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Despite decades of research in soil mapping, characterizing the spatial variability of soil salinity across large re-
gions remains a crucial challenge. This work explores the potential use of Landsat 7 (L7) satellite reflectance
data (30 × 30 m resolution) to facilitate salinity mapping. Reflectance data spanning a seven-year period
(2007–2013) were obtained for western San Joaquin Valley, California (ca. 1.5 × 106 ha), over five soil Orders
(Aridisols, Entisols, Inceptisols, Mollisols, and Vertisols). Two ground-truth datasets were considered: 267 direct
measurements of salinity (one per L7 pixel) from soil samples (ECe), and 4891 indirect salinity values (ECe⁎) es-
timated from the relationships of ECe with geospatial (on average 16 per L7 pixel) electromagnetic induction
measurements. The ECe⁎ ground-truth datasetwas characterized by stronger relationshipwith the L7 reflectance,
with themulti-year averages of the L7 data showingR2 up to 0.43. The correlations between L7data and ECe⁎were
significantly influenced by rainfall (stronger in dry years than in rainy years), soil properties (weaker in finer
soils), and crop type (stronger when soil salinity was over crop stress tolerance threshold). The results suggest
that a fusion of the L7 multi-year reflectance data with information on meteorological conditions, crop type,
and soil texture could lead to a reliable salinity prediction model for the entire western San Joaquin Valley.
Land resource managers, producers, agriculture consultants, extension specialists, and Natural Resource Conser-
vation Service field staff are the beneficiaries of regional-scale maps of soil salinity.

Published by Elsevier B.V.
1. Introduction

Soil salinization diminishes the productivity of irrigated farmlands
throughout the world (Ghassemi et al., 1995; Ivits et al., 2013). Of the
cultivated lands worldwide, about 0.34 × 109 ha (23%) are estimated
to be saline and another 0.56 × 109 ha (37%) are estimated to be sodic
(Tanji and Wallender, 2012). In actuality, these estimates are educated
guesses at best as no reliable inventories of soil salinity exist due to
the dynamic and complex spatial and temporal nature of salinity,
which make measurements at regional scale problematic. The available
regional maps are often qualitative or unreliable (Lal et al., 2004; Lobell,
2010), and, therefore, provide little useful information for producers,
land and water resource managers, extension specialists, or policy and
decision makers. Methods of quantitatively mapping and monitoring
soil salinity at regional to global scales are essential to provide land
and water resource managers with the information needed to make
recommendations to decision makers faced with policy decisions
responding to climate pattern changes and increased food demands
o@ars.usda.gov (E. Scudiero).
that require alternative water (e.g., reuse of degraded water) and land
(e.g., reclamation of non-productive saline-sodic soils) sources.

Agriculturally rich areas, such as California's San Joaquin Valley, are
economically impacted with lost revenues of tens to hundreds of mil-
lions of dollars each year due to reduced crop yield from salinity
(Johnston et al., 2012). The west side of the San Joaquin Valley (WSJV)
is particularly susceptible to the accumulation of salinity due to shallow
water tables and native levels of salts (Letey, 2000). Maps inventorying
salinity and monitoring the spatio-temporal changes in salinity for the
WSJV are vital to the management of salinity and allocation of limited
water resources, particularly during recurring periods of drought. Re-
cent advances in the use of satellite imagery (Metternicht and Zinck,
2003; Caccetta et al., 2010; Furby et al., 2010; Lobell et al., 2010; Singh
et al., 2010) and electromagnetic induction (Corwin and Lesch, 2014)
have made positive strides in regional-scale salinity assessment.

Ground-based geospatial measurements of apparent electrical con-
ductivity (ECa), from electromagnetic induction, can be obtained rela-
tively quickly and can be used as a proxy for soil salinity (Corwin and
Lesch, 2013). Typically, for a field-scale (i.e., tens of hectares) salinity as-
sessment a small number of soil salinity measurements determined
from electrical conductivity of the saturation extract (ECe) are made in
conjunction with a larger ECa survey so that a relationship between
ECa and ECe can be determined (Lesch et al., 1992; Triantafilis et al.,
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2000). Corwin and Lesch (2014) proposed a spatial linear regression
technique to describe the relationships between salinity and ECa,
based on the analysis of covariance, over very large areas (i.e., tens
of thousands of hectares). Once such a relationship is established, a
unique regression slope can be used throughout a region, whereas the
intercept values would vary at a smaller scale (e.g., field scale), reducing
(up to the 60%) the number of soil samples needed to map an entire
region.

The size of an area that can be surveyed using ground-based instru-
mentation is, however, limited due to practical considerations, which
leads to consideration of remote sensing. There is great potential in
the use of remote sensing for assessing and mapping soil salinity
(Lobell, 2010; Allbed and Kumar, 2013). In agricultural areas, the most
accurate quantitative remote sensing salinity estimations across a re-
gional scale have been achieved by studying crop canopy reflectance
(Lobell et al., 2010). Good results have also been obtained studying
bare-soil reflectance, but mainly on lands with very high salinities that
cannot be tolerated by most crops (Metternicht and Zinck, 2003;
Allbed and Kumar, 2013). Canopy reflectance has been used to
represent crop status throughout the growing season and to predict
yield (Mulla, 2013). The intra-annual variations in crop reflectance
depend on factors influencing plant growth through each year, and
are, therefore, a means of monitoring vegetation health rather than dis-
criminating between different stress types (Scudiero et al., 2014). Nev-
ertheless, previous studies showed that landscape features that are
relatively stable in time (such as soil salinity) can be emphasized
using multi-year reflectance data (Lobell et al., 2010). In fact, using
multiple-year satellite data generally improves the reflectance–salinity
relationships compared to those observed for a single-year (Lobell
et al., 2007, 2010; Furby et al., 2010; Dang et al., 2011; Scudiero et al.,
2014). Scudiero et al. (2014) showed that that areas affected by soil sa-
linity are generally characterized by lower temporal variability of cano-
py reflectance than areas with healthy vegetation, or areas suffering
from other stresses that are less stable in time (e.g., water stress,
pests…). The research of Lobell et al. (2010) indicated that the multi-
year analysis of MODIS (National Aeronautics and Space Administration
Agency, USA) reflectance integrated by information on crop cover, could
explain large portions (up to 53%) of the spatial variability of soil salinity
in the Red River Valley, North Dakota andMinnesota, USA. Unfortunate-
ly, MODIS data has very coarse spatial resolution (250 × 250 m),
which does not generally allow proper land management at the sub-
field scale.

