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Global Sensitivity Analysis for 
UNSATCHEM Simulations of Crop 
Production with Degraded Waters
T.H. Skaggs,* D.L. Suarez, and D.L. Corwin
One strategy for maintaining irrigated agricultural productivity in the face of 
diminishing resource availability is to make greater use of marginal quality 
waters and lands. A key to sustaining systems using degraded irrigation waters 
is salinity management. Advanced simulation models and decision support 
tools can aid in the design and management of water reuse systems, but 
at present model predictions and related management recommendations 
contain significant uncertainty. Sensitivity analyses can help characterize and 
reduce uncertainties by revealing which parameter variations or uncertain-
ties have the greatest impact on model outputs. In this work, the elementary 
effects method was used to obtain global sensitivity analyses of UNSATCHEM 
seasonal simulations of forage corn (Zea mays L.) production with differing 
irrigation rates and water compositions. Sensitivities were determined with 
respect to four model outcomes: crop yield, average root zone salinity, water 
leaching fraction, and salt leaching fraction. For a multiple-season, quasi-
steady scenario, the sensitivity analysis found that overall the most important 
model parameters were the plant salt tolerance parameters, followed by 
the solute dispersivity. For a single-season scenario with irrigation scheduling 
based on soil water deficit, soil hydraulic parameters were the most important; 
the computed salt leaching fraction was also strongly affected by the initial 
ionic composition of the exchange phase because of its impact on mineral 
precipitation. In general, parameter sensitivities depend of the specifics of a 
given modeling scenario, and procedures for routine use of models for site-
specific degraded irrigation water management should include site-specific 
uncertainty and sensitivity analyses. The elementary effects method used in 
this work is a useful approach for obtaining parameter sensitivity information 
at relatively low computational cost.

Abbreviations: CEC, cation-exchange capacity; EC, electrical conductivity; EFAW, 
threshold of plant available water ending irrigation; FAW, fraction of plant available wa-
ter;  IFAW, threshold of plant available water initiating irrigation; LF, leaching fraction; LR, 
leaching requirement; RZEC, root zone electric conductivity; SLF, salt leaching fraction; 
WLF, water leaching fraction.

Developing sustainable agricultural systems and meeting the growing 
food demands of the 21st century will require improved management of water and land 
resources (National Research Council, 2010; Foley et al., 2011; Jägerskog and Clausen, 2012). 
In the last century, growing food demand was satisfied through various technological inno-
vations, including a widespread expansion of irrigation such that irrigated cropland now 
constitutes almost 20% of all cropland. In meeting the food challenges of the current century, 
continued expansion of irrigation is not feasible due to diminishing land and water availabil-
ity (Falkenmark and Rockström, 2006; Rockström et al., 2009; Strzepek and Boehlert, 2010; 
Sposito, 2013). Still, irrigated agriculture produces nearly 40% of the global food harvest, 
and thus irrigated agriculture will remain crucial to meeting food demand. The challenge for 
irrigated agriculture going forward is to sustain productivity in the face of reduced resource 
availability and to do so in a way that minimizes negative environmental impacts (National 
Research Council, 2010; Foley et al., 2011; Jägerskog and Clausen, 2012).

One strategy for maintaining or increasing productivity is to make greater use of marginal 
quality lands and waters (Rhoades et al., 1992; Oster, 1994; Wichelns et al., 2007; Shahid 
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et al., 2013). In implementing such a strategy, a key factor for sus-
tainability is soil salinity. Irrigation waters, especially recycled or 
otherwise marginal quality waters, contain salts that can accu-
mulate in soils with time and reduce yields. In arid and semiarid 
regions where rainfall is not sufficient to flush the salts from the 
root zone, it is necessary to apply excess irrigation water to leach 
the soil. To avoid wasting water and to lessen impacts on ground-
water quality it is desirable that soil leaching be minimized to the 
extent possible (Rhoades and Suarez, 1977; Corwin et al., 2007; 
Letey et al., 2011).

Methods of varying complexity are available for calculating the 
effects of different irrigation regimes on salt leaching, soil salin-
ity, and crop yields (Corwin et al., 2007; Suarez, 2012). Classical 
guidelines for evaluating and managing soil salinity are based on 
the leaching fraction (LF) and leaching requirement (LR) concepts, 
where LF is the fraction of irrigation water that percolates below 
the root zone during a growing season and LR is the minimum 
LF that is required to maintain the root zone salinity at a level 
that does not reduce yields below acceptable limits (U.S. Salinity 
Laboratory Staff, 1954; Ayers and Westcot, 1985). The classical 
approach is among the simplest, and it is intended to be general, 
providing a conservative estimate of the leaching requirement that 
is appropriate across a range of soils and waters. A consequence 
of this generality is that in some cases the guidelines recommend 
more leaching than is necessary and overstate the negative impacts 
of irrigating with saline waters.

