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a b s t r a c t 

Rock permeability has been actively investigated over the past several decades by the geosciences com- 

munity. However, its accurate estimation still presents significant technical challenges, particularly in spa- 

tially complex rocks. In this short communication, we apply critical path analysis (CPA) to estimate per- 

meability in porous rocks from measured mercury intrusion porosimetry and electrical conductivity data. 

Theoretical estimations of various CPA-based models are then compared to experimental measurements 

using eighteen tight-gas sandstones. Except for two of the samples, we find permeability estimations per- 

formed with the Skaggs model (assuming pore diameter independent of its length) more accurate than 

other models, within a factor of two of the measured permeabilities. We discuss some plausible sources 

of the uncertainties. 

© 2016 Elsevier Ltd. All rights reserved. 
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1. Introduction 

Accurate estimation of permeability of porous rocks is still of

great interest, particularly in multi-phase flow and fluid transport

modeling as well as hydrocarbon production. Numerous empirical,

semi-physical and physically-based models have been proposed

to estimate permeability from other rock properties e.g., poros-

ity (e.g., Kozeny, 1927; Carman, 1937 ), grain-size distribution (e.g.,

Morrow et al., 1969; Koltermann and Gorelick, 1995, Porter et al.,

2013 ), mercury intrusion porosimetry (e.g., Katz and Thompson,

1986, 1987 ), electrical conductivity (e.g., Johnson et al., 1986; Ba-

navar and Johnson, 1987 ), and nuclear magnetic resonance (e.g.,

Timur, 1968 ; Banavar and Schwartz, 1987; Glover et al., 2006 ). 

Among theoretical frameworks developed to model permeabil-

ity, such as bundle of capillary tubes (e.g., Purcell, 1949; Childs

and Collis-George, 1950; Marshall, 1957; Xu and Yu, 2008 ) and

effective-medium approximations (e.g., Doyen, 1988; David et al.,

1990; Lock et al., 2004; Ghanbarian and Daigle, 2015 ), critical path

analysis (CPA) from percolation theory ( Ambegaokar et al., 1971;

Pollak, 1972 ) appears a reliable method, particularly in heteroge-

neous and disordered porous media ( Liang et al. 20 0 0; Hunt, 20 01;

Hunt and Gee, 2002; Arns et al. 2005; Bauget et al. 20 05a, 20 05b;

Sahimi, 2011; Hunt et al., 2014 ). Ambegaokar et al. (1971) argued

that fluid flow or transport in disordered media with a broad con-

ductance distribution is dominated by those with magnitudes that

are larger than some critical conductance, g c (corresponding to a
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ritical pore size), which is the smallest conductance among the

et of conductances, g ≥ g c , forming a sample-spanning cluster. In

ther words, g c is the smallest conductance along the path of least

esistance through the medium. According to CPA, other finite vol-

me fractions of the porous medium make a negligible contribu-

ion to the overall permeability. Therefore, those zones of low per-

eability may be eliminated from the medium, which would then

educe it to a percolation system ( Sahimi, 2011 ). 

In order to model permeability and electrical conductivity in a

orous medium, it is necessary to assume specific pore shape and

eometrical characteristics. Two common pore shapes presumed in

he literature are cylindrical and slit-shaped. The hydraulic ( g h ) and

lectrical ( g e ) conductances of a cylindrical pore of diameter d and

ength l filled with a fluid of viscosity μ and electrical conductivity

f σ w 

are respectively ( Banavar and Johnson, 1987 ) 

 h = 

πd 4 

128 μl 
∝ d γh (1)

nd, 

 e = 

πσw 

d 2 

4 l 
∝ d γe . (2)

Here γ h =4 and γ e =2, if d and l are independent. If pores

n the medium are self-similar, one may assume d ∝ l , and thus

h =3 and γ e =1 ( Katz and Thompson, 1986 ; Hunt, 2001; Hunt

t al., 2014 ). 

http://dx.doi.org/10.1016/j.advwatres.2016.04.015
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For slit-shaped pores of width w much narrower than its

readth b and length l Eqs. (1) and (2) change to ( Friedman and

eaton, 1998 ) 

 h = 

b w 

3 

12 μl 
∝ w 

γh (3) 

nd, 

 e = 

σw 

bw 

l 
∝ w 

γe (4) 

Similarly, γ h = 3 and γ e = 1 if w is independent of l , and γ h =2

nd γ e =0 if w ∝ l . 