In the United States, regional studies at spatial resolutions high
enough to be used by producers (i.e., field or sub-field scale) have not
been carried out using remote sensing data. Canopy reflectance obtain-
ed from the Landsat 7 (L7) satellite sensor (National Aeronautics and
Space Administration Agency and US Geological Survey, USA) could
be potentially used for this purpose as characterized by moderately
high spatial resolution (900 m2). In other countries L7 surface reflec-
tance has been used for salinity assessment by various authors
(e.g., Furby et al., 2010; Taghizadeh-Mehrjardi et al., 2014) in the past
years, often on soils characterized by very high salinity values. In the
USA, to our knowledge, the multispectral data from the L7 satellite has
not been tested for use in soil salinity assessment on agricultural land,
especially at low and moderate salinity levels, where most crops can
still grow.

The objective of this study was to explore the use of multi-year
Landsat 7 canopy reflectance data for regional-scale salinity assessment
in the WSJV. To do so, reflectance–salinity relationships were analyzed
over a 7-year period at regional and field scales, using the six Landsat
7 spectral bands and selected vegetation indices. Additionally, the
study aimed to understand the spatio-temporal variability of the rela-
tionship between canopy reflectance and soil salinity, and to identify
possible explanatory variables for a salinity assessment model utilizing
L7 reflectance and other ancillary data, such as information onmeteoro-
logical conditions and soil type.
2. Materials and methods

2.1. Western San Joaquin Valley

The Central Valley of California, which includes the San Joaquin Val-
ley, the Sacramento Valley, and the Sacramento-San Joaquin Delta, pro-
duces about 25% of USA's table food on only 1% of the nation's farmland
(Cone, 1997). The San Joaquin Valley lies south of the Sacramento–San
Joaquin River Delta in California's Central Valley stretching 354 km in
length and 64–97 km in width (Fig. 1a). Irrigated land comprises 2.3
× 106 ha of the San Joaquin Valley. Saline and saline–sodic soils are es-
timated to cover 8.9 × 105 ha in the San Joaquin Valley, of which most
are found in the WSJV (Backlund and Hoppes, 1984). The major crops
grown include grapes, cotton, nuts, citrus, garlic, tomatoes, and alfalfa.
Cattle and sheep ranching and dairy farming are also important to the
valley's agricultural productivity. The soils of the WSJV are derived
from alluvium originating from the coastal mountains. The alluvium
contains high concentrations of salts since the coastal mountains were
once below sea level and uplifted to their present state (Letey, 2000).

The selection of theWSJV as the study site was based on two factors:
(i) the tremendous agricultural productivity of this region and the im-
pact that salinity has on that productivity and (ii) the need for a current
reliable inventory of salinity to enable water resource managers to
make informed water and salinity management decisions, particularly
during droughts.

Twenty-two fields across theWSJVwere selected (Fig. 1) to provide
ground-truth soil salinity data.

2.2. Landsat 7 Surface Reflectance Climate Data Record

The Landsat 7 (L7) satellite sensor (National Aeronautics and Space
Administration Agency and US Geological Survey, USA) provides reflec-
tance imagery with a 30 × 30 m resolution over six spectral bands,
namely: blue (B, 450–520 nm), green (G, 520–600 nm), red (R,
630–690 nm), near-infrared (NIR, 770–900 nm), shortwave infrared 1
(IR1, 1550–1750 nm), and shortwave infrared 2 (IR2, 2090–2350 nm).
The Landsat 7 Climate Data Record (CDR) surface reflectance was used
in this study. The L7 CDR is atmospherically corrected through the
Landsat Ecosystem Disturbance Adaptive Processing System (LEDAPS)
according to Masek et al. (2006). The WSJV is covered by five L7 acqui-
sition areas (Fig. 1). Scenes were obtained from January 2007 through
December 2013. A total number of 366 scenes with cloud coverage
b10% were considered. The seven years of L7 data consisted of about
13–27 cloudless scenes per year over each ground-truth study site
(Table 1). Most of the data was available for the spring, summer, and
early fall months, whereas less than 23% of the scenes were from the
months of January, February, March, November, and December.

Several vegetation indices were calculated using the L7 spectral
bands as suggested by Mulla (2013), Li et al. (2013), and Jiang et al.
(2008). Five indices were selected because of their past performances
and popularity in the literature. The selected indices were (Table 2):
Normalized Difference Vegetation Index, NDVI (Rouse et al., 1973); En-
hanced Vegetation Index, EVI (Huete et al., 2002), where the aerosol
and soil correcting parameters g, c1, c2, and l are set to 2.5, 6, −7.5,
and 1, respectively; Salinity Index, SI (Aldakheel et al., 2005); Green At-
mospherically Resistant Vegetation Index, GARI (Gitelson et al., 1996),
where γ = 0.9 is a parameter that improves atmospheric correction;
and a new index developed in this study, the Canopy Response Salinity
Index, CRSI.

