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ABSTRACT
Spatiotemporal variability of crop production strongly depends on soil heterogeneity, meteorological conditions, and their 
interaction. Canopy reflectance can be used to describe crop status and yield spatial variability. The objectives of this work 
were to understand the spatiotemporal variability of maize (Zea mays L.) yield using ground-based reflectance acquisitions in a 
salinity- and water-stress-affected 21-ha field beside the Venice Lagoon, Italy. Intra- and interannual reflectance variations were 
analyzed across the entire field and at each map cell with time to understand how the different soil-related stresses (i.e., salinity 
and water) arise under different meteorological conditions. The results show that the normalized difference vegetation index 
(NDVI) acquired during the maize flowering and kernel maturation stages (during the three growing seasons of 2010, 2011, 
and 2012) effectively described yield spatiotemporal variability. In particular, stressed areas exhibited the smallest changes in 
NDVI during a single growing season. Soil salinity and water stress were responsible for approximately 44% of the intra-annual 
NDVI change. When multiyear NDVI data are compared, areas affected by soil salinity show the smallest temporal variability. 
Nevertheless, areas that are slightly saline and constantly affected by water stress could not be distinguished from highly saline 
areas. Multiyear reflectance data can be a useful tool to characterize areas where soil salinity is the main factor limiting crop 
production. In areas where several plant stresses occur simultaneously every year, the proposed approach could be used to guide 
precision irrigation to make adjustments for within-field leaching requirement and/or irrigation needs.
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Yield maps provide pivotal information to imple-
ment precision agriculture techniques. The delineation of input 
prescription maps (e.g., map of site-specific management units, 
fertilizer, irrigation water, etc.) relies on a careful study of input 
prescription maps and their interaction with edaphic (i.e., soil-
related) properties. When focusing on production variability at 
the field or farm scale, yield maps from multiple years should be 
considered (Blackmore, 2000; Blackmore et al., 2003) because 
approximately half of the variation in each map generally comes 
from year-to-year variation (McBratney et al., 2005).

Most crop yield studies, however, focus only on describing the 
spatial variability of productivity despite the potential benefit 
of considering the effects of the spatial and temporal variability 
of the plant–soil relationship (McBratney et al., 2005). Indeed, 
soil–plant interactions are believed to be the largest contributors 
to yield spatial variability (Corwin et al., 2003; Scudiero et al., 

2013). These interactions, however, are influenced by seasonal 
factors, such as meteorological conditions (e.g., rainfall) and 
anthropogenic activities (e.g., irrigation).

Similar to many delta plains around the world, the southern 
margin of the Venice Lagoon, Italy, is an area characterized 
by contrasting soils and saltwater intrusion (de Franco et al., 
2009; Scudiero et al., 2012, 2013). Soil salinity and water 
stress considerably limit crop yield in the area (Manoli et 
al., 2013; Scudiero et al., 2013). These two plant stresses are 
generally difficult to distinguish from one another (Elmetwalli 
et al., 2012; Hu et al., 2007; Munns, 2002) because they 
both decrease the soil water potential, normally leading to 
similar physiological responses (Munns, 2002). Nevertheless, 
especially in regions where salinity is the major cause of crop 
loss, its effects on yield are generally more stable with time 
because salinity is often less dependent on annual variability in 
precipitation (Lobell et al., 2007, 2010; Madrigal et al., 2003). 
On the other hand, water stress is generally more dependent on 
meteorological conditions (and irrigation), especially in areas 
characterized by low water retention.

To better understand plant growth and yield response, crop 
canopy reflectance is often studied (Mulla, 2013). Reflectance 
is used to estimate crop stress status (Blackmer et al., 1995; 
Vina et al., 2004) and predict production (Shanahan et al., 
2001). Reflectance ground-based and satellite sensors can be 
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used to monitor canopy development with a very high spatial 
resolution (<4 m2) (Mulla, 2013; Solari et al., 2008), providing 
more accurate information than yield maps. Yield maps are 
normally characterized by coarser resolution and noise in the 
data due to yield monitor and combine dynamics (Blackmore, 
1999; Corwin et al., 2003; Ping and Dobermann, 2005). In 
fact, high-resolution maps of canopy reflectance can be used 
as an ancillary variable to increase the accuracy of yield maps 
(Dobermann and Ping, 2004). In addition to multiseasonal 
(i.e., interannual) information, canopy reflectance can also 
be used to monitor spatiotemporal within-season (i.e., intra-
annual) variations, providing useful information for decision 
making in agriculture practices.

The general goal of this study was to identify a method 
based on remote sensing to help delineate input prescription 
maps in saline fields. The specific objective was to understand 
the spatiotemporal variability of maize yield using ground-
based reflectance acquisitions on a salinity-affected field 
at the southern margin of the Venice Lagoon, Italy. To do 
so, the relationships between yield and canopy reflectance 
maps were initially studied for ground-truthing purposes. 
Subsequently, the intra- and interannual spatial and temporal 
variability of maize reflectance were analyzed to understand 
how the different soil-related stress types arise under different 
meteorological conditions. The major challenge of this work 
was to distinguish the effects of water stress from salinity 
stress on maize production using observations describing 
the soil spatial variability, meteorological data, and their 
interactions.