Given the increasing constraints on resources, the significance of 
any inefficiency in water and salinity management is magnified, 
and thus there is considerable interest in developing site-specific 
tools that can improve on the general guidelines. One approach is 
to use computer models that simulate in detail water flow and salt 
transport processes in the root zone (Corwin et al., 2007; Letey 
and Feng, 2007; Ditthakit, 2011; Letey et al., 2011; Oster et al., 
2012; Suarez, 2012). In these models, variably saturated water 
flow is typically simulated with the Richards equation, modified 
to account for root water uptake under conditions of salinity and 
water stresses. Models may include chemical speciation, precipi-
tation, and sorption reactions, with salt transport governed by 
advection–dispersion equations. The simulation models allow for 
consideration of site-specific soil, water, and crop parameters and 
can account for time-varying field conditions and processes (in 
contrast with the steady-state analysis of the classical guidelines).

While a modeling approach offers potential advantages, the tech-
nique is complex, and difficulties exist with respect to developing 
procedures for routine use. The models have a large number of 
parameters, many of which are likely to be unknown or unknow-
able for a particular application. Parameterization uncertainty 
can arise due to a lack of site-specific data or measurements, as 
well as the disparity between the small (plot or column) scales of 
the modeled processes and the large (field) scales that are relevant 

to irrigation and salinity management (e.g., Beven and Germann, 
2013). Hence, while current simulation models offer potential 
advantages, at present it is recognized that the accuracy of any 
particular simulation or management recommendation carries 
significant uncertainty (e.g., Skaggs et al., 2013).

Sensitivity analyses can help characterize and reduce uncertainties 
by revealing which parameter variations or uncertainties have the 
greatest impact on model outputs. Results of sensitivity analyses 
can also be useful for directing future research and data collec-
tion efforts. As detailed by Cacuci (2003) and Saltelli et al. (2008), 
among others, many approaches to sensitivity analysis exist. The 
most basic sensitivity measure is the local sensitivity coefficient, 
defined as the first derivative of a model output with respect to a 
model parameter or input. Many methods are available for comput-
ing local sensitivity coefficients efficiently, and the coefficients have 
a number of important uses in modeling applications (e.g., Skaggs 
and Barry, 1996, 1997). However, as a general measure of model 
behavior, the coefficients are limited in that they provide sensitivity 
information only at a single point in the parameter space. Global 
sensitivity methods (Saltelli et al., 2008), on the other hand, inte-
grate in some fashion sensitivities over the whole parameter space. 
In a review, Mishra et al. (2009) found several examples of global 
sensitivity analysis in the groundwater literature but concluded 
that such analyses were not yet part of mainstream modeling prac-
tice. Applications to vadose zone and/or crop models are similarly 
not abundant, but some examples include: sensitivity analysis of 
simulated soil moisture using a one-dimensional Richards equa-
tion (Mertens et al., 2005), sensitivity analysis of mobile–immobile 
model calculations of pesticide fate in soils (Cheviron and Coquet, 
2009), sensitivity analysis for parameter estimation in a dynamic 
crop model (Varella et al., 2010), and parameter sensitivity analysis 
for modeling tracer transport in clayey soils (Skaggs et al., 2013). 
Most relevant to the present work, Alzraiee and Garcia (2013) 
recently applied four global sensitivity methods to a soil hydro-
salinity model and found that the elementary effects method, the 
Monte Carlo filtering method, and the variance decomposition 
method all generated consistent results.

An important consideration for sensitivity analysis is that with 
complex models and modeling applications, sensitivity results are 
generally specific to a particular modeling scenario. For example, 
in the current context, a multitude of possible scenarios exists 
for degraded irrigation water management, and each scenario 
can have different degrees and types of uncertainty. An analysis 
aimed at a specific field and irrigation water may have relatively low 
uncertainty regarding certain soil properties such as, for example, 
cation-exchange capacity (CEC), whereas a more general analysis 
may require consideration of a greater range of parameter uncer-
tainty. Similarly, the type (or meaning) of uncertainty may vary 
from case to case. In some instances an assigned uncertainty might 
reflect the analyst’s knowledge (or lack thereof) of some soil physi-
cal property or its variability, whereas in other applications, such 
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as system design, it might be of interest to introduce uncertain 
design parameters to test the robustness of a proposed manage-
ment strategy. Thus, it is generally recommended that rather than 
seeking universal sensitivity results, sensitivity analysis should be 
made a routine part of any modeling analysis.

One explanation for why global sensitivity analyses are not yet 
common in vadose zone modeling is that the methods can be dif-
ficult to implement. Variance-based methods are among the best 
known and most powerful global sensitivity techniques, but they 
can be complicated to use and computationally expensive, typi-
cally requiring many thousands of model evaluations (e.g., Saltelli 
et al., 2008). For models with long run times, the computational 
requirements can be prohibitive. In such cases, less computation-
ally demanding approaches, such as the elementary effects method 
(Morris, 1991), are attractive, and although they lack some of the 
power of variance-based methods, they can nevertheless provide 
valuable sensitivity information.

Our objective with this work was to use the elementary effects 
method (Morris, 1991) to evaluate UNSATCHEM model param-
eter sensitivities when simulating seasonal irrigated cropping 
scenarios. The Morris (1991) method has relatively modest com-
putational requirements and permits an evaluation of the relative 
importance of model inputs and parameters. Example calculations 
are presented considering irrigation waters of differing quality and 
chemical composition. Parameter sensitivities are determined with 
respect to four model outputs or performance measures: relative 
crop yield, average root zone salinity, water leaching fraction, and 
salt leaching fraction. This work is intended to aid and encourage 
future research and development of probabilistic modeling tools 
and practices for the design and management of irrigation systems 
using marginal quality lands and waters.