The NDVI is well-known and widely used in remote sensing studies
(Jackson et al., 2004; Jiang et al., 2008). Lobell et al. (2010) similarly
found that the EVI could describe up to half of the spatial variability in
soil salinity in a regional-scale salinity assessment using MODIS data.
The SI has also been found useful for predicting soil salinity and sodicity
(Aldakheel et al., 2005; Odeh and Onus, 2008). The GARI was formulat-
ed to enhance the sensing of green vegetation (Gitelson et al., 1996) and



Fig. 1.Map of California's San Joaquin Valley. The western San Joaquin Valley (WSJV) is highlighted with hatch marks. The squares represent the Landsat 7 coverage over the WSJV. The
location of the 22 study sites is shown in the detailed WSJV map (right).
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proved to be useful for crop coverage assessment studies (Vina et al.,
2004). Finally the CRSI was formulated to monitor plant fitness using
all the visible and near-infrared bands. Like many vegetation indices
(Jiang et al., 2008), the CRSI was formulated to highlight the small
peak of reflectance typically observed in the 400–500 nm wavelengths
and the sudden change in reflectance occurring between red and
near-infrared wavelengths. The formulation of the index was empirical,
and CRSI is not associated with any plant physiological property, but
with general plant health.

The L7 Scan Line Corrector (SLC) failed in May 31, 2003. The stripes
of the L7 SLC-off were masked and the L7 data over each study field
were stacked (average) for each entire year similarly to Roy et al.
(2010). The yearly L7 mosaics were then averaged over the 7-year
time span according to Lobell et al. (2010). Temporal variability maps
of the L7datawere also computed according to Eq. (1), as originally pro-
posed by Tweed et al. (2007) when measuring the temporal variations
of NDVI:

σ Uð Þ j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N−1
�
XN
i¼1

Ui−Umeanð Þ2
vuut ð1Þ
Table 1
Average number of cloudless (b10% cloud coverage) Landsat 7 Climate Data Record scenes ava

Year Average number of cloudless Landsat 7 Climate Data Record scenes available

Yearly Jan. Feb. Mar. Apr. May

2007 15.9 0.8 0.6 0.3 2.3 1.5
2008 17.8 0.0 1.0 1.0 2.0 1.5
2009 15.5 1.0 1.6 1.0 1.2 1.8
2010 13.9 0.0 0.1 0.0 1.7 1.4
2011 14.4 0.0 0.1 0.7 0.8 0.6
2012 13.3 1.5 1.5 0.0 1.1 0.7
2013 26.6 0.9 1.8 0.4 2.4 2.4
where σ is the temporal variation of the variable U, calculated at each
cell j, over N (=7) years; and Umean and Ui are the 7-year average and
1-year average (mosaic) on year i, respectively.
2.3. Ground-truth datasets

Fig. 1b shows the location of the twenty-two fields that were select-
ed to provide ground-truth soil salinity data. The fields were of various
sizes (total area 542 ha, average 24.1 ha, minimum 2.3 ha, and maxi-
mum 63.0 ha).

In 2013, the fields were surveyedwith intensive electromagnetic in-
duction (EMI) geospatial readings using an EM38 Dual Dipole (Geonics
Ltd., Mississauga, Ontario, Canada) sensor connected to a GPS and
mounted on a nonmetallic sled following the protocols given by
Corwin and Lesch (2013). The EM38 measured soil apparent electrical
conductivity (ECa) at 41,779 locations over the 22 fields (150 to
13,400 readings per field, at an average density of ca 175measurements
per ha−1), for both the 0–0.75 (ECaH) and 0–1.50 (ECaV)m soil profiles.

The ECa readings were analyzed using the ESAP software package
(Lesch et al., 2000; Lesch, 2005): the soil sampling scheme delineation
was carried out according to the local variations in ECa across a field
ilable per field in the 2007–2013 time frame.

per field

Jun. Jul. Aug. Sept. Oct. Nov. Dec.

1.9 1.4 1.4 3.3 1.4 0.1 1.0
2.5 2.0 2.5 1.9 2.6 0.8 0.0
0.9 1.7 1.1 1.3 2.3 1.6 0.1
1.9 2.5 1.9 2.1 0.7 1.5 0.1
1.5 3.1 2.6 2.5 1.0 0.1 1.5
1.9 1.5 1.2 1.5 1.5 0.6 0.2
3.0 2.4 1.6 3.3 2.7 3.1 2.6

image of Fig.�1


Table 2
Vegetation Indices evaluated in the study.

Index Formulationa

Normalized Difference Vegetation Index NDVI ¼ NIR−Rð Þ
NIRþRð Þ

Enhanced Vegetation Index EVI ¼ g � NIR−Rð Þ
NIRþc1�R‐c2�Bþlð Þ

Salinity Index SI ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
G� R

p

Green Atmospherically Resistant Vegetation Index GARI ¼ NIR− Gþγ� B−Rð Þ½ �
NIRþ Gþγ� B−Rð Þ½ �

Canopy Response Salinity Index CRSI ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NIR�Rð Þ− G�Bð Þ
NIR�Rð Þþ G�Bð Þ

q

a Landsat 7 spectral bands: blue (B), green (G), red (R), near-infrared (NIR), infrared
1(IR1), and infrared 2 (IR2). Aerosol and soil correcting parameters: g, c1, c2, l, and γ.

Table 4
Mean, range, and standard deviation for 267 soil sampling locations for soil salinity (ECe),
percent water content on a gravimetric basis (WC), saturation percentage (SP), pH of the
saturation extract for the 0–1.2 m soil profile, and apparent soil electrical conductivity for
the 0–0.75 (ECaH), and 0–1.5 m (ECaV) profile.