MATERIALS AND METHODS
The Study Area

The study was performed on a 21-ha field affected by soil 
salinity located in Chioggia, Italy (45°10¢57² N, 12°13¢55² E), 
along the southern margin of the Venice Lagoon (Fig. 1). The site 
lies below mean sea level, from –1 to –3.3 m, and was reclaimed 
for agriculture purposes at the beginning of the 20th century. 
A pumping station and a dense network of open ditches control 
the depth of the water table, which is maintained fairly shallow 

in summer to promote subirrigation. The water table ranges 
from –0.5 to –1.8 m below ground level, with little vertical 
variation (?5 cm) during the year. Only a very limited portion 
(<5%) of the field is characterized by a very shallow water table 
(<0.7m) (Manoli et al., 2014). The soil is predominantly a silty 
clay (Molli-Gleyic Cambisol, FAO-UNESCO, 1989), with the 
presence of acidic peat and sandy drifts (i.e., paleochannels) 
crossing the study site in a southwest to northeast direction. 
A detailed description of the soil variability can be found in 
Scudiero et al. (2013).

Scudiero et al. (2013) identified soil salinity, texture, bulk 
density, and soil organic C as major factors affecting maize 
productivity and accordingly delineated five site-specific 
management units (SSMUs) within the experimental site 
(Fig. 2; Table 1). More precisely, the classification identified 
a peaty, acidic, moderately saline, and sandy area (SSMU I); 
a very saline zone (SSMU II); a nonsaline area comprising 
the coarser portions of the paleochannels (SSMU III); a 
zone with the best conditions for maize growth (SSMU IV) 
characterized by mid to low salinity, mid to low peaty content, 
and the highest clay content; and a peaty, acidic, moderately 
saline, and silty unit (SSMU V). The variability of soil salinity, 
texture, bulk density, and organic C within each management 
unit is shown in Fig. 2b.

To assess saline and water stress, five monitoring stations 
were placed at the study site (Table 1). Each station was 
equipped with capacitance-resistance probes (ECH2O-5TE, 
Decagon Devices), to measure the water content and pore-
water salinity (Scudiero et al., 2012), and tensiometers (T4e, 
UMS GmbH) to record the soil-water potential at depths 
of 10, 30, 50, and 70 cm. The sensors were connected to a 
datalogger and data were recorded hourly. The water table 
level at each station was monitored every second week using 
phreatic wells. The five monitoring stations, described in 
Table 1, were named A, B, C, D, and E (Fig. 1). Unfortunately, 
since the zonal definition was performed later than the 
station installation, SSMU IV was not monitored by any of 
the stations, whereas two stations (B and E) were located in 
SSMU III.

Fig. 1. Map of the study area depicting the five soil-water monitoring stations (A, B, C, D, and E) and the paleochannels.
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Maize Cultivation and Yield Monitoring
Rainfed maize was cultivated in 2010 (seeding 22 April 

and harvest 10 September), 2011 (seeding 4 April 4 and 
harvest 2 September), and 2012 (seeding 21 March and 
harvest 11 September). Soil tillage was an autumn plowing to 
the 30-cm depth, followed by standard seedbed preparation 
operations. Maize was fertilized with a base dressing of 
64 kg N ha–1 and 94 kg P2O5 ha–1 and a topdressing of 
184 kg N ha–1 (urea).

Maize yield was measured by a combine harvester equipped 
with a yield monitor (Agrocom, Claas) and a differential global 
positioning system (DGPS). Data were recorded by the yield 
monitor at a density of 1 measure per approximately 70 m2. 
Data sets were standardized across a 10- by 10-m grid (i.e., 
1906 cells) using a 10-m search radius and the procedures of 
Blackmore (1999) and Blackmore et al. (2003) because coarser 
resolutions would not accurately represent yield patterns. 
In 2012, limited portions of the sandy paleochannels were 
characterized by a lack of grain productivity. Therefore, a 
0 Mg ha–1 yield value was manually assigned to the cells 
corresponding to such zones.

Ground-Based Reflectance Acquisitions
Maize reflectance at 590 ± 5.5 nm (visible or VIS) and at 

880 ± 5.5 nm (near infrared or NIR) was measured with an 
active spectrometer (ACS-210 CropCircle, Holland Scientific) 
linked with a GPS. Reflectance was acquired three times a year 
as follows: on 9 and 23 July and 16 Aug. 2010; on 4 and 14 July 
and 5 Aug. 2011; and on 15 and 27 June and 19 July 2012. The 
site was covered each time with approximately 6000 acquisition 
points, using a 5-s time acquisition interval. The CropCircle 
(CC) was held on a pole at approximately 0.8 m above the maize 
canopy, assessing reflectance over an ?0.1- by 0.5-m area (Solari 
et al., 2008), perpendicular to the maize row direction. The 
readings of the CC sensor penetrate up to six leaf levels in the 
maize canopy (Solari, 2006). The CC data were used to calculate 
the well-known normalized difference vegetation index (NDVI) 
(Rouse et al., 1974):

NIR VIS
NDVI

VIS NIR
-

=
+

 [1]

Fig. 2. The (a) five management zones and (b) boxplots for, electrical conductivity of a soil extract with a soil to water ratio of 1:2 (EC1:2), soil bulk 
density, soil organic C content, and clay content. The bold lines crossing the rectangles represent the median values; circles represent outliers. Within 
plots, boxes topped with the same uppercase letter are not significantly different (P < 0.05) as presented by Scudiero et al. (2013).

Table 1. Soil electrical conductivity (ECe), texture, bulk density (rb), soil organic C (SOC), and volumetric water content at field capacity (FC) and the 
wilting point (WP) in the root zone (data for the 0–60-cm soil profile) at the five soil-water monitoring stations in the soil-specific management units 
(SSMUs). Soil samples from 2010 (Scudiero et al., 2013).