66Methods
UNSATCHEM
Simulations of irrigated crop production were performed using 
UNSATCHEM (Suarez and Šimůnek, 1997). A detailed descrip-
tion of the full UNSATCHEM model is available elsewhere (Suarez 
and Šimůnek, 1997; Šimůnek et al., 2013). We present here a brief 
summary the model system as implemented in our simulations.

One-dimensional variably saturated water flow is simulated with 
the Richards equation,
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where q (cm3 cm−3) is the volumetric water content, h (cm) is the 
pressure head, K (cm d−1) is the hydraulic conductivity, t (d) is time, 
z (cm) is the vertical space coordinate, and S (d−1) is a sink term 

accounting for root water uptake. The soil hydraulic properties are 
given by (van Genuchten, 1980),
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where Se is the effective saturation; qs (cm3 cm−3) is the saturated 
water content; qr (cm3 cm−3) is the residual water content; Ks (cm 
d−1) is the saturated hydraulic conductivity; n, a (cm−1), and L are 
adjustable parameters; and m = 1 − 1/n. The sink term is formu-
lated in terms of a maximum or potential transpiration rate and 
multiplicative water and salinity stress terms (Skaggs et al., 2006c):

h p( ) ( ) ( ) ( )S z z h Tp=b a a p  	 [4]

where b (cm−1) is the normalized root density distribution, Tp (cm3 
cm−2 d−1) is the potential transpiration rate, and ah and ap are 
dimensionless stress response functions that specify reductions 
in uptake as a function of the soil matric, h (cm), and osmotic, p 
(cm) pressure heads, respectively. The stress response functions are 
(Skaggs et al., 2006c):
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where the parameters h50 (cm) and p50 (cm) specify, respectively, 
the matric and osmotic heads at which uptake is halved, and ph 
and pp are exponents determining the "steepness" of the transition 
from full to reduced uptake. The actual transpiration rate, Ta (cm3 
cm−2 d−1), is calculated as

R
a p h( ) ( ) ( )d

L
T T z h zp= b a a pò  	 [7]

where the integral is over the depth of the root zone, LR.

Major components of the UNSATCHEM chemical system 
are Ca, Mg, Na, K, SO4, Cl, alkalinity, and CO2. The model 
accounts for equilibrium complexation and precipitation–disso-
lution reactions between these constituents. Partitioning between 
the adsorbed and liquid phases is based on the Gapon equation. 
Multicomponent solute transport is modeled with the advection–
dispersion equation:
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where Ck (mmolc cm−3), ˆ
kC  (mmolc g−1), and kC (mmolc g−1) 

are, respectively, the liquid, solid, and adsorbed concentrations of 
the kth component; q (cm3 cm−2 d−1) is the volumetric water flux 
density; rb (g cm−3) is the soil bulk density, and D (cm2 d−1) is the 
dispersion coefficient. The dispersion coefficient is specified as qD = 
DLq + qDWt, where DL (cm) is the longitudinal dispersivity, DW 
(cm2 d−1) is the molecular diffusion coefficient, and t = q7/3/qs

2 
is the tortuosity factor.

Modeling Scenarios
Scenario I: Multiple Consecutive  
Growing Seasons
Oster et al. (2012) recently presented irrigation and cropping 
scenarios that were used to compare several transient-state model 
assessments of crop yield for different irrigation waters and irri-
gation regimes. We adopted the same scenarios for the present 
sensitivity analysis. Pertinent features of the Oster et al. (2012) 
modeling scenarios are as follows:

ʶʶ Simulations were for the production of forage corn using soil 
and weather variables representative of conditions in San 
Joaquin Valley, CA.

ʶʶ The simulated growing season was 20 wk. The potential tran-
spiration rate, Tp(t), was specified based on historical reference 
evapotranspiration, ET0(t), and a time-varying crop coef-
ficient, Kc(t), appropriate for corn production. The ET0 data 
were obtained from CIMIS (http://www.cimis.water.ca.gov, 
accessed 9 Apr. 2014), and the crop coefficient data are given 
in Table 2 of Oster et al. (2012). Evaporation was assumed neg-
ligible, so potential transpiration was Tp(t) = Kc(t)ET0(t).

ʶʶ The irrigation rate, I(t), for a given simulation was specified as 
a fraction, Kirr, of the potential transpiration rate,

irr p( ) ( )I t K T t=  	 [9]

Scenarios where the applied water was greater than (Kirr > 1) or 
less than (Kirr < 1) the potential transpiration rate were evaluated.

ʶʶ Each simulation was run for multiple (10 or more) consecu-
tive cropping seasons without any simulated fallow periods 
in between. Solute adsorption was not considered. Results 
were reported for the final season, when the system had 
achieved a quasi-steady state and any effects of initial con-
ditions were eliminated.

ʶʶ The irrigation water composition did not vary during a simula-
tion. Different waters were considered for different simulations. 
The first three waters listed in Table 1 have chemical composi-
tions similar to those used by Oster et al. (2012). The three 
waters listed have electrical conductivities (ECiw) of 0.5, 3, and 
6 dS m−1. In the high and the low EC waters, the Na/Ca ratio is 
1:1 and Cl is the dominant anion. The third water has a compo-
sition similar to that of the Pecos River in New Mexico.