ECe

(dS m−1)
WC
(%)

SP
(%)

pH ECaH
(dS m−1)

ECaV
(dS m−1)

Mean 11.6 21.5 70.5 7.9 1.4 2.1
Minimum 0.4 2.5 30.4 6.8 0.1 0.1
Maximum 38.6 49.9 102.7 9.0 5.6 6.8
Standard
deviation

8.1 6.3 16.9 0.4 0.9 1.1
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using the Response Surface Sampling Design algorithm (Lesch, 2005).
Soil was sampled at 267 locations over the 22 fields (6 to 50 sites per
field, average density of 0.42 sample ha−1) at 0–0.3, 0.3–0.6, 0.6–0.9,
0.9–1.2, and 1.2–1.5m. The soil saturation extractwas analyzed for elec-
trical conductivity (ECe, dS m−1) and pH. The ECe measurements were
used as a first ground-truth dataset for soil salinity. Soil was also ana-
lyzed for gravimetric water content (WC) and saturation percentage
(SP). BothWC and SP can be used to describe the spatial patterns of tex-
tural properties and bulk density (Corwin et al., 2003; Janik, 2008). In
particular, even though WC at single locations changes over time, its
spatial pattern (i.e., hydrologic signature) remains fairly constant
throughout the growing season (Engman, 1999), representing soil
water retention capacity.

As a second ground-truth dataset, salinity values were estimated
(ECe⁎) at the EMI sampling locations using spatial linear regression
models (Lesch and Corwin, 2008), similarly to what was done
by Lobell et al. (2010). The ECe⁎ estimations were developed on a field-
by-field basis, over the 0–1.2 m soil profile (i.e., soil profile with
the strongest ECa–ECe relationships). For each field the predictor was
the EM38 output (i.e., ECaH or ECaV) that best correlated with the ECe
data.

Note that the L7measurements reflect the average characteristics of
a 30 × 30m pixel, therefore, comparisons of field point data with the L7
reflectance require some assumption about how the two spatial scales
relate (Lobell et al., 2010). The measured ECe values were considered
to represent an entire 900m2 pixel, thus assuming little spatial variabil-
ity of soil salinity within each L7 pixel. Contrarily, kriging with 30
× 30 m block support was used to interpolate the intensive EMI survey
data onto a regular 30 × 30 m grid (Lobell et al., 2010), thereby better
accounting for sub-pixel spatial variability of soil salinity. An ordinary
kriging with block support was used with an isotropic exponential
semivariogram to fit the ECe⁎ data over the 30 × 30m grid using ArcMap
10.1 (ESRI, Redlands, CA, USA).

The differences in reflectance values for the L7 bands over five differ-
ent salinity intervals were tested. The intervals were 0–2 (non-saline),
2–4 (slightly saline), 4–8 (moderately saline), 8–16 (strongly saline),
and above 16 (extremely saline) dS m−1. The differences were tested
using the non-parametric Kruskal–Wallis rank test (Kruskal and
Wallis, 1952). This test was selected instead of the classical analysis of
variance because assumptions of the latter were not met by the
datasets.
Table 3
Soil salinity (ECe) for the 0–0.3, 0.3–0.6, 0.6–0.9, 0.9–1.2, and 1.2–1.5 depth increments at
267 soil sampling locations.

Depth (m) ECe (dS m−1)

0–0.3 0.3–0.6 0.6–0.9 0.9–1.2 1.2–1.5

Mean 7.5 10.5 13.3 14.9 14.1
Minimum 0.4 0.4 0.3 0.4 0.6
Maximum 67.3 38.3 43.8 58.2 42.6
Standard deviation 9.4 8.5 8.6 10.3 9.6
2.4. Soil type, crop type, and meteorological settings

According to the US Natural Resources Conservation Service (NRCS)
Soil SurveyGeographic database (SSURGO), the soil Orders at the select-
ed study fields were: Entisols (43% of the ECe⁎ sites), Mollisols (38%),
Vertisols (10%), Ardosols (6%), and Inceptisols (3%).

According to the CropScape online database (Han et al., 2012) and
data provided by farmers, for each year of the study, the selected fields
were farmedwith a variety of annual crops, including: alfalfa (Medicago
sativa L.), cotton (Gossypium sp.), garlic (Allium sativum L.), maize (Zea
mays L.), melon (Cucumis melo L.), oats (Avena sativa L.), onion (Allium
cepa L.), pistachio (Pistacia vera L.), safflower (Carthamus tinctorius L.),
tomato (Solanum lycopersicum L.), triticale (×TriticosecaleW.), andwin-
ter wheat (Triticum aestivum L.). Some fields were also kept as pasture
and fallow.

Meteorological data were obtained from 34 monitoring stations lo-
cated across theWSJV andoperated by the California IrrigationManage-
ment Information System (CIMIS). In particular this study analyzed the
effects of precipitation, solar radiation, vapor pressure, air temperature,
air relative humidity, wind speed, and soil temperature on the variabil-
ity of the relationship between soil salinity and the L7 data from 2007
and 2013. The meteorological data were averaged in order to obtain a
regional annual value for all variables. Of allmeteorological data, rainfall
generally shows themost spatial heterogeneity (Tardivo, 2014). Precip-
itation data fromall 34 stations showed correlations beyond the p b 0.01
level (r=0.76 or above), suggesting fair homogeneity ofmeteorological
conditions existed throughout the entire WSJV.
Fig. 2. Scatter plot of soil salinity (ECe) at 267 sampling locations and estimated salinity
(ECe⁎) values using the apparent electrical conductivity (ECa) readings.

image of Fig.�2


Fig. 3. Coefficients of determination (R2) between soil salinity from the (a) ECe and (b) ECe⁎ datasets with the blue (B), green (G), red (R), near-infrared (NIR), infrared 1(IR1), and near
infrared 2 (IR2) Landsat 7 bands for each single year and for their 7-year average and temporal variability (σ). (For interpretation of the references to color in this figure legend, the reader
is referred to the web version of this article.)
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3. Results and discussion

3.1. Ground-truth soil salinity

Tables 3 and 4 report themean and range statistics for soil ECe at the
single and composite depth increments, and the ECaH and ECaV read-
ings at the 267 soil sampling locations. For all depth increments, about
50% of the ECe values were b8 dS m−1, the range in which many crops
can grow without substantial yield loss (Maas, 1996). Correlations be-
tween depth increments were all positive and significant beyond the
p b 0.01 level. Correlations between ECa and ECe were also significant
(p b 0.01) at all depths. The best correlations were observed between
ECa and salinity of the 0–1.2 m soil profile, with r = 0.80 and 0.85 for
ECaH and ECaV, respectively. The ECe values from the 0–1.2m soil profile
showed r = 0.12, 0.49, and 0.25 withWC, SP, and pH from the same av-
erage depth increment. Soil pH was as high as 9 (Table 4) indicating the
likely presence of sodic soils, moreover its low relationshipwith ECe sug-
gests that part of the sodic soils could be in the low salinity range
(i.e., b4 dS m−1). Non- and slightly saline sodic soils could possibly bias
the L7 salinity relationships as common crops hardly grow in such soils.