Katz and Thompson (1986, 1987) were the first to apply criti-

al path analysis to relate permeability, k , to electrical conductiv-

ty and critical pore diameter. They assumed that in the porous

edium, cylindrical pore diameter d is linearly proportional to its

ength l ( d ∝ l ) and expressed hydraulic ( g h ) and electrical ( g e ) con-

uctances as g h ∝ d γh and g e ∝ d γe in which γ h =3 and γ e =1.

nalogously, one should expect γ h =4 and γ e =2, if d and l are

ndependent, e.g., fixed pore length in a pore-network model. 

The Katz and Thompson (1986, 1987) model is given by 

 = 

1 

c 

σb 

σw 

d 2 c (5) 

here σ b is bulk electrical conductivity, σ w 

is saturating fluid

lectrical conductivity, d c is critical pore diameter, and c is a con-

tant equal to 226 (hereafter, c KT ). Following Chatzis and Dul-

ien (1977) and de Gennes and Guyon (1978) , Katz and Thompson

1986) argued that the inflection point on the mercury intrusion

orosimetry curve corresponds to the critical pore diameter and

he saturation at which sample-spanning cluster first forms. In ad-

ition to the mercury intrusion porosimetry, estimating permeabil-

ty using Eq. (5) requires the electrical conductivity ( σ b / σ w 

=1/ F

here F is the formation factor), which may be estimated from

ercury intrusion ( Katz and Thompson, 1987 ) or water-expulsion

 Nishiyama and Yokoyama, 2014 ) porosimetry, if not measured. 

Eq. (5) is similar in form to the Johnson et al. (1986) perme-

bility model i.e., k = �2 /8 F in which � is a characteristic length

cale, a measure of dynamically connected pore sizes. Martys and

arboczi (1992) showed that both � and d c are good predictors

f permeability k in two-dimensional (2D) pore-network models.

articularly, Martys and Garboczi (1992) stated that, “In a random

ore structure, with a distribution of pore sizes, the flow will tend

o go more through the largest pore necks, decreasing the impor-

ance of the narrowest necks that tend to dominate the behavior

f periodic models.” Although Bernabé and Bruderer (1998) docu-

ented results similar to Martys and Garboczi (1992) in two di-

ensions, they found that flow pathways in broadly distributed

edia were not restricted to the backbone or the critical paths. For

ermeability modeling using critical path analysis in highly hetero-

eneous and disordered media see Shah and Yortsos (1996) . 

More recently, Arns et al. (2005) investigated relationships

sed to estimate permeability from pore size properties in

ontainebleau sandstones based on three-dimensional digitized

mages. They considered relationships based on the ratio of pore

olume to surface area, critical pore diameter (associated with

ercury intrusion porosimetry data), characteristic pore sizes as-

ociated with nuclear magnetic resonance relaxation time, T 2 , as

ell as mean survival time. Arns et al. (2005) reported that all

he investigated relationships provided good agreement with their

attice-Boltzmann simulations. However, permeability values esti-

ated based on critical pore diameter (and critical path analysis)

ere found to be the most reliable ( Arns et al., 2005 ). 

Banavar and Johnson (1987) revisited the Katz and Thompson

1986) model and found that the constant coefficient in Eq. (5) was

qual to 7.68 ×10 −3 ( c BJ =130.2), different from that obtained by
atz and Thompson (1986) ( c KT =226). The reason for such dis-

repancy is that while Banavar and Johnson (1987) maximized

he corresponding effective transport coefficient and assumed that

he electrical conductivity and/or permeability was proportional

o that maximum value, Katz and Thompson (1986) divided that

aximum value by the corresponding maximizing pore size (see

anavar and Johnson (1987) for further details). 

Following the results of Ty ̌c and Halperin (1989) on random re-

istor networks with widely distributed conductances, Le Doussal

1989) , and more recently Skaggs (2011) proposed the relationship

 = 

1 

32 

[
γh 

γe 

]−y 
σb 

σw 

d 
γh −γe 

c = 

1 

c 

σb 

σw 

d 2 c (6)

Le Doussal (1989) argued that the prefactor exponent

 = ν = 0.88 ( ν is the universal correlation length exponent from

ercolation theory) in three dimensions. However, subsequent

umerical simulations of critical path calculation of the conduc-

ivity on random resistor networks indicated that y < ν . Skaggs

2003) showed that the observed y < ν is due to the effects of

nite heterogeneity, not finite size, and found y = 0.74 ±0.01 by

eans of Monte Carlo simulations. 