ʶʶ The simulated profile was 2 m deep, and the maximum rooting 
depth was 1 m.

Our UNSATCHEM simulations differed from those reported by 
Oster et al. (2012) in the following minor respects: (i) we used a finer 
uniform spatial discretization (1 vs. 2 cm); (ii) our growing season 
was longer by 4 d (140 vs. 136 d); (iii) the composition of the Pecos 
irrigation water in Table 1 is from Rhoades et al. (1973) and differs 
from that used by Oster et al. (2012); (iv) reference evapotranspira-
tion was specified using daily historical values rather than weekly 
totals; and (v) we considered only two irrigation rates, Kirr = 0.9 
and Kirr = 1.1. Also, Oster et al. (2012) observed that root growth 
and root distributions used in the model simulations had little effect 
on the model outcomes. Details are given by Oster et al. (2012) for 
the root distributions used with most of the tested models, but the 
UNSATCHEM details were omitted. For our simulations, we used 
a fixed root density distribution comparable to that described by 
Oster et al. (2012) for the other models: the normalized root den-
sity increased linearly from a value of zero at the soil surface to its 
maximum value at z = −10 cm, was maximal between z = −10 and 

−50 cm, and then decreased linearly to a value of zero at z = −100 cm.

Scenario II: Single Growing Season
For the second scenario, we considered a single season of crop pro-
duction using agricultural drainage water for irrigation. The field 
was assumed to be initially nonsaline and nonsodic. The drainage 
water composition is given in Table 1 and was measured by Corwin 
et al. (2008) in a tile-drained field on the west side of San Joaquin 
Valley. The 20-wk growing season from Scenario I was used again 
with the same daily variation of potential transpiration. A differ-
ent irrigation boundary condition was implemented. Rather than 
irrigate based on a predetermined fraction of potential transpira-
tion, we supposed that daily observations of soil water content at 
the 25-cm soil depth were available for monitoring soil moisture. 
When the water content dropped below a specified threshold, 
daily irrigation was initiated at a fixed rate of 4 cm d−1. Irrigation 
continued until the daily water content observation showed that 
the water content had increased above a second predetermined 
threshold. The two threshold values were defined in terms of the 
remaining fraction of plant available water (FAW),

15,000

333 15,000
FAW

q-q
=

q -q
 	 [10]

where q15,000 and q333 are the water content at −15,000 and 
−333 cm pressure head, respectively. Specific values for the 
FAW thresholds which initiated (IFAW) and ended (EFAW) 
irrigation are discussed below in the “Parameter Ranges” section. 
UNSATCHEM was modified to implement this custom irrigation 
boundary condition.

The simulations were initiated with a relatively dry soil profile 
having a uniform pressure head of h = −5000 cm. The initial 
chemical composition of the soil solution was specified to be the 
low EC water from Scenario I, with the understanding that at the 
first time step the model would bring the solution and exchange 

http://www.cimis.water.ca.gov
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phases into equilibrium. The initial exchangeable Na and K per-
centages were fixed at 4 and 1%, respectively. As discussed below, 
the initial exchangeable Ca and Mg varied, as did the CEC.

Sensitivity Analysis
The elementary effects method (Morris, 1991) seeks to identify 
model parameters or inputs having the greatest impact on model 
outputs. The method is considered a screening approach because 
the emphasis is on categorizing the relative importance of model 
parameters rather than developing quantitative sensitivity 
measures. The technique is particularly useful for analyzing 
complex computer models having long run times because it 
requires relatively few model evaluations and does not assume 
or require any particular model structure (e.g., linearity). The 
method is global in the sense that model sensitivities over the 
whole parameter space are incorporated into the analysis.

Consider a model with output y and inputs (or parameters) x = 
[x1, x2, …, xk]. Assume all inputs have been scaled or transformed 
so that they take on values uniformly in the interval [0, 1]. The 
model parameter space is therefore the k-dimensional unit cube. 
The most common form of the elementary effects method is based 
on a p-level discretization of the unit parameter space having a uni-
form spacing of 1/(p − 1). Each xi can thus take on values from {0,1/
(p − 1), 2/(p − 1),..., 1}. The discretized space is termed W. Model 
evaluations are considered only at the grid points.

The elementary effect of the ith input is defined (Morris, 1991):

1 2 1 1 1 2( , , , , , , , ) ( , , , )
EE i i i k k

i
y x x x x x x y x x x- ++D -

=
D

  

  [11]

where D is a predetermined multiple of the grid spacing. Usually p 
is taken to be even and D º (p/2)/(p − 1). Evaluating Eq. [11] for 
various x drawn randomly from W produces a random sampling 
of EEi. An assessment of model sensitivity to the ith parameter is 
given by the mean (mi) and standard deviation (si) of the sampled 
EEi values. A large mean value indicates that xi is important to the 
computed model output y, whereas a large standard deviation indi-
cates that the importance of xi is dependent on interactions with 

other parameters or other nonlinearities. A potential drawback of 
using mi to gauge parameter importance is that in some cases nega-
tive and positive values of EEi can essentially cancel each other out 
when calculating the mean, and the resulting diminished mi value 
could lead to an undervaluation of the parameter’s significance. For 
this reason, Campolongo et al. (2007) recommended also calculat-
ing mi*, which is defined as the mean of the absolute value of EEi. 
Note that while Eq. [11] has the same general form as a standard 
local sensitivity coefficient, the perturbation D is much larger than 
would be used to approximate a derivative.