A second ground-truth dataset, ECe⁎, was estimatedwith 22 different
regressions (one for each field) and characterized by an overall
Fig. 4.Coefficients of determination (R2) between soil salinity from the ECe⁎dataset and selected
(σ). The indices considered are the Normalized Difference Vegetation Index (NDVI), the Enha
Vegetation Index (GARI), and the Canopy Response Salinity Index (CRSI). The black line repres
cumulative R2 of 0.93 (Fig. 2) and root mean square error of 1.92, 3.26,
3.47, 3.76, and 5.41 dS m−1 in the 0–2, 2–4, 4–8, 8–16, and
N16 dS m−1 salinity intervals, respectively. The goodness-of-
estimation is fairly high relative to other regional-scale EMI data calibra-
tions (Lobell et al., 2010; Corwin and Lesch, 2014). Corwin and Lesch
(2014) indicated that, within the same region, regressions between
ECa and ECe have very similar slope values, whereas intercepts often
change from field-to-field due to edaphic factors that influence EMI
reading at small scale. In support of those findings, it is interesting to
note that the intercepts of the 22 regression models correlated with av-
erage soil properties observed at each field, showing significant
(p b 0.05) Pearson r values with WC (r = 0.41) and SP (r = 0.51).
Both WC and SP (e.g., indirect measurements of textural properties
and bulk density) are known to influence ECa readings (Corwin and
Lesch, 2005). The average slopes were 5.8 and 7.8, with standard devia-
tions of 3.4 and 5.8 for the regressions using ECaH and ECaV, respective-
ly. Such standard deviation values suggest that the WSJV might be too
large of a region for the application of the methodology developed by
Corwin and Lesch (2014).

Once interpolated onto a 30-m block support, ECe⁎ was available at
5891 locations. The interpolated ECe⁎ values were distributed across
the considered salinity intervals such that 15.1, 23.4, 23.8, 30.6, and
vegetation indices for each single year and for their 7-year average and temporal variability
nced Vegetation Index (EVI), the Salinity Index (SI); the Green Atmospherically Resistant
ents the total yearly rainfall across the western San Joaquin Valley.
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7.1% of the values were in the 0–2, 2–4, 4–8, 8–16, and N16 dS m−1

ranges, respectively.

3.2. Multi-year Landsat 7 reflectance vs. soil salinity

Fig. 3 shows the coefficients of determination (R2) between ECe

(Fig. 3a) and ECe⁎ (Fig. 3b) versus the various Landsat 7 bands. The B,
G, R, IR1 and IR2 reflectance showed positive Pearson correlations
with salinity throughout all 7 years. On the other hand, NIR reflectance
always showed negative r values. With respect to ECe (Fig. 3a), the
best correlations were generally achieved with the B, G, and R bands.
The best correlations for those bands were observed in 2007, with
R2 = 0.36, 0.32, 0.33 for B, G, and R, respectively. In 2011, however,
the visible bands were outperformed by the NIR and infrared bands,
with R2 = 0.27, 0.33, and 0.31 for NIR, IR1, and IR2, respectively. Simi-
larly to ECe, the best correlations for ECe⁎ (Fig. 3b) were observed in
2007with theB, G, andR bands (R2= 0.43, 0.36, and 0.33, respectively).
The correlations of ECe⁎with the NIR and the infrared bands were gener-
ally lower than those with the B, G, and R bands, except in 2011, when
IR1was characterized by the stronger relationships (R2= 0.28), follow-
ed by B (R2= 0.27), IR2 (R2= 0.24), G (R2= 0.22), R (R2= 0.21), and
NIR (R2= 0.13). Overall, ECe⁎ showed stronger relationshipswith reflec-
tance in all six bands. Regardless of this difference, the R2 of the L7 bands
with ECe were significantly (p b 0.01) correlated (across the 7-year time
series) with those for ECe⁎, indicating consistency of results within the
two ground-truth datasets. Pearson r values were 0.88, 0.93, 0.92, 0.98,
0.97, and 0.99 for the B, G, R, NIR, IR1 and IR2 bands, respectively.

When compared at the 267 cells overlaying the soil sampling loca-
tions (not shown), the relationships between the L7 data and ECe⁎

were stronger (on average 68% of the time through the 7 years) than
those with ECe. In particular, the use of ECe⁎ over ECe helped to explain
up to an additional 9% of variance for the six L7 bands. This evidence in-
dicates that: a) spatial variability existed within the 30 × 30 m pixels,
with the interpolated ECa geospatial measurements better describing
Fig. 5.Boxplots for the 7-year average (top) and temporal variability (bottom) of theNormalized
Green Atmospherically Resistant Vegetation Index (GARI), and Canopy Response Salinity Index
outliers. Within plots, boxes topped with the same letter are not significantly different (p b 0.0
soil variability at that spatial scale (i.e., a single soil sample should not
be used to represent areas as large as 30 × 30m); and b) the spatial res-
olution of L7 data might not be enough for properly characterizing the
spatial variability of soil salinity in the WSJV. Because of the stronger
correlations, this manuscript will focus mainly on the relationships be-
tween L7 and ECe⁎. Additionally, hereafter ECe⁎ will be referred as soil
salinity.