Monitoring
station ECe Sand Silt Clay rb SOC FC WP

dS m–1 ————————— % ————————— g cm–3 % ———— cm3 cm–3 ————
A (SSMU V) 1.90 31.06 47.17 21.77 0.95 10.61 0.48 0.30
B (SSMU III) 0.33 68.46 24.33 7.21 1.12 4.48 0.36 0.25
C† (SSMU II) 5.45 36.87 44.76 18.37 0.69 11.78 0.51 0.31
D (SSMU I) 2.94 41.98 42.38 15.64 0.73 21.02 0.43 0.29
E (SSMU III) 0.02 71.12 19.86 9.01 1.44 12.57 0.20 0.09

† Data for the 0–40 cm soil profile because the water table was shallower than 70 cm at this location.
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Normalized Difference Vegetation Index and 
Yield Spatial and Temporal Variability

The spatial correlation structure of each NDVI data set (di) 
was described with an isotropic exponential semivariogram v:

( ) ( )2 1 expi
hv
r

é ùæ ö÷çê úd = - -h+s ÷ç ÷çè øê úë û
 [2]

where h represents the nugget variance, s2 the spatial variance 
component (partial sill), h the lag distance, and r the range. 
Because the NDVI distribution was not normal, the data sets 
were preliminarily normalized by Box–Cox transformation 
(Box and Cox, 1964). Maps of the NDVI were produced using 
ordinary kriging and their goodness of fit was tested with a leave-
one-out cross-validation procedure using ArcMap 10.1 (ESRI). 
Finally, the maps were gridded with 10- by 10-m cells to match 
the yield maps.

Spatial and temporal variances of the yield data sets were 
determined according to Whelan and McBratney (2000) for 
the entire field and for each SSMU. The spatial variance ss

2 was 
calculated by averaging the maize production during the 3 yr and 
calculating the variance of the average data set:
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where Ny and Nc are the number of available yield maps and 
the cells of each map, respectively, and Yi,j is the yield at the ith 
year in the jth cell. The temporal variance st

2 was calculated by 
averaging the yield variance across the 3 yr at each cell of the 10- 
by 10-m grid:
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Spatial (ss
2) and temporal (st

2) variances help to quantify the 
yield variability across the area during the 3 yr but do not help to 
understand the spatial structure of the data and the changes with 
time of such spatial structures.

When spatial data sets of crop yield and NDVI at different 
times are available, maps of spatial trend and temporal variability 
can be produced (Blackmore, 2000). Yield spatial trend (Y_SpT) 
maps were obtained as the average yield at each cell during 
the 3 yr. Maps of the NDVI spatial trend (NDVI_SpT) were 
developed for each year to analyze the intra-annual spatial trend 
(i.e., averaging the maps from the three surveys performed 
each year) and during the 3 yr using all nine surveys for an 
interannual analysis.

Maps of temporal variability were produced as proposed by 
Tweed et al. (2007). Temporal variability of the NDVI at each 
jth cell of the grid is represented by its standard deviation (SDVI) 
with time:
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where Nsurv is the number of processed surveys and NDVImean 
is the average NDVI for each cell across Nsurv. Maps of 
SDVI were developed for both intra-annual (Nsurv = 3) and 
interannual (Nsurv = 9) temporal variability. The temporal 
standard deviation of yield (Y_SD) was also derived according to 
Eq. [5] as proposed by Blackmore (2000).

Statistical Analyses

The maize production and NDVI maps were analyzed for 
both Pearson and spatial correlations. The spatial relations 
between maps were investigated using the experimental cross-
covariance function (Goovaerts, 1997). When spatial correlation 
between two studied variables is sizeable, the cross-covariogram 
is characterized by non-null values for short lags and approaches 
zero increasing the number of lags. The spatial correlation can 
be either positive or negative. The larger the cross-covariance 
at short lags and the larger the distance at which the cross-
covariogram tends to zero, the stronger the spatial correlation 
between the studied variables. The experimental cross-covariance 
functions were calculated with ArcMap 10.1 and fitted with 
exponential models.

Differences in yield and NDVI values, their spatial patterns, 
and the temporal variability within each SSMU were tested 
using the nonparametric Kruskal–Wallis rank test (Kruskal 
and Wallis, 1952). This test was selected instead of the classical 
analysis of variance because assumptions of the latter were not 
met by the available data sets (Acevedo-Opazo et al., 2008).

Effects of Water and Salinity Stress on Normalized 
Difference Vegetation Index Temporal Variability

Intra-annual NDVI variability at the five soil-water 
monitoring stations was studied to understand the effects of soil 
salinity, texture, bulk density, and meteorological conditions.