Morris (1991) devised an efficient method for generating r samples 
of EEi for each model parameter. For a model with k inputs or 
parameters, the Morris (1991) method requires r sequences of k + 
1 model runs, for a total of r(k + 1) runs. The elementary effects 
mi and si for each parameter are determined from the generated 
r samples of EEi. Morris (1991) and Saltelli et al. (2008) give full 
algorithmic details for implementing the procedure efficiently. The 
outcome of the sensitivity analysis can depend on the choice of the 
parameters r and D = (p/2)/(p − 1). The results presented below are 
for r = 30, D = 2/3, and p = 4. We discuss these parameter choices 
in greater detail in the Discussion section.

Performance Measures
We evaluate parameter sensitivities with respect to four model 
outcomes: (i) crop yield, (ii) average root zone salinity, (iii) water 
leaching fraction, and (iv) salt leaching fraction. The first perfor-
mance measure is a primary consideration from an agricultural 
production standpoint, while the second is an indication of the 
effects of an irrigation regime on soil quality. The final two mea-
sures are important for judging impacts on groundwater quality and 
salt balances, increasingly a focus of regulation. The performance 
measures are interrelated, all being determined or affected by the 
salt and water balances in the root zone. In Scenario I, performance 
measures were evaluated for the final simulated growing season in 
which the system had achieved a quasi-steady state.

Relative crop yield was calculated as (De Wit, 1958),

a p
ˆ ˆ/Y T T=  	 [12]

Table 1. Irrigation water compositions.

Water type EC† TDS† Ca Mg Na K HCO3 SO4 Cl

dS m−1 mg L−1 ————————————————————————— mmolc L−1 —————————————————————————

Na/Ca Cl‡ 0.5 234 1.9 0.1 1.9 0.1 0.2 0 3.8

Na/Ca Cl‡ 6 3139 27.4 0.1 27.4 0.1 0.2 0 54.8

Pecos‡§ 3 2417 17.0 9.1 11.4 0.08 3.1 22.4 12.1

Drainage¶ 4.3 4158 25.3 13.5 23.7 0.5 1.2 54.6 6.4

† EC, electrical conductivity; TDS, total dissolved solids.
‡ Oster et al. (2012).
§ Rhoades et al. (1973).
¶ Corwin et al. (2008).
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where âT  and p̂T  are the seasonal cumulative totals for actual 
and potential transpiration, respectively. Root zone electric con-
ductivity (RZEC) was taken to be the depth average of the soil 
water electrical conductivity (ECsw) profile at the end of the 
growing season,

swRZEC EC
RR

1
d

L
z

L
= ò 		  [13]

Note that RZEC can be determined from model outputs but that 
the model itself does not use this quantity. The water and salt leach-
ing fractions were defined, respectively, as

R 0WLF LJ J= 	  [14]

R 0SLF LQ Q=  	 [15]

where 
RLJ  and J0 are the seasonal cumulative water fluxes at 

the bottom of the root zone and the soil surface, respectively, and 

RLQ and Q0 are the corresponding salt mass fluxes. The salt flux at 
the base of the root zone was not calculated directly by the model 
but was determined from model outputs as

rz rzR 2 1 0[ ( ) ( )]LQ M t M t Q= - +  	 [16]

where Mrz(t1) and Mrz(t2) are the salt mass contained in the root 
zone at the beginning and end of the season, respectively, and, 
following UNSATCHEM conventions, downward f luxes are 
negative values.

Parameter Ranges
Table 2 lists model parameters considered in the sensitivity analyses 
and the parameter ranges (or uncertainties) assigned to them. As 
noted previously, parameter uncertainty depends on the particular 
modeling application. The parameter ranges considered here are 
fairly broad. It is likely that for specific field applications many 
of the parameter ranges could be narrowed given some limited 
amount of soils characterization data. The ranges given in Table 
2 for the soil hydraulic parameters (qr, qs, a , n, Ks, L) correspond 
approximately to the range of textural-class-average parameter 
values reported by Schaap et al. (2001), excluding the two coarsest 
textures (sand and loamy sand). The plant parameter (h50, ph, p50, 
pp) values used by Oster et al. (2012) for forage corn are approxi-
mately at the center of the ranges given in Table 2. Osmotic uptake 
reduction parameters (p50, pp) are usually specified based on an 
assumed correspondence with plant salt tolerance parameters. The 
range given in Table 2 for pp is the range observed for the corre-
sponding salt tolerance exponent for forage corn (van Genuchten 
and Gupta, 1993). The range for p50 is approximately ±1000 cm 
about the value used by Oster et al. (2012); this assumed range 
will be further discussed in the Results section. The range given 

for h50 is from Cardon and Letey (1992) and is the range expected 
for corn based on the experimental work of Ehler (1983). Relatively 
little is known about the parameter ph. Typically the value ph » 
3 is used based on an assumed correspondence with the salt toler-
ance exponent (Skaggs et al., 2006c). The range given in Table 2 is 
centered around ph = 3 and is comparable in size to that prescribed 
for pp. Oster et al. (2012) used a dispersivity value of DL = 8.6 cm. 
Our specified DL Î [5 cm, 15 cm] is based on experience and a 
rule-of-thumb that says the dispersivity is approximately equal to 
one-tenth of the transport distance (e.g., Skaggs and Leij, 2002). 
The parameter ranges given for molecular diffusion and soil bulk 
density encompass commonly encountered values; experience 
suggests these parameters are not likely to be among the most 
important input factors.