The average and the temporal variability (Fig. 3b) of L7 reflectance
over the 7-year period exhibited relatively strong relationships with
soil salinity. The 7-year average reflectance generally outperformed
the temporal variability with R2 = 0.41, 0.36, 0.32, 0.09, 0.15, and 0.12
for the B, G, R, NIR, IR1 and IR2 bands, respectively. These R2 values
were close to or greater than those observed in the best single year
(i.e. 2007). Indeed, as also observed in other regions (Lobell et al.,
2010; Scudiero et al., 2014), differences in reflectance between consec-
utive yearswere remarkable. Consequently, remote sensing data from a
single (random) year should not be usedwhen trying tomap salinity, as
the risk of producing poor results is clear.

Fig. 4 presents the coefficient of determinations for the selected veg-
etation indices with ECe⁎, over the 7-year period. Because soil salinity
had a negative impact on crop health, the Pearson correlations with
ECe⁎ were positive for SI (i.e., higher reflectance in the visible range),
and negative for NDVI, EVI, GARI, and CRSI (i.e., higher reflectance in
the visible range and lower in the NIR). The selected vegetation indices
performed with great variations over time. The GARI and the CRSI gen-
erally performedbetter than the other indices. They showed, however, a
big drop in performance in 2010. This was likely due to the poor corre-
lation of NIRwith salinity in that year (Fig. 3b). ForNDVI and EVI, perfor-
mances in 2010 were not as drastically influenced by NIR. Over the 7-
year time, NDVI performed better than EVI, contrary to the results of
Lobell et al. (2010). Indeed, the relative performance of vegetation indi-
ces depends on many factors, including geographical location, type of
satellite sensor, and atmospheric corrections applied to the sensor
data when obtaining the actual surface reflectance (Hadjimitsis et al.,
Difference Vegetation Index (NDVI), Enhanced Vegetation Index (EVI), Salinity Index (SI),
(CRSI). The bold line crossing the rectangles represents themedian value; circles represent
5).
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Fig. 6. Pearson r coefficients between soil salinity from the ECe⁎ dataset and the 7-year av-
erage of the selected vegetation indices according to soil Order. The indices considered are
theNormalizedDifferenceVegetation Index (NDVI), the EnhancedVegetation Index (EVI),
the Salinity Index (SI), the Green Atmospherically Resistant Vegetation Index (GARI), and
the Canopy Response Salinity Index (CRSI). All reported correlations are significant at the
p b 0.05 level.
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2010; Allbed and Kumar, 2013). Unfortunately, this suggests it may be
necessary to identify the best vegetation index for each study, which
will increase processing time.

When the 7-year average and temporal variability of the indices
were considered, better correlations with salinity were generally ob-
served compared to those for single years. The temporal variability of
NDVI and CRSI were characterized by the highest coefficients of deter-
mination among the vegetation indices (R2 of 0.40 and 0.43, respective-
ly). As a rule of thumb, only up to half of the yield spatial variability is
influenced by soil properties (Corwin et al., 2003; McBratney et al.,
2005; Scudiero et al., 2013). The remaining yield variability comes
from factors that normally change from year-to-year (e.g., lack of pre-
cipitation, pests, management). The coefficients of determination for
the temporal variability of NDVI and CRSI with soil salinity (Fig. 4)
should therefore be considered fairly high. For comparison, Scudiero
et al. (2014) studied the 3-year temporal variability of corn reflectance
in an area characterized by contrasting soils and affected by multiple
stress types, including salinity and water stress. They observed
that NDVI temporal variability could be used to identify (qualitatively)
saline areas, but could only account for a small amount of its variations
(R2= 0.11) due to thebiasing effects of other abiotic stresses constantly
occurring over time. Those findings highlighted some of the limitations
of the approach presented in this study, which can be optimally used in
regionswhere soil salinity is the sole persistent stress occurring over the
years, whereas other stress types emerge sporadically and/or with dif-
ferent spatial patterns from time-to-time.

3.2.1. Landsat 7–salinity relationships at selected salinity ranges
The reflectance data could also be used for a qualitative classification

of soil salinity at each L7 pixel. The selected salinity ranges (i.e., 0–2, 2–4,
4–8, 8–16, and over 16 dSm−1) were generally characterized by differ-
ent (p b 0.01) values of the 7-year average and temporal variability of
the vegetation indices (Fig. 5), and of the six spectral bands (not
shown). With the exception of the temporal variability of GARI, high
(N8 dSm−1) and low salinity were characterized by significantly differ-
ent values of the vegetation indices. When focusing on the low salinity
Table 5
Correlationmatrix for the coefficients of determination of the Landsat 7–ECe⁎ relationships
(at the cells including the soil sampling locations) and the number of soil sampling loca-
tion per field, field average ground-truth salinity from the ECe⁎ dataset, field average water
content (WC), field average soil saturation percentage (SP), and field average pHobserved
at each field. Bold numbers are significant at the p b 0.05 level.

Landsat 7a Number of soil samples ECe
⁎ WC SP pH

B 0.19 0.49 −0.03 0.28 −0.11
G 0.11 0.41 0.19 0.49 −0.16
R 0.00 0.39 0.01 0.33 −0.07
NIR −0.12 0.29 0.26 0.10 0.06
IR1 −0.16 0.23 −0.28 −0.16 0.23
IR2 0.09 0.44 −0.34 0.05 0.22
NDVI 0.17 0.05 −0.42 −0.30 0.03
EVI 0.17 0.19 −0.38 −0.16 0.00
SI 0.06 0.41 0.10 0.42 −0.12
GARI 0.22 −0.06 −0.15 −0.16 −0.16
CRSI 0.21 −0.05 −0.03 −0.08 −0.20
σ(B) −0.34 −0.24 −0.47 −0.33 0.02
σ(G) −0.18 −0.19 −0.39 −0.30 −0.08
σ(R) −0.05 −0.17 −0.42 −0.35 −0.19
σ(NIR) −0.31 −0.28 −0.59 −0.47 0.02
σ(IR1) −0.23 −0.19 −0.48 −0.38 −0.08
σ(IR2) −0.24 −0.20 −0.57 −0.46 0.03
σ(NDVI) 0.01 −0.21 −0.13 −0.14 −0.28
σ(EVI) −0.05 −0.25 0.02 −0.16 −0.37
σ(SI) −0.09 −0.18 −0.43 −0.36 −0.14
σ(GARI) −0.13 −0.30 0.14 −0.07 −0.25
σ(CRSI) −0.11 −0.28 0.07 −0.09 −0.18