The values of the Le Doussal (1989) and the Skaggs (2011) con-

tant coefficients (hereafter, c L and c S ), the numerical prefactor cor-

esponding respectively to y = 0.88 and 0.74 in Eq. (6) , under differ-

nt circumstances are given in Table 1 . As can be observed, the c L 
alue differs from c KT by a factor of 3 or 4, depending on the re-

ationship between pore diameter d and its length l . We also list

ther values of c proposed by Banavar and Johnson (1987) and

riedman and Seaton (1998) in Table 1. 

To the best of the authors’ knowledge, neither the Le Doussal

1989) nor the Skaggs (2011) model has been evaluated experi-

entally in porous rocks. Therefore, the main objective of this pa-

er is to compare the permeability estimated from the measured

ercury intrusion porosimetry and the electrical conductivity data

sing CPA-based models e.g., Katz and Thompson (1986) , Banavar

nd Johnson (1987) , Le Doussal (1989) , and Skaggs (2011) with the

easured value. 

. Materials and methods 

In order to compare CPA-based models in their estimation of

ermeability, 18 tight-gas sandstones were selected for the study.

amples were cut from whole core retrieved in a tight-gas sand-

tone formation located in East Texas. Table 2 summarizes the

alient properties of each rock sample. In all samples, permeabil-

ty was measured by gas flow and corrected (extrapolated to in-

nite pressure) by the Klinkenberg method (1941) . Mercury in-

rusion porosimetry was used to determine the pore throat-size

istribution of each sample. Following Katz and Thompson (1986,

987) , we determined the critical pore diameter from the inflection

oint on the mercury intrusion porosimetry curve (see Fig. 1 from

atz and Thompson, 1986 ) assuming that pore shape is cylindrical.

or this purpose, we fit a spline to the measured mercury intrusion

orosimetry data and numerically calculated the inflection point in

ATLAB. Such a method, however, failed to distinguish the critical

ore diameter correctly due to local scatter in mercury intrusion

orosimetry measurements in 5 samples denoted in Table 2 . We

how the cumulative pore volume, V, and the difference in pore

olume, �V , as a function of pore diameter, d, for samples 2 and

8 in Fig. 1 . We observe that the �V - d relationship for sample 2 is

mooth, while it is scattered for sample 18, particularly around the

eak, which causes uncertainties in the d c determination. Follow-

ng Hofer et al. (2011) , in those 5 samples we instead fit the van

enuchten capillary pressure curve model ( van Genuchten, 1980 )
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Table 1 

Values of constant c in Eqs. (5) and ( 6 ) reported in the literature. 

Reference Model y γ h γ e 1/ c c ∗ RMSLE 

Katz and Thompson (1986) 1 - 3 1 4 .42 ×10 −3 226 0 .91 

Banavar and Johnson (1987) 2 - 3 1 7 .68 ×10 −3 130 .2 0 .71 

Le Doussal (1989) 3 0 .88 3 1 1 .19 ×10 −2 84 .1 0 .56 

4 0 .88 4 2 1 .70 ×10 −2 58 .9 0 .49 

- 0 .88 3 .5 1 .5 1 .48 ×10 −2 67 .5 - 

Skaggs (2011) 5 0 .74 3 1 1 .39 ×10 −2 72 .2 0 .53 

6 0 .74 4 2 1 .87 ×10 −2 53 .5 0 .47 

Friedman and Seaton (1998) 7 - - - 3 .13 ×10 −2 32 0 .44 

∗ c represents a constant coefficient in each model e.g., c KT is the Katz and Thompson, c BJ is the 

Banavar and Johnson, c L is the Le Doussal, c S denotes the Skaggs , and c FS is the Friedman and Seaton 

numerical prefactor in the context. 

Table 2 

Selected properties of the tight-gas sandstone samples used in this study. 