Salinity and water stress may result in reduced plant growth 
and subsequently in lower evapotranspiration (Allen et al., 1998; 
Munns, 2002). The soil salinity and water stress effects on crop 
evapotranspiration are generally additive (Allen et al., 1998; 
Letey and Dinar, 1986). The decrease in crop evapotranspiration 
at different water and soil salinity stress levels during the 
growing season can be summarized using the evapotranspiration 
reduction coefficient Ks (Allen et al., 1998). When crop 
evapotranspiration is not affected by water scarcity and soil 
salinity, Ks = 1. Otherwise Ks decreases, with Ks = 0 when plant 
transpiration ceases and only soil evaporation takes place (Allen 
et al., 1998). The Ks can be quantified as (Allen et al., 1998)
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where Ky is a coefficient describing the relative yield loss due to 
the reduction in crop actual evapotranspiration compared with 
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the potential evapotranspiration under standard conditions 
(ETc, mm d–1) caused by soil water shortage and set at 1.25 
for maize (Allen et al., 1998); ECe (dS m–1) is the soil salinity 
measured according to Rhoades et al. (1999); ECe_threshold 
(dS m–1) is the threshold below which productivity is not 
affected by soil salinity, equal to 1.7 dS m–1 in maize (Maas, 
1996); b is the yield reduction percentage per unit increase in soil 
salinity (dS m–1) when ECe > ECe_threshold, set to 12 for maize 
(Maas, 1996); Dr (mm) is the difference between the volumetric 
water content measured in the root zone and the volumetric 
water content at field capacity, TAW (mm) is the root-zone total 
available soil water (i.e., the difference between the volumetric 
water content at field capacity and at the wilting point), and p* 
is the fraction (varies according to crop type and ETc) of TAW 
that plants can extract from the root zone without suffering 
water stress (0.1 ≤ p* ≤ 0.8). According to Eq. [6], salinity > 
ECe_threshold reduces Ks even if water stress does not occur.

Equation [6] was computed on a daily time frame using 
the hydrologic records at the monitoring stations. The daily 
Ks variations at the monitoring stations were compared with 
the intra-annual variations in the NDVI. To do so, the NDVI 
variations between consecutive surveys were expressed as average 
daily NDVI change (DNDVI).

The volumetric water content (θ, m3 m–3) was estimated 
at each monitoring station from the measured soil dielectric 
constant and apparent electrical conductivity using the equation 
proposed by Scudiero et al. (2012):

( ) ( )ra 1 lnEC qa a é ù¢ ¢¢q= + e+ ë û  [7]

where ECa is the apparent (i.e., bulk) soil electrical conductivity 
(dS m–1), er (dimensionless) is the soil dielectric complex 
permittivity, and q, a¢, and a² are fitting parameters that, for 
the Chioggia soils, are –0.766, –0.352 – 0.006 ´ soil organic 
C (%), and 0.020 – 0.009 ´ [clay (%)/sand (%)], respectively. 
Water content in the root zone was calculated by averaging the 
data from the upper three probes (i.e., 10, 30, and 50 cm deep). 
Indeed, despite the fact that maize roots can grow deeper than 
1 m, most of the root system is normally found in the top 0.5 m 
(Sharp and Davies, 1985). The stations were operative from 28 
July 2010, 15 May 2011, and 26 April 2012 to a few days after 
maize harvesting. In 2010, Stations D and E were unavailable. 
Water contents at field capacity and the wilting point were 
measured by means of a pressure plate apparatus at –33 kPa and 

–1.5 MPa, respectively, on undisturbed soil samples taken at each 
station at the 10-, 30-, and 50-cm depths (Table 1).

The meteorological data recorded by a nearby automatic 
station (Regional Agency for Environmental Protection, 
Veneto) were used to calculate ETc using the Penman–Monteith 
equation with the dual-crop coefficient approach (Allen et 
al., 1998). Temperature records were also used to calculate 
the growing degree days (GDD), setting the base temperature 
equal to 8°C. Note that, for the maize used at the study site, 
the emergence (VE), seven-leaf (V7), early tassel (R1), kernel 
blister (R2), beginning dent (R4), and maturity (R6) growth 
stages started at 60, 200, 760, 960, 1355, and 1620 cumulative 
GDD, respectively, after sowing. Surveys of NDVI (i, ii, and iii) 
were performed in 2010 during early tassel (R1, at 853 GDD), 
kernel blister (R2, at 1097 GDD), and early beginning dent 
(R4, at 1409 GDD), respectively. In 2011, Surveys i, ii, and iii 
were performed during R1 (at 889 GDD), R2 (at 1051 GDD), 
and right before the start of R4 (at 1342 GDD), respectively. 
In 2012, NDVI was acquired right before the start of R1 (at 
597 GDD), during R1 (at 789 GDD), and during R2 (at 1149 
GDD), respectively. All the surveys were performed in the 
reproduction phase when the basal crop coefficient describing 
maize transpiration throughout the growing season (Allen et al., 
1998) was at maximum (i.e., “mid-season”).

RESULTS AND DISCUSSION
Meteorological Data

Precipitation differed substantially during the three growing 
seasons (Table 2) and was also quite unusual with respect to 
the average April to September rainfall from 1993 to 2012, 
which amounts to 360 mm. Indeed, the 2010 growing season 
was fairly rainy (i.e., in the upper third quartile, 534.6 mm), 
whereas the following two growing seasons were rather dry 
(i.e., both in the first quartile, 199.8 mm in 2011, 150.6 mm in 
2012). Rainfall in 2010 and 2011 was evenly spread throughout 
the season. Contrarily, the low 2012 precipitation occurred 
almost exclusively during the maize vegetative phase. No 
precipitation occurred during the early tassel (R1) and kernel 
blister (R2) reproductive stages, which are known to be among 
the most critical stages of maize growth (Abendroth et al., 
2011; NeSmith and Ritchie, 1992). The daily average reference 
evapotranspiration (ET0) was 4.01, 4.42, and 4.08 mm d–1, 
whereas the ET0 across the entire season was 569, 672, and 
717 mm in 2010, 2011, and 2012, respectively.

Table 2. Date and total rainfall during the maize growing season in 2010, 2011, and 2012 at sowing, harvesting, beginning of relevant physiological 
stages, and normalized difference vegetation index survey days.