For Scenario II, additional uncertain parameters are the irrigation 
threshold parameters IFAW and EFAW, the CEC, the initial ratio 
of exchangeable calcium to magnesium (ECa/EMg), and the Gapon 
selectivity coefficients (KMg-Ca, KCa-Na, and KCa-K). Irrigation 
scheduling guidelines based on moisture depletion typically advise 
irrigating when plant available water is about 40 to 60%. The ranges 

Table 2. Input parameter ranges.

Parameter† Units

Range

Min. Max.

Soil hydraulic parameters

qr
cm3 cm−3 0.04 0.12

qs
cm3 cm−3 0.35 0.5

a cm−1 0.005 0.03

n 1.2 2

Ks cm d−1 8 50

L −1.5 0.5

Plant parameters

ph 2 4

h50 cm −6500 −2500

pp 1.6 4

p50
cm −7500 −5500

Transport parameters

rb
g cm−3 1.2 1.8

DW cm2 d−1 0.0001 0.001

DL cm 5 15

Soil chemical parameters (Scenario II only)

CEC mmolc kg−1 100 200

KMg:Ca 0.65 0.95

KCa:Na (mmolc L−1)1/2 1.95 2.25

KCa:K (mmolc L−1)1/2 0.2 0.5

ECa/EMg 0.5 7

Irrigation parameters (Scenario II only)

IFAW 0.3 0.6

EFAW 0.7 1.0

† See “Methods” section for definitions of the parameters.
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specified for the soil chemical parameters are broad and appropriate 
for a general analysis such as the current work; analyses for specific 
fields would permit lower parameter uncertainties.

66Results and Discussion
Scenario I
We first consider the variation in model outputs generated by vary-
ing the parameters over the ranges indicated in Table 2. Table 3 
gives the water and salt applications for the six modeled scenarios 
(three water compositions ´ two application rates), and Table 4 
presents the corresponding minimum, maximum, and mean values 
of the four model outputs. The Table 4 results are based on r(k + 
1) = 30 ´ (13 + 1) = 420 realizations for each of the six scenarios.

As shown in Table 4, the low EC water (0.5 dS m−1) scenarios 
generated some variation in crop yield, although as can be seen 
by the closeness of the mean to the maximum value, the yield 
distribution was highly skewed, with nearly all of the realizations 
resulting in yields of 97 to 100% for Kirr = 1.1 and 87 to 89% for 
Kirr = 0.9. A 90% crop yield would be the maximum possible for 
Kirr = 0.9 scenarios, where the depth of applied water was equal 
to 90% of the total potential transpiration. The small number of 
realizations that had lower yields occurred when n and Ks where 
both on the high end of the ranges in Table 2 and h50 and p50 were 
on the low end. Larger n and Ks values in Eq. [2] and [3] lead to 
more rapid soil drainage and lower water contents, while smaller 
h50 and p50 values correspond to lower water stress tolerance. In 
these few simulations, the combination of lower soil water contents, 
increased drainage, and low water stress tolerance resulted in lower 
water uptake and yields.

The highest EC water (6 dS m−1) produced substantially lower 
yields, with mean values of 66 and 73% for the low and high irriga-
tion rates, respectively. The yields varied considerably, ranging from 
60 to 71% with Kirr = 0.9 and 64 to 82% with Kirr = 1.1. Results 
for the middle EC irrigation water (3 dS m−1) were intermediate 
of the other two cases with respect to both the mean yield and the 
range of variation (Table 4).

Yield, root zone EC, and the water leaching fraction have direct, 
general relationships: increases in RZEC correspond to decreases 
in yield, while decreases in WLF correspond to increases in RZEC. 

Given those relationships, the means and ranges for RZEC and 
WLF in Table 4 are consistent with those discussed for yield. The 
salt leaching fraction is more complicated due to precipitation–
dissolution reactions. The considered irrigation waters (Table 1) 
represent different extremes with respect to the potential for salt 
precipitation. The Pecos water contains appreciable HCO3 and 
SO4, and, when concentrated through the action of root water 
uptake, provides chemical conditions favorable for the precipita-
tion of gypsum (CaSO4×H2O) and calcite (CaCO3). The two Na/
Ca Cl waters, on the other hand, do not have any sulfate and have 
atypically low alkalinity values that limit calcite formation. In the 
simulations, both the high and low EC waters with Na/Ca Cl com-
position generated a small amount of calcite in the root zone. The 
high EC water in Table 1 has a very large Ca to alkalinity ratio, and 
the alkalinity in that case was a limiting factor for calcite forma-
tion. The total amount of precipitation with the high EC water was 
minor relative to the amount of salt added at the surface (Table 
3), so the fraction of applied salt leaving the root zone approached 
100% in all realizations (Table 4). With the low EC water, the 
generated calcite mass was comparable to that produced with the 
high EC water, but on a percentage basis, that mass was more 
consequential, especially in the Kirr = 0.9 simulations, where salt 
removal by precipitation reduced SLF to 90% on average (Table 4). 
With the Pecos water, both calcite and gypsum were precipitated in 
significant quantities, and the salt removal reduced SLF on average 
to 66% for Kirr = 0.9 and 71% for Kirr = 1.1 (Table 4).