Sample Porosity φ Formation factor F = σw /σb Gas permeability k ( μm 

2 ) Critical pore diameter d c ( μm) 

1 0 .068 343 .6 1 .09 ×10 −5 0 .39 

2 0 .074 319 .0 1 .38 ×10 −5 0 .47 

3 0 .086 258 .7 2 .96 ×10 −5 0 .60 

4 0 .072 254 .7 2 .47 ×10 −5 0 .32 

5 0 .089 224 .3 3 .95 ×10 −5 0 .73 

6 0 .079 271 .5 1 .78 ×10 −5 0 .56 

7 0 .069 305 .6 1 .78 ×10 −5 0 .57 

8 0 .077 291 .0 2 .07 ×10 −5 0 .61 

9 0 .067 402 .2 6 .91 ×10 −6 0 .35 ∗

10 0 .057 331 .0 2 .96 ×10 −6 0 .25 ∗

11 0 .083 231 .6 1 .28 ×10 −5 0 .51 

12 0 .084 255 .6 8 .88 ×10 −6 0 .39 

13 0 .043 809 .3 1 .18 ×10 −6 0 .20 ∗
14 0 .073 293 .2 4 .93 ×10 −6 0 .28 

15 0 .073 242 .5 2 .57 ×10 −5 0 .42 

16 0 .050 488 .6 3 .85 ×10 −5 0 .13 ∗
17 0 .062 294 .7 8 .88 ×10 −6 0 .30 

18 0 .069 333 .9 1 .97 ×10 −6 0 .09 ∗
∗ The critical pore diameter was determined from the inflection point by fitting the van Genuchten capillary pressure 

curve model to the mercury intrusion porosimetry data. 

Fig. 1. Cumulative volume V of pores invaded by mercury (left) and the difference in pore volume �V (right) as a function of pore diameter for samples 2 and 18. 
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Fig. 2. Measured permeability as a function of the critical pore diameter for all 

eighteen samples of tight-gas sandstone. Blue circles identify outliers, i.e. samples 

16 and 18. (For interpretation of the references to color in this figure legend, the 

reader is referred to the web version of this article.) 
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a  
nd then determined the inflection point using the approach pro-

osed by Dexter (2004 , Eq. A8). 

Bulk electrical conductivity σ b was measured under fully sat-

rated conditions. The measured electrical conductivity σ w 

of the

aturating fluid was then used to normalize the electrical conduc-

ivity and determine the formation factor F = σ w 

/ σ b . From the

easured electrical conductivity-saturation curve (not shown), it

as found that the effect of surface conduction was negligible in

hese rocks. 

In order to compare statistically the accuracy of the CPA-based

odels in the estimation of permeability, the root mean square

og-transformed error (RMSLE) parameter was determined as fol-

ows 

MSLE = 

√ 

1 

N 

N ∑ 

i =1 

[ log ( k cal ) − log ( k meas ) ] 
2 

(7) 

here N is the number of values, and k cal and k meas are the calcu-

ated (estimated) and measured permeabilities, respectively. 

. Results and discussion 

In this section, we first investigate the correlation between

easured permeability and calculated critical pore diameter from

ercury intrusion porosimetry. We then compare the estimated

ermeability by different CPA-based models from mercury intru-

ion porosimetry and electrical conductivity data to the measured

alue on 18 tight-gas sandstones. 

Fig. 2 shows the measured permeability k as a function of the

alculated critical pore diameter for 18 rock samples. We observe

hat when samples 16 and 18 are excluded, k is relatively highly

orrelated to d c , with correlation coefficient R 

2 =0.72. Although

here are scatters, the exponent 2.13 of the power law fit to the ex-

erimental data is not greatly different from the theoretical value

f 2 (see Eqs. (5) and (6) ). Katz and Thompson (1987) stated that

he largest error in the critical pore diameter calculation may be

ntroduced by injection rates that are too fast. As discussed and

hown in Fig. 1 , we also found that a sharp increase in the cu-

ulative pore volume during mercury intrusion porosimetry (see

ample 18 in Fig. 1 ) resulted in imprecise d c determination, partic-

larly in samples 16 and 18. 