Maize growth 
stage†

2010 2011 2012
Date Cumulative rainfall Date Cumulative rainfall Date Cumulative rainfall

mm mm mm
Sowing 22 Apr. 0.0 4 Apr. 2.4 21 Mar. 0.0
VE 29 Apr. 5.2 13 Apr. 8.6 4 Apr. 1.2
V7 19 May 129.8 8 May 18.0 5 May 54.6
R1 4 July 292.6 25 June 136.6 26 June 134.8
R2 15 July 292.8 10 July 148.0 7 July 134.8
R4 12 Aug. 410.0 6 Aug. 191.0 2 Aug. 141.0
R6 1 Sept. 534.6 24 Aug. 199.8 19 Aug. 150.6
Harvest 10 Sept. 539.0 2 Sept. 200.0 11 Sept. 251.4

† VE, beginning of emergence; V7, seven-leaf; R1, early tassel; R2, kernel blister; R4, beginning dent; R6, maturity.
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Yield Spatiotemporal Variability
The average maize yield (14% moisture) was 6.0 Mg ha–1, with 

large differences among the 3 yr: 5.5, 8.8, 3.9 Mg ha–1 in 2010, 
2011, and 2012, respectively. Unfortunately, maize production 
in 2010 was compromised by a heavy wind and hail storm 
(?60 mm of rainfall) occurring on 13 August (Scudiero et al., 
2013). Hail and wind damaged many mature plants, making it 
impossible for the combine to harvest the ears. Due to the size of 
the study site, the storm hit the entire field uniformly. Therefore, 
yield spatial variability at the field scale was not believed to be 
too severely affected (Scudiero et al., 2013).

Spatial variance (4.6 Mg ha–1) and temporal variance 
(9.2 Mg ha–1) across the 3 yr suggested that climatic conditions 
governed the production variability even more than soil 
variability. This is usually expected, even in areas characterized 
by contrasting soils (McBratney et al., 2005).

The three yield maps shown in Fig. 3 clearly highlight a 
spatial pattern at the field scale. The most productive area in 
the 3 yr was SSMU IV, while, probably due to rainfall scarcity 
and low water holding capacity (Table 1), the sandy SSMU III 
was characterized by a yield significantly lower than SSMU 
IV in 2011 and 2012 (Fig. 3d). Salinity did not significantly 
affect maize yield in the rainy 2010, but affected maize yield 
much more in the following 2 yr, when the saline SSMU II was 
the least productive area. In 2011, SSMUs I and V were also 
characterized by the lowest yield values.

Yield data showed significant (p < 0.01) linear correlations 
between 2010 and 2011, 2010 and 2012, and 2011 and 2012, 
with Pearson correlation coefficients (r) of 0.50, 0.24, and 0.40, 
respectively. According to the cross-covariograms (Fig. 4), 

positive spatial dependency among yield maps was also observed. 
The strength of the spatial correlations varied according to the 
Pearson correlation coefficients. The stronger correlation at 20 m 
(i.e., one lag distance) was clearly observed between 2010 and 
2011, with a cross-covariance ?1.0. Smaller cross-covariance 
values were observed between 2011 and 2012 and between 2010 
and 2012, at 0.75 and 0.38, respectively. The distance at which 
the cross-covariance was <0.05 was 125, 114, and 90 m for the 
year couples 2010 with 2011, 2011 with 2012, and 2010 with 
2012, respectively.

As the spatial structure of production was considered fairly 
stable with time, a maize yield spatial trend map was created 
(Fig. 5a). The map confirmed that SSMU IV was characterized 
by the highest yield, with the production in the saline SSMU II 
lower than in the coarse-textured SSMU III but higher than in 
SSMUs I and V (Fig. 5b). Low temporal variability is supported 
by the significant correlations described above, although their 
low values imply that yield temporal variability through the 
growing seasons was considerable.

Figure 5c shows the yield temporal variability map for 
the study area. A clear pattern cannot be identified in Fig. 5. 
Nevertheless, the low-production and moderately saline SSMUs 
I and V were characterized by temporal variability significantly 
lower than the other three units (Fig. 5d).

Normalized Difference Vegetation 
Index Variability Analysis

The CropCircle NDVI data sets were interpolated into 10- 
by 10-m grid maps (Fig. 6) giving low cross-validation errors 
(Table 3). In all 3 yr, NDVI decreased from Surveys i to iii, 

Fig. 3. Yield maps at the study site in (a) 2010, (b) 2011, and (c) 2012; and (d) average yield at each site-specific management unit (SSMU) through the 
3 yr. Within years, SSMUs topped with the same letter are not significantly different (P < 0.05).
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as typically observed in maize during the reproduction phase 
(Cairns et al., 2012; Raun et al., 2005; Solari et al., 2008). The 
spatial variability of NDVI maps generally increased during 
each growing season, indicating that stresses occurring during 
R1 and R2 can strongly limit production (Abendroth et al., 
2011; NeSmith and Ritchie, 1992). The NDVI spatial variances 
for Surveys i, ii, and iii were 0.6 ´ 10–3, 1.9 ´ 10–3, and 
2.5 ´ 10–3, respectively, in 2010; 0.5 ´ 10–3, 6.7 ´ 10–3, and 
7.5 ´ 10–3, respectively, in 2011; and 1.4 ´ 10–3, 1.1 ´ 10–3, and 
4.5 ´ 10–3, respectively, in 2012.

