on shoot Mn, but found that increasing the sodicity in
soil-grown maize had a significant reduction in shoot concentration (159).

Although differences w e   re found in the literature regarding the effect of salinity on
shoot Mn concentration in barley, the differences may be explained in part by the
composition of the salinizing salts (148). Saline solutions rich in divalent cations increase
shoot Mn concentration whereas a saline environment dominated by monovalent cations
reduces shoot Mn concentration.

Reports on the influence of salinity on the iron (Fe) concentration in plants are as
inconsistent as those that concern Zn and Mn concentration. Salinity increased the Fe
concentration in the shoots of pea (158),  tomato, soybean, squash (152),  and rice (153)
and decreased its concentration in the shoots of barley and corn (150,154). In other
investigations with barley, salinity had no effect on shoot Fe concentration, but at low Ca
salinity increased root Fe in certain Hordeum vulgare L. species (148). This was not
observed with foxtail barley (H. jubatum L.).

Although the influence of salinity stress on the micronutrient concentration in plants
is highly variable,  there is evidence that NaCl salinity may induce an Fe dcficicncy. In the
presence of 100-400  mM NaCl,  root cpidcrmal cells of Atriplex hastata L. and Atriplex
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hortensis L. developed features that are characteristic of transfer ceils, such as bladder-
shaped root hairs and thickened convolutions on the outer peripheral cell wall. Further
evaluation of these results showed that alternations were not a specific response to salinity
but were a symptom of Na+-induced iron deficiency (160).

SUMMARY

Plants acquire mineral nutrients from the root-substrate interface in their native environ-
ment. Glycophytes, normally salt-sensitive species that have evolved under conditions of
low salinity, have adapted mechanisms for absorbing nutrients from nonsaline soils. In
contrast, halophytes have evolved mechanisms that permit the selective uptake of nutri-
ents from saline soils. Saline soils may be characterized by low activity of nutrient ions
and by extreme ratios of Na+/Ca’+,  Na+/K+,  Ca2+/Mg2+,  and Cl-/NOj-  in the soil
solution. When glycophytes, which encompass most cultivated crops, are exposed to
saline conditions, nutritional disorders may develop. These disorders vary in their intensi-
ty and can differ among species as well as among cultivars within a species.

Plant performance, usually expressed as a crop yield or plant biomass, may be
adversely affected by disorders that result from nutrient deficiencies or imbalances. In the
field, additions of N and P have increased the growth of both glycophytes and halophytes,
provided that the plants were not experiencing severe salt stress. Relief of the more
growth limiting stress, salinity or nutrient deficiency, promotes growth more than relief of
the less limiting factor. Therefore, addition of a limiting nutrient may increase, decrease,
or have no effect on plant salt tolerance, depending on the severity of salinity stress.
Consequently. interpretation of plant salt tolerance expressed on a relative basis under
variable soil fertility can be misleading.

Plants grown in N- or P-deficient environments respond positively to additions of
these elements provided the plant is not experiencing severe salt stress. Salinity has been
found to reduce N and P accumulation in plants, although this effect may not be growth
limiting. This interaction partly explains why most plants do not respond positively to N
or P added above levels considered optimal in nonsaline conditions. In fact, P toxicities
can develop in certain salt-stressed plants if the P concentration in the substrate is too
high.

An overwhelming amount of evidence from laboratory studies indicates that Na+-
dominated soils or solutions reduce K+ and Ca2+ uptake by plants and/or affect the
internal distribution of these elements. Nevertheless, only a few studies show growth
increased by additions of these nutrients to sodic  or saline-sodic soils. In regard to K+,
this may be partly due to the large quantity of this nutrient element needed to correct the
problem. In regard to Ca’+, with the exception of Solonetzic soils, there are not many
areas where Ca2+  in the soil is deficiently low and Na+ is high.

Salinity disrupts the mineral nutrient acquisitions of glycophytes in two ways. First,
the ionic strength of the substrate can have direct effects on nutrient uptake and transloca-
tion. Evidence for this is salinity-induced P uptake and accumulation in certain plants and
cultivars. This is an osmotic rather than a specific ion effect and occurs regardless of the
type of salts used to reduce the osmotic potential of the root media. These effects have
been observed only on plants grown in nutrient solution and sand cultures. The second and
more common mechanism by which salinity disrupts the mineral nutrition of plants is the
direct  interaction of major ions in the substrate (i.e., Naf and Cl-)  on nutrient ion
acquisition and translocation within the plant. Major ions can influence nutrient absorp-
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tion by competitive interactions or by affecting ion selectivity of membranes. Examples of
these effects are Na+-induced Ca*+  and/or K+ deficiencies and Ca*+-induced Mg*+
deficiencies.

Salinity can also influence the mineral nutrition of plants by affecting the mobility of
a nutrient element within the plant (e.g., sodium’s effect on calcium) or by increasing the
nutrient requirement for that element in the cells. Furthermore, salinity can cause plants
that are deficient in a element to have a lower cellular tolerance for a specific ion.

In the area of salinity-mineral nutrition relations, halophytes have received less
attention than glycophytes. Nevertheless, some halophytes, despite their remarkable
ability to absorb nutrients selectively from solutions dominated by Na+ and Cl-, may also
exhibit symptoms of mineral imbalance and disorders.
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