The effect of flow rate and flow dynamics, i.e. the history and

he rate of saturation change on the (mercury intrusion) capillary

ressure curve, particularly at low water saturations, and residual

aturation (or critical volume fraction for percolation) has been

ell documented in the literature (see e.g., Hassanizadeh et al.
2002); Hou et al. (2012) ; and references therein). Using concepts

rom critical path analysis and fractal porous media, Ghanbarian-

lavijeh and Hunt (2012 ; see their Eq. (5) ) proposed the following

quation to determine the critical pore diameter from pore space

roperties: 

 c = d max 

[
1 − φ

β
S wc 

] 1 
3 −D 

(8) 

here d max is maximum accessible pore diameter in the porous

edium, φ is porosity, β is pore-solid fractal model parameter

haracterizing the pore space (theoretically φ < β < 1), D is pore-

olid interface fractal dimension ( D < 3), and S wc is critical (also

nown as residual or irreducible) water saturation. In Eq. (8) for

iven φ, β , d max , and D values, the higher the S wc , the smaller the

ritical pore diameter is. 

According to the results of Kibbey and his coworkers ( Hou et al.,

012; Naghavi and Kibbey, 2014; Kibbey et al., 2016 ), the higher

he flow rate the greater the critical (residual) water saturation

see Fig. 1 in Naghavi and Kibbey (2014) ), and consequently, based

n Eq. (8) , the smaller the critical pore diameter, in agreement

ith Katz and Thompson (1987) . As a result, one should expect

ritical pore diameter to be flow rate dependent, if estimated from

mercury intrusion) capillary pressure curve. Underestimating d c is

robably the main reason why the permeability of samples 16 and

8 is considerably underestimated as we show below. 

Because the theoretical relationship between k and d c ( k ∝ d 2 c )

as experimentally confirmed (see Fig. 2 ), one should therefore

xpect that the main factor that may cause uncertainties in per-

eability estimation is the constant c in Eqs. (5) and ( 6 ). Conse-

uently, the scatter in all permeability estimations compared to ex-

eriments would be identical (i.e., the different theoretical formu-

ations merely represent parallel shifts in the comparisons of es-

imated vs. measured permeability values), because we determine

ormation factor ( F = σ w 

/ σ b ) and critical pore diameter in the same

ay for all CPA-based models. 

Fig. 3 compares the permeability estimations from various mod-

ls listed in Table 1 , specifically Katz and Thompson (1986) , Le

oussal (1989) , and Skaggs (2011) , to the measurements. As shown

n Fig. 3 , the Katz and Thompson (1986) model (model 1) substan-

ially underestimated k , although Katz and Thompson (1986) em-

hasized that their model estimated permeability in sandstones

nd a few carbonates well. Comparison of the RMSLE values sum-

arized in Table 1 indicates that the Katz and Thompson model

s the least accurate one among those studied here. Results are

onsistent with the results of Kamath et al. (1992) . They estimated

ermeability from measured mercury intrusion porosimetry using

he Katz and Thompson (1987) model and found substantial per-

eability underestimations. 

The Katz and Thompson (1986) model was also used to es-

imate permeability in cement-based materials (see Halamickova

t al. (1995) and references therein). Halamickova et al. (1995) re-

orted that the Katz and Thompson (1986) relationship was gen-

rally not valid for cement-based porous media. They stated that

he agreement between estimations and measurements could be

omewhat improved by using a constant (e.g., 180) other than the

alue of 226 originally suggested by Katz and Thompson (1986,

987) , consistent with the obtained results in this study. We

hould, however, point out that Halamickova et al. (1995) exper-

mentally found k ∝ d 3 . 35 
c (with d c determined from mercury intru-

ion porosimetry), while permeability is theoretically related to the

ritical pore diameter raised to the power of two (see Eqs. (5) and

6) ). Such a large difference in the exponents (3.35 vs. 2) might be

ne of the reasons why Halamickova et al. (1995) underestimated

ermeability remarkably. One should note that, from a dimensional

nalysis viewpoint, any exponent but 2 leads to permeability with
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Fig. 3. Logarithm of the estimated permeability using various models (see Table 1 for details) vs. the measured one. Table 1 summarizes the root mean square log- 

transformed error (RMSLE) for each model. Blue circles identify outliers, i.e. samples 16 and 18. (For interpretation of the references to color in this figure legend, the 

reader is referred to the web version of this article.) 
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units different from (length) 2 and is not physically supported un-

less a length-dependent numerical prefactor is included in Eqs.

(5) or (6) to yield length-squared units for permeability. 