All NDVI maps were significantly correlated (p < 0.05) with 
the relative yield map (Table 4), showing that they could be used 
to represent maize yield. Indeed, Weber et al. (2012) concluded 
that anthesis (right before R1) and R2 are the stages when 
maize reflectance best reflects maize grain yield. The stronger 
relationships between NDVI and the yield maps were observed 
in Surveys ii, iii, and iii for the 2010, 2011, and 2012 growing 
seasons, respectively; in these three cases, the cross-covariance at 
20 m and the distance where it was <0.05 were 0.58, 0.44, and 
0.56 and 180 m, 151 m, 98 m, respectively. Spatial correlations 
between NDVI and yield in 2010 were of the same magnitude 
as those related to 2011 and 2012, confirming that the spatial 
pattern of maize production was not affected too severely by the 
wind and hail storm that occurred on 13 Aug. 2010. The NDVI 
also showed significant correlations with plant height, aerial 
biomass, and leaf osmotic potential measured at some selected 
locations in the study area in 2010 and 2011 (Scudiero et al., 
2011, 2014).

Interannual Normalized Difference 
Vegetation Index Variability

The NDVI interannual spatial trend map (Fig. 7a) was 
strongly (p < 0.05) correlated with the yield spatial trend map 
(Table 5). The correlation was characterized by an r value 

Fig. 4. Experimental (squares) and fitted (dashed line) cross-
covariograms between yield data in (a) 2010 and 2011, (b) 2011 and 
2012, and (c) 2010 and 2012.

Table 3. Normalized difference vegetation index (NDVI) data summary statistics: mean and range, exponential isotropic semivariogram specifications, 
and cross-validation root mean square error (RMSE).

Year Date
NDVI 
survey Avg. Min. Max. SD

Exponential isotropic semivariogram 
specifications Cross-validation 

RMSENugget Partial sill Lag Range
——— m ———

2010 9 July i 0.696 0.503 0.750 0.024 0.0001 0.0002 20 47.1 0.02
23 July ii 0.638 0.485 0.718 0.044 0.0001 0.0003 25 195.3 0.02
16 Aug. iii 0.576 0.357 0.694 0.051 0.0001 0.0003 20 114.6 0.03

2011 4 July i 0.702 0.593 0.743 0.022 0.0001 0.0001 20 68.6 0.02
14 July ii 0.680 0.561 0.750 0.026 0.0001 0.0002 20 77.3 0.02
5 Aug. iii 0.568 0.349 0.827 0.087 0.0001 0.0006 20 158.0 0.04

2012 15 June i 0.734 0.576 0.829 0.038 0.0004 0.0003 20 164.6 0.04
27 June ii 0.703 0.572 0.771 0.035 0.0000 0.0003 20 84.0 0.02
19 July iii 0.583 0.419 0.713 0.065 0.0000 0.0005 20 148.0 0.02

Table 4. Pearson correlations between yield maps in 2010, 2011, and 
2012 and the normalized difference vegetation index (NDVI) provided 
by each survey (i, ii, and iii) and the intra-annual NDVI spatial trend 
(NDVI_SpT) and temporal variability (SDVI). All correlations are sig-
nificant at the p < 0.05 level.

Yield map
Pearson correlation

i ii iii NDVI_SpT SDVI
2010 0.21 0.58 0.41 0.57 0.21
2011 0.43 0.26 0.48 0.51 0.46
2012 0.48 0.39 0.69 0.68 0.60
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Fig. 5. (a) Yield map and (b) comparison within soil-specific management units (SSMUs) of maize yield spatial trend (SpT); and (c) variability map and 
(d) comparison within SSMUs of maize yield temporal variation (SD). Columns topped with the same letter are not significantly different (P < 0.05).

Fig. 6. Normalized difference vegetation index (NDVI) maps from (a) 9 July 2010, (b) 23 July 2010, (c) 16 Aug. 2010, (d) 4 July 2011, (e) 14 July 2011, 
(f) 5 Aug. 2011, (g) 15 June 2012, (h) 27 June 2012, and (i) 19 July 2012.
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higher than most of the correlation coefficients between the 
single NDVI surveys and the corresponding yield maps. The 
interannual NDVI spatial trend was also significantly correlated 
(r = 0.23, p < 0.05) with the root-zone clay fraction measured 
at the soil sampling locations (data not shown). Indeed, as 
highlighted by Scudiero et al. (2013) at the study site, high yield 
was associated with high clay contents. On the other hand, the 
NDVI spatial trend did not show significant correlations with 
soil salinity, organic C content, or bulk density, which, together 
with clay content, are responsible for the yield spatial variability 
at the study site (Scudiero et al., 2013).

The interannual SDVI map (Fig. 7b) was positively correlated 
(p < 0.05) with the yield spatial trend map (Table 5), indicating 
that the lower the NDVI temporal variability is through the 
years, the lower the yield. Maps of NDVI_SpT and SDVI were 
characterized by different relationships between the SSMUs 
(Table 6). The interannual NDVI spatial trend was significantly 
different among all SSMUs. The highest NDVI was for SSMU 
IV, followed by SSMUs III, I, II, and V, similarly to what was 
observed for the yield spatial trend map (Fig. 5b). On the other 
hand, the significant differences in SDVI values between SSMUs 
(Table 6) confirmed that the effects of saline stress on crop-
canopy reflectance are more stable with time than other types 
of stress. Indeed, the saline SSMU II and the moderately saline 
SSMUs I and V showed much lower SDVI values than SSMUs 
III and IV. On the other hand, SSMU III was not significantly 
different from SSMU IV in terms of SDVI, which is contrary to 
what was observed for the spatial trend maps of NDVI (Table 6) 
and yield (Fig. 5b). Moreover, SDVI and root-zone soil salinity 
were significantly correlated (r = –0.33, p < 0.01) at the sampling 
locations, while no significant correlation was observed between 
SDVI and clay content, soil organic C, or bulk density.