a Seven-year average of the blue (B), green (G), red (R), near-infrared (NIR), infrared
1(IR1), infrared 2 (IR2), Normalized Difference Vegetation Index, (NDVI), Enhanced
Vegetation Index (EVI), Salinity Index (SI), Green Atmospherically Resistant Vegetation In-
dex (GARI), and Canopy Response Salinity Index (CRSI), and their temporal variability (σ).
ranges, the temporal variability of NDVI and EVI provided theworst per-
formances, as the 0–2 (non-saline) and 2–4 dS m−1 (slightly saline)
ranges were not characterized by significantly different values of these
indices. It is probable that plantswere not stressed over this range of sa-
linity; therefore, salinity would have negligible, or positive (see
Section 3.2.4), effects on canopy status in the b4 dS m−1 range. Addi-
tionally, it is also probable that the poor performances at low salinity
were due to the saturation of the satellite data, especially in the R
band (Gitelson, 2004). Signal saturation is usually observed in the
healthier portion of the vegetation once soil is completely covered,mak-
ing it hard to distinguish slightly stressed plants from non-stressed
ones.

3.2.2. Changes in the Landsat 7–salinity relationships according tometeoro-
logical settings

Meteorological conditions could explain part of the variations in the
L7–salinity relationships between 2007 and 2013. The total yearly rain-
fall (mm) across the WSJV is depicted in Fig. 4. The R2 values between
Table 6
Correlation matrix for the selected vegetation indicesa and the ground-truth salinity from
the ECe⁎ dataset, according to crop type/field cover, as reported in the CropScape database
(Han et al., 2012) and by the farmers, through the 7-year period. Non-significant (n.s.,
p ≥ 0.05) correlations are not reported.

Crop (salt sensitivityb) NDVI EVI SI GARI CRSI

Alfalfa (MS) −0.32 −0.07 0.39 −0.28 −0.30
Cotton (T) −0.69 −0.59 0.75 −0.83 −0.82
Garlic (MS) −0.62 −0.58 0.23 −0.68 −0.67
Maize (MS) 0.49 0.38 −0.66 0.36 0.41
Melon (MS) n.s. 0.19 0.16 −0.24 −0.19
Oats (T) 0.62 0.63 −0.60 0.59 0.60
Onion (S) −0.45 −0.37 −0.08 −0.65 −0.63
Pistachio (MS) 0.12 0.17 −0.15 n.s. n.s.
Safflower (MT) −0.14 −0.36 0.22 0.53 0.50
Tomato (MS) n.s. n.s. −0.09 n.s. n.s.
Triticale (T) 0.59 0.56 n.s. 0.58 0.60
Winter wheat (MT) −0.62 −0.57 0.61 −0.23 −0.48
Fallow −0.05 0.07 0.32 −0.20 −0.18
Pasture −0.20 −0.05 0.16 −0.27 −0.30
Non-reported −0.07 −0.06 0.24 −0.04 −0.04

a Normalized Difference Vegetation Index, (NDVI), Enhanced Vegetation Index (EVI), Sa-
linity Index (SI), Green Atmospherically Resistant Vegetation Index (GARI), and Canopy Re-
sponse Salinity Index (CRSI).

b S, sensitive; MS, moderately sensitive; MT, moderately tolerant; T, tolerant.
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vegetation indices and ECe⁎were all negatively influenced by rainfall, al-
though the R2 of GARI and CRSIwere the only ones significantly affected
(p b 0.01), with r = −0.84 and −0.80, respectively. It is possible that
the high rainfall (e.g., 366 mm in 2010) diluted salinity in the root
zone, therefore, mitigating salt stress and negatively impacting the
ECe⁎–L7 relationships. Scarce rainfall could also have facilitated the oc-
currence of water stress, improving the relationships between the veg-
etation indices and salinity (Letey andDinar, 1986; Allen et al., 1998). To
better understand this effect, information on soil–water availability at
each field throughout the 7-year period would be needed, but unfortu-
nately such data are not available and impractical to obtain.

Weaker, yet significant correlations were observed with average
minimum air temperature (not collinear with rainfall) through the
seven years (8.0, 8.2, 8.4, 8.6, 7.9, 8.6, 8.1 °C in 2007, 2008, 2009, 2010,
2011, 2012, and 2013, respectively). Specifically, the R2 values of ECe⁎

and NDVI, EVI, GAVI, and CRSI were significantly (p b 0.05) reduced
by temperature, with r = −0.78, −0.82,−0.62, −0.72, respectively.

3.2.3. Changes in the Landsat 7–salinity relationships according to soil type
Table 5 shows the correlation matrix for the coefficients of determi-

nation of the L7–ECe⁎ relationships (at the 267 soil sampling locations)
and average values of ECe⁎. The results suggest that the higher the aver-
age salinity (ECe⁎) of a field, the stronger some of ECe⁎ relationships with
the seven-year average reflectance at the B, G, R, and IR2 bands, and
with the SI vegetation index, indicating that remote sensing of salinity
should always be trained over multiple fields with broad ranges of soil
salinity. Otherwise, the results could be biased by the local characteris-
tics of a particular site.