Fig. 3 also shows that models 2, 3, and 5 systematically under-

estimated k , while models 4 and 6 satisfactorily estimated k mostly

within a factor of two of the measurements. Interestingly, both

models 4 and 6 assume that the pore diameter d of the pore space

network is independent of its length l (i.e., γ h =4 and γ e =2). By

contrast, models 3 and 5, which mainly underestimated permeabil-

ity, assume pore diameter linearly related to its length (i.e., γ h =3

and γ e =1). Results indicate d independent of l is more realistic

in tight-gas sandstones studied here, and as can be deduced from

RMSLE values reported in Table 1 , among models 1 to 6 the Skaggs

(2011) model with y = 0.74, γ h = 4 and γ e = 2 (model 6) estimated

permeability more accurately than others. 

Based on critical path analysis, Friedman and Seaton (1998) as-

sumed that permeability and electrical conductivity are only af-
ected by their critical conductances and proposed a model sim-

lar to Eq. (5) with c = 32 (see their Eq. 14). Consequently, in

heir framework, the numerical prefactor c FS is equal to 32, a

alue substantially less than 226 proposed by Katz and Thompson

1986, 1987) , and considerably less than those values reported in

able 1 . The reason for such large discrepancies is that Friedman

nd Seaton (1998) simply related permeability to electrical con-

uctivity through their critical conductances (i.e., g h c = π r 4 c / 8 μl

nd g e c = πσw 

r 2 c /l in which r c is critical pore radius), while Katz

nd Thompson (1986, 1987) took into account the nontrivial ef-

ect of connected path. Katz and Thompson (1987) stated that,

The percolation model properly weights the importance of the

rst connected path of large pores to the total conductivity. That

eighting is reflected in the value of the constant 1/226.” The ef-

ect of such weighting factor was also considered by Banavar and

ohnson (1987) , Le Doussal (1989) , and Skaggs (2011) . Nonethe-

ess, there exists numerical evidence in the literature (see e.g.,
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ernabé (1995) ) indicating that the Friedman and Seaton

1998) model i.e., k = d 2 c / ( 32 F ) may estimate permeability accu-

ately in two-dimensional pore-network models. Surprisingly, nu-

erical simulations performed on digital rock models derived from

ifferent types of rocks, e.g. carbonate, sandstone, consolidated and

nconsolidated also support a constant coefficient as low as 32

 Bauget et al., 2005a, 2005b; Knackstedt et al., 2006 ). More specif-

cally, Bauget et al. (2005b) reported c = 14, 24, 29, 25 for carbon-

tes, sandstones, consolidated and unconsolidated rocks, respec-

ively, with an average value of 26. 

Comparison of the estimation of the Friedman and Seaton

1998) approach (model 7) to the experiments shown in Fig. 3 in-

icates that their approach overestimates permeability remark-

bly in tight-gas sandstones. Although comparison of the RM-

LE values of models 6 and 7 shows that the Friedman and

eaton (1998) model estimates permeability slightly better than

he Skaggs (2011) model, we should point out that such results

re mainly due to better k estimation for samples 18, and espe-

ially 16, whose large error mainly contributes to the RMSLE value.

xcluding these two samples from the error calculations resulted

n RMSLE = 0.18 and 0.24 for model 6 and 7, respectively, which

eans that the Skaggs (2011) model with y = 0.74, γ h = 4 and

e =2 estimates permeability more precisely than the Friedman

nd Seaton (1998) model. 

. Conclusions 

We implemented the concept of critical path analysis (CPA)

rom percolation theory to estimate permeability from electrical

onductivity and mercury intrusion porosimetry data. Various CPA-

ased models proposed in the literature were evaluated using

ighteen rock samples. Results indicate that the inflection point

f the mercury intrusion porosimetry curve estimates the criti-

al pore diameter reasonably well. However, for two samples the

stimations were inaccurate. Comparison of the calculated to the

easured permeabilities indicate that the Skaggs (2011) model,

q. (6) with y = 0.74, γ h = 4 and γ e = 2, estimates k more accu-

ately than the Le Doussal (1989) model, Eq. (6) with y = 0.88,

h = 3 and γ e = 1, as well as the Katz and Thompson (1986) model,

q. (5) with c KT =226. Results also indicate that, generally speak-

ng, in tight-gas sandstones pore diameter independent of pore

ength could be a more reliable assumption than pore diameter

inearly proportional to its length, although such a dependency be-

ween pore length and diameter might vary from one rock sample

o another. 
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