The low temporal variability of crop reflectance in saline 
soils was already highlighted for salinity values higher (Furby 
et al., 2010; Madrigal et al., 2003) and at spatial resolution 
larger (Furby et al., 2010; Lobell et al., 2010; Madrigal et al., 
2003) than those characterizing this study. Indeed, the results 
presented show that the relationship is also significant when 
ground-based NDVI measurements at a fairly high spatial 
resolution (100 m2) are used over a field characterized by high 
spatial heterogeneity of soil properties and moderate to fairly 
high salinity values (Fig. 2b; maximum EC1:2 = 3.3 dS m–1 » 
ECe = 19.8 dS m–1). However, it was not possible to build a 
regression-based spatial model relating low temporal canopy 

reflectance variability to soil salinity, as suggested by Lobell 
et al. (2010), because the resulting salinity estimations were 
characterized by large errors. Lobell et al. (2010) used 6 yr of 
reflectance data in a large area (17000 km2) where salinity 
was likely to be the main reason for crop stress. In this study, 
the effects of other stress types on crop status are remarkable 
(Scudiero et al., 2013). Possibly, 3 yr of data might have not 
been enough to quantify the effects of soil salinity alone on 
crop growth.

Intra-annual Normalized Difference 
Vegetation Index Variability

The intra-annual NDVI spatial trend maps (not shown) 
generally exhibited higher r values with their respective yield 
maps than the single NDVI surveys did (Table 4). Again, the 
intra-annual SDVI maps (Fig. 8) showed that zones with low 
annual NDVI temporal variation were generally characterized 
by low maize yield (Table 4). Nevertheless, these NDVI temporal 
variability relationships with yield were characterized by low r 
values, indicating that most of the intra-annual NDVI temporal 
variability was not linked to yield spatiotemporal variability.

The intra-annual SDVI varied greatly within the five SSMUs 
(Fig. 8d). The SDVI map in 2011 was characterized by the highest 
values, recorded in SSMU IV. The lowest SDVI values were 
observed in SSMU II as in 2012. In general, the SSMUs I, II, 

Fig. 7. Interannual normalized difference vegetation index (a) spatial trend (NDVI SpT) and (b) temporal variability (SDVI).

Table 6. Mean values of the normalized difference vegetation index 
spatial trend (NDVI_SpT) and temporal variability (SDVI) for the five 
soil-specific management units (SSMUs). 

SSMU NDVI_SpT SDVI
I 0.651 c† 0.215 b
II 0.646 d 0.200 c
III 0.659 b 0.248 a
IV 0.671 a 0.248 a
V 0.641 e 0.197 c

† Means followed by different letters are significantly different between SSMUs 
at the p < 0.05 level according to the Kruskal–Wallis test

Table 5. Pearson correlations between maps of yield spatial trend and 
temporal variability with interannual NDVI spatial trend and temporal 
variability. All correlations are significant at the p < 0.05 level.

Yield map
Pearson correlation

Spatial trend Temporal variability
Spatial trend 0.67 0.59
Temporal variability 0.10 0.11
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and V were characterized by low SDVI values during the 3 yr. In 
the rainy 2010, SSMU III (low clay and high bulk density) was 
characterized by the highest SDVI values. In the following drier 
years, SSMU III came second to SSMU IV in terms of SDVI 
values. In particular, in 2012, the SDVI in SSMU III was not 
significantly different than that in SSMU V, yet still higher than 
that in SSMU II. The intra-annual SDVI was only significantly 
correlated with root-zone salinity in 2010 (r = –0.31, p < 0.01). On 
the other hand, it was significantly correlated with clay content 
only in 2010 (r = –0.36, p < 0.01) and 2011 (r = 0.27, p < 0.01). No 
significant correlations were observed between soil organic C or 
bulk density and intra-annual SDVI.

At the five monitoring stations, the evapotranspiration 
reduction coefficient Ks (Eq. [6]) quantified water and/or salinity 
stresses during the three growing seasons. Plants were affected 
by soil salinity stress at Stations A, C, and D, where the salinity 
was above the ECe_threshold = 1.7 dS m–1 (Table 1). Because 
Station C was characterized by a very shallow water table during 
the 3 yr (?50–60 cm), the daily Ks (= 0.64) was influenced 
only by salt stress. In 2011 and 2012, both salinity and water 
stress affected crop development at Stations A and D. Stations B 
and E were not affected by salt stress because the ECe was much 
smaller than the ECe_threshold (Table 1). However, severe water 
stress was experienced at these stations, particularly in 2011 and 
2012, because they were both located on paleochannels in SSMU 
III with a sand percentage of ?70%. The daily Ks estimates at 
Stations B and E were strongly correlated, with r = 0.99 in 2011 
and r = 0.86 in 2012, whereas no significant correlations were 
observed between the Ks values of the other stations, indicating 

that the SSMU delineation properly identified fairly homogeneous 
soil clusters that were noticeably different between each other.