Figure 1 shows elementary effects mi* and si computed for crop 
yield. The bars for mi* are colored light green if mi was positive 
and dark green if mi was negative. Evaluating elementary effects 
and determining the relative importance of model parameters 
and their interactions typically requires some subjective judg-
ment and interpretation (Morris, 1991), but the basic idea is to 
identify parameters or groups of parameters having effects that 

Table 3. Water and salt applications for simulated growing seasons, 
Scenario I.

Applied salt

Irrigation rate , Kirr

Applied 
water

Na/Ca Cl, 
EC = 3

Na/Ca Cl, 
EC = 6

Pecos, 
EC = 3

cm ————————  mg cm−2 ————————

0.9 65.3 15.3 205 158

1.1 79.8 18.7 250 193

Table 4. Summary of model outputs for Scenario I.†

Irrigation water

Na/Ca Cl, EC = 0.5 Na/Ca Cl, EC = 6 Pecos, EC = 3

Kirr Min. Max. Mean Min. Max. Mean Min. Max. Mean

Relative yield, Y (%)

0.9 77 89 89 60 71 66 76 84 81

1.1 87 100 99 64 82 73 81 97 91

Depth-averaged root zone electrical conductivity, RZEC (dS m−1)

0.9 2 11 8 12 17 14 7 13 10

1.1 1 2 2 10 14 12 6 9 7

Water leaching fraction, WLF (%)

0.9 0.04 14 1 21 33 27 6 16 10

1.1 9 21 10 26 42 33 12 26 17

Salt leaching fraction, SLF (%)

0.9 73 96 90 99 100 100 62 71 66

1.1 93 100 96 99 100 100 68 77 71

† Based on 420 realizations for each of the six Kirr–water pairs.
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are substantially different. Small differences are generally not con-
sidered important.

Starting with the highest EC irrigation water (6 dS m−1) and 
lowest irrigation rate (Kirr = 0.9), we can distinguish three groups 
of parameters (Fig. 1c). The mean effect mi* for the plant salt toler-
ance parameter p50 is considerably larger than that for any other 
parameter, indicating p50 was the most important or influential 
parameter with respect to predicting crop yield for that water and 
irrigation regime. Further, the modest size of si (relative to mi*) for 
p50 indicates that the significance of p50 was not strongly depen-
dent on the values of other parameters. An intermediate level of 
significance is assigned to the salt tolerance exponent pp and the 
solute dispersivity DL. The remaining parameters are of compara-
tively minor significance, with rb and DW having essentially no 
effect at all. Among the parameters with lower mean effects, we 
note that the soil hydraulic parameters a and Ks and the water 
stress parameters h50 have si > mi*, indicating that in this scenario 
the influence of these parameters varied considerably depending 
on the values of other parameters.

The elementary effects computed for the same water at the higher 
irrigation rate (Kirr = 1.1) were similar except that in this case 
pp had a larger mean effect that was on par with the mean effect 
obtained for p50 (Fig. 1d). With the Pecos irrigation water (3 dS 
m−1), pp, p50, and DL were again of high or intermediate impor-
tance (Fig. 1e,f), as was the hydraulic parameter a , particularly 
in the case of Kirr = 0.9 (Fig. 1e). Parameter a again had si > mi*, 
indicating a high level of interaction with other parameters.

In Fig. 1c–1f, the elementary effects EEi computed for p50 were 
all negative, so mi = mi*. The elementary effects method is mainly 
concerned with qualitative groupings of parameters, but a quanti-
tative interpretation of mi in this cases is as follows: given all model 
parameters within the ranges prescribed by Table 2, decreasing p50 
by D = 2/3 of the parameter’s specified range produced, on average, 
an increase in yield of 2/3 (−mi). For example, the value mi* » −mi 
= 0.07 for parameter p50 in Fig. 1c indicates that decreasing p50 by 
1337 cm produced an average increase in yield of (2/3)0.07 = 0.05. 
The corresponding average yield increases associated with similarly 
increasing pp or decreasing DL were both 0.02 (Fig. 1c). Similar 

Fig. 1. Scenario I elementary effects computed with respect to crop yield (Y) for different irrigation water compositions and irrigation rate constants 
(Kirr). Bars for mi* are light green if mi was positive and dark green if mi was negative.
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increases may be inferred from Fig. 1d–1f. The sign of mi for DL 
might seem counterintuitive in that decreasing dispersion would 
be expected to correspond to higher solute concentrations and thus 
decreases in yield. However, in this case lower dispersion also led to 
increased solid formation, which reduced solution concentrations.

The same reasoning regarding mi* when applied to the other model 
parameters in Fig. 1c–1f (with some nuance allowing for cases with 
significant numbers of both negative and positive EEi) leads to 
the conclusion that similarly perturbing any of the parameters 
identified above as belonging to the least significant groups led, 
on average, to changes in yield that were usually much less than 
0.01. Hence, the importance of that parameter group was not just 
low relative to that of the others, it was low in the absolute sense 
of not having a practically significant effect on calculated yield.