Fig. 6 depicts how the ECe⁎ relationships with the average vegetation
indices vary according to soil Orders. Canopy reflectance over Mollisols
was characterized by very strong relationships (p b 0.01) with ECe⁎,
with Pearson r values = 0.84 for SI and b−0.88 for the other vegetation
indices. Mollisols were characterized by a very wide range of ECe⁎ (0.03
to 35.2 dS m−1, average = 8.7 dS m−1, standard deviation =
6.9 dS m−1), as were Aridosols (0.01 to 34.3 dS m−1, average =
7.6 dS m−1, standard deviation = 6.1 dS m−1), although the latter ex-
hibited weaker ECe⁎–L7 relationships. Unexpected relationships were
observed over Vertisols, with the correlations for NDVI, EVI, GARI, and
CRSI being all positive. Conversely, the salinity–L7 correlations for
NDVI, EVI, GARI, and CRSI were all negative and significant (p b 0.01)
for Inceptisols. Vertisols were characterized by a fairly high average
ECe⁎ (5.2 dS m−1, range = 0.01 to 11.2 dS m−1, standard deviation =
2.1 dS m−1) relative to that of Inceptisols (1.7 = dS m−1, range =
0.01 to 3.2 dS m−1, standard deviation = 0.6 dS m−1). Multiple factors
might be responsible for such diverse relationships (additionally to the
properties that identify each Order) including: soil water availability
(related to soil textural properties and terrain elevation/slope) and an-
thropogenic factors (e.g., crop and irrigation management strategies).

In order to help quantify the changes in the L7–ECe⁎ relationships due
to soil type, Table 5 reports the coefficients of determinations according
to field-average WC and SP values. Both WC and SP are related to soil
textural or physical properties that affect plant growth through their
impact onwater and nutrient availability. Table 5 shows that the higher
the WC (e.g., higher clay content), the weaker the ECe⁎ relationships
with the average NDVI and EVI, and with the temporal variability of B,
G, R, NIR, IR1, IR2, and SI. Similarly, the higher the field average SP
(e.g., higher clay content), the weaker the relationships of salinity
with the average G and SI, and with the temporal variability of NIR,
IR1, and IR2.

3.2.4. Changes in the Landsat 7–salinity relationships according to crop
type

Different crops are expected to be characterized by different L7–sa-
linity relationships, due to different salt tolerance (Maas, 1996) and re-
flectance properties (Arafat et al., 2013; Mulla, 2013) that characterize
different crops. Table 6 reports the correlation matrix between salinity
from the ECe⁎ dataset and the five selected vegetation indices, through
the entire 7-year period. Most of the correlations are significant
(p b 0.05) and negative. In particular, the GARI and the CRSI performed
generally better than the other indices (by 1.6 and 2.0%, respectively).
The best performances were observed for GARI and CRSI in fields
cropped with cotton, garlic, and onion. Cotton is relatively salt tolerant
(Maas, 1996), with yield decreases expected at ECe levels greater than
the threshold value of 7.7 dS m−1. Cotton was, however, grown in
soils with ECe⁎ ranging between 0.1 and 19.7 dSm−1, and therefore sub-
jected to yield loss due to salinity stress. Contrarily, onion and garlic are,
respectively, sensitive and moderately sensitive to salt stress according
to Maas (1996), with yield losses starting from ECe = 1.2 and
3.9 dS m−1, respectively. Both crops were grown over soils with ECe⁎

in the 0.7–9.2 dS m−1 range.
Few positive correlations between the vegetation indices and

salinity were observed. For CRSI, in particular, positive significant corre-
lations were observed with maize (moderately sensitive), oats (toler-
ant), safflower (moderately tolerant), and tricale (tolerant). All these
crops were grown in soil with average ECe⁎ b 3 dS m−1. In some crops
(e.g., cotton) plant growth can be promoted by slightly saline conditions
(Corwin et al., 2003); therefore, the positive correlations between
ground-truth salinity and the vegetation indices is to be expected.

4. Conclusions

The results indicate that multi-year Landsat 7 Climate Data Record
surface reflectance can be a useful indicator for the spatial variability
of soil salinity in California's WSJV. The analysis of multi-year average
and temporal variability of the L7 bands and of selected vegetation indi-
ces improve the correlations between canopy reflectance and soil salin-
ity, which are generally lower when single-year data are considered.
The results suggest that data fusion of the L7 multi-year reflectance
with information on meteorological conditions, crop type, and soil
properties at each L7 pixel might lead to a reliable salinity prediction
model for the entire WSJV. Within the tested vegetation indices, the
Canopy Response Salinity Index (CRSI) provided the best goodness-of-
fit. However, the performance of the tested vegetation indices should
be considered specific to theWSJV and the specific atmospheric correc-
tion used on the Landsat 7 CDR surface reflectance.

Unfortunately, one limitation of the use of L7 data for salinity assess-
ment lies in its spatial resolution,which appears to be too coarse to fully
represent the actual spatial variability of soil salinity. Given the apparent
small-scale variability of soil salinity, the latest generation of multispec-
tral very-high resolution satellite sensors (Mulla, 2013), including the
WorldView II and III satellites (Digitalglobe Corp., Longmont, CO, USA)
with resolution b2 × 2 m, could possibly be used to map soil salinity
with higher precision. Data from very high resolution sensors should
also be tested for regional-scale salinity assessment in future studies.
Future research should focus on field- and regional-scale studies com-
paring different satellite sensors, spatial resolutions, and atmospheric
corrections to improve soil salinity assessment with remote sensing
tools. Potentially improved results would, however, come with the
cost of greater processing time and operational expenses involved
when finer resolution data are managed (Lobell et al., 2010). Addition-
ally, at the moment, very high resolution reflectance products are fairly
expensive, whereas the Landsat data is freely provided by the U.S. Geo-
logical Survey.

Land resource managers, producers, agriculture consultants, exten-
sion specialists, and Natural Resource Conservation Service field staff
would be the beneficiaries of regional-scale maps of soil salinity.
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