The relationship between the NDVI change through surveys 
(DNDVI) and Ks can help describe and understand the influence 
of the two stress types on crop development (Fig. 9). The data from 
Stations B and E relative to the last NDVI surveys of 2011 and 
2012 were removed from the relationship because they showed 
a very large NDVI drop, typically observed in maize plants 
undergoing early canopy senescence due to strong stress events 
(Cairns et al., 2012; Raun et al., 2005; Wolfe et al., 1988). At these 
stations, the NDVI drop was caused by excessive water stress, 
with water contents very close to the wilting point. As a matter of 
fact, water stress around Station E was so extreme in 2012 that all 
plants died before ear formation (yield = 0 Mg ha–1).

About 44% (p < 0.05) of the NDVI change at the 
monitoring stations could be explained by SKs (Fig. 9), 
indicating that: (i) both saline and water stresses were of great 
influence on canopy reflectance at the study site; and (ii) in 
the reproductive phase before full maturity, the higher soil 
the salinity and/or water stress, the lower the (intra-annual) 
NDVI temporal variation. As suggested by Fig. 8, the efforts of 
mapping salinity using reflectance measurements from a single 
year encounter a great risk of producing poor results (Lobell et 
al., 2010): the intra-annual analysis does not allow emphasizing 
the soil features that are more stable with time, as multiyear 
analysis does (Lobell et al., 2010). Intra-annual analysis could 
be useful, on the other hand, to identify the areas of a field 
that are more affected by the factors limiting crop yield during 
a single growing season. This could potentially allow farmers 

Fig. 8. Intra-annual temporal variability of the normalized difference vegetation index (SDVI) in (a) 2010, (b) 2011, and (c) 2012; and (d) average SDVI 
at each site-specific management unit (SSMU) through the 3 yr. Within years, SSMUs topped with the same letter are not significantly different 
(P < 0.05).
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to plan site-specific management if similar conditions (e.g., 
meteorological) arise in following years.

It is worth noting that the relation showed in Fig. 9 described 
only plants under stress, and a non-stressed control is missing. 
Moreover, the collected data are suitable to describe only 
the NDVI decrease typically observed in the reproduction 
physiological phase of maize (Cairns et al., 2012; Raun et al., 
2005). It would also be of great interest to understand how the 
NDVI increase typical of the vegetative phase of maize could be 
influenced by water stress and/or salinity. In addition, the study 
of reflectance throughout the whole growing season would help 
reduce possible biasing effects of NDVI saturation typically 
observed in the late V and early R stages, especially in very 
healthy vegetation (Cairns et al., 2012; Gitelson, 2004; Raun 
et al., 2005). Indeed, saturated NDVI signals in healthy plants 
would lower the temporal variability of the NDVI, consequently 
weakening the relationship of the latter with soil salinity.

SUMMARY AND CONCLUSIONS
Spatiotemporal variability of maize yield is greatly affected 

by the spatial variability of soil properties (i.e., soil salinity) 
and temporal changes in meteorological conditions (i.e., water 
availability). These relationships were investigated in a field 
at the Venice Lagoon margin where crop production, canopy 
reflectance, and soil quality were monitored between 2010 and 
2012. The major challenge of this work was to discriminate the 
effects of saline and water stresses on the yield spatiotemporal 
variability using multiple surveys of ground-based crop 
reflectance acquired during the reproductive phase of maize.

The results confirm that the use of NDVI maps is a viable 
means of describing crop growth and production variability. In 
particular, the following specific outcomes were found:

•	 The analysis of intra-annual (i.e., within a single year) NDVI 
spatiotemporal variability provides a means of understand-
ing stress onset and impact on a crop according to soil vari-
ability and meteorological conditions. The combined action 

of the two stresses was responsible for much of the NDVI 
reduction (?44%) with time at some selected locations of 
the study field. However, the intra-annual analysis does not 
allow distinguishing between the two stress types.

•	 The interannual (i.e., across the 3 yr) NDVI spatiotem-
poral variability can identify areas where stress is fairly 
stable through the years and areas where soil-water content 
enhances or mitigates soil–plant interactions. The NDVI 
interannual temporal variability in saline areas was sig-
nificantly lower than in zones of optimal maize growth 
affected by water stress only. However, where the two stresses 
superposed, the interannual NDVI temporal variability was 
so small (even at low salinity values) that the distinction 
between the areas affected only by salinity and those affected 
also by water stress is unachievable.

•	 The low temporal variability of plant reflectance over saline 
soils was previously observed by others (Furby et al., 2010; 
Lobell et al., 2010; Madrigal et al., 2003) at large spatial reso-
lutions (>900 m2) and with salinity values generally higher 
than those observed at the Venice Lagoon margin (ECe < 20 
dS m–1). Contrary to most satellite sensors, ground-based 
NDVI acquisitions allow measuring crop reflectance at fairly 
high spatial resolution (?100 m2). The results show that 
interannual NDVI variability can be effectively used to assess 
soil salinity even over highly heterogeneous areas.

In conclusion, studying multiple-year crop reflectance 
data allows refining agronomical practices, especially in areas 
characterized by high soil spatial variability and the insurgence 
of various types of edaphic stress. In fact, the larger the number 
of growing seasons considered, the stronger the relationships 
between crop reflectance and soil properties become. Because 
soil salinity is a common issue around the world, studying 
canopy reflectance across multiple years can be very beneficial 
for precision agriculture practices (e.g., precision irrigation), 
particularly in environments where water availability is scarce or 
irrigation water quality is poor. Future research should focus on 
analyses of spatiotemporal soil–plant interactions at a regional 
scale by using high-resolution reflectance images provided by the 
latest generation of satellite sensors.
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