Figures 1a and 1b show the elementary effects computed for yield 
using the good quality (low EC) irrigation water. For the lower 
irrigation rate (Fig. 1a), the most important parameter was a , and 
its influence was again strongly affected by the values of other 
parameters. With the higher irrigation rate, several of the hydrau-
lic and plant parameters have comparable mean effects, and many 
show strong dependencies on the values of other parameters (Fig. 
1b). However, consideration of the magnitude of the elementary 
effects, as well as the narrow range of yields computed with ECiw 
= 0.5 dS m−1 (Table 4, as discussed above), leads to the conclusion 
that variations in model parameters were not greatly affecting the 
computed yield, which was always close to the maximum possible 
for a given irrigation rate (Kirr).

As noted, yield, RZEC, and WLF have direct relationships, so it 
is not unexpected that the computed elementary effects for the 
three performance measures would be similar. For the 3 and 6 dS 
m−1 irrigation waters, plots of elementary effects for RZEC and 
WLF were very similar to those presented for yield in Fig. 1, with 
p50, pp, and DL standing out as the most important parameters 
(not shown). One minor difference was that with the Pecos water 
and Kirr = 0.9, a was relatively less important for RZEC than for 
yield (Fig. 1e). For the 0.5 dS m−1 water, the simulated WLF was 
nearly the same in all realizations (note the skewed distribution in 
Table 4), so the parameters had a minor effect on the outcome for 
both Kirr = 0.9 and Kirr = 1.1 (not shown). RZEC similarly did 
not vary with Kirr = 1.1, but some variation occurred with Kirr = 
0.9. Figure 2 shows the elementary effects for the latter case. In 
this scenario involving deficit irrigation with high quality water, 
the parameters p50, pp, DL, and a are again important, plus the 
water stress exponent ph is relatively more important than in other 
cases, with significant dependence on other parameters indicated 
(Fig. 2). Mirroring the analysis presented above, we observe that a 
1333-cm perturbation in p50 led on average to an absolute change 
in RZEC of 1.3 dS m−1.

Figure 3 presents elementary effects for the salt leaching fraction. 
With the 6 dS m−1 irrigation water (Fig. 3c,d), SLF was near 100% 
for all realizations (Table 4), so essentially no sensitivity to parameter 
variations existed. With ECiw = 0.5 dS m−1 and Kirr = 1.1, there was 
again relatively low variation in the calculated salt leaching fractions, 
so the magnitudes of the elementary effects were correspondingly 
small (Fig. 3b). Greater variation in SLF occurred in the remaining 
three scenarios. With ECiw = 0.5 dS m−1 and Kirr = 0.9, the most 
important parameter was the soil hydraulic parameter n, which had 
both a large mean effect and standard deviation (Fig. 3a). A pertur-
bation of 0.6 in n resulted on average in an absolute change in SLF 
of 0.05. With the Pecos water and Kirr = 0.9 (Fig. 3e), the hydraulic 
parameters, the plant salt tolerance parameters, and solute dispersiv-
ity all had comparable mean effects and large standard deviations, 
indicating significant parameter interactions. At the higher irriga-
tion rate, pp was the most important parameter, followed by p50 
(Fig. 3f). A perturbation of 1.33 in pp caused on average an absolute 
change in SLF of about 0.03.

Overall, for the considered irrigation waters and regimes, the most 
important parameters affecting the seasonal simulations presented 
for Scenario I were the plant salt tolerance parameters p50 and 
pp. Across all scenarios and performance measurers where the 
output had substantial variability, the mean elementary effects 
for the salt tolerance parameters were either larger than those for 
the other parameters, or were on par with those from the group 
of parameters found to have a large or intermediate influence. 
Further, si for p50 and pp was usually relatively small, indicating 
that the parameters’ strong influence on model output was mostly 
independent of the other parameters. The influences of the soil 
hydraulic parameters (particularly a and n) were relatively larger in 
the deficit irrigation scenarios and tended to be strongly affected by 

Fig. 2. Scenario I elementary effects computed with respect to root 
zone salinity (RZEC) using the low EC (0.5 dS m−1) irrigation water 
and irrigation rate constant of Kirr = 0.9. Bars for mi* are light green if 
mi was positive and dark green if mi was negative.
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the values of the other model parameters. The hydraulic parameters 
were also relatively more important to the salt leaching fraction 
than to the other considered model outcomes. The water stress 
parameters were generally of minor importance except in the sce-
narios with high quality irrigation water. The transport parameters 
rb and DW generally had negligible impacts on the model outputs. 
The solute dispersivity DL was more significant, with the computed 
mean effects typically placing it among the group of parameters 
having an intermediate influence.

Scenario II
To simplify the parameterization slightly for Scenario II, we elected 
to follow the common practice of fixing the stress exponents 
at ph = pp = 3 and the conductivity exponent at L = 0.5 (van 
Genuchten and Gupta, 1993; Šimůnek et al., 2013). With this 
parameterization, all variability in plant water and salinity stress 
is specified by h50 and p50, respectively, and one less parameter is 
needed to specify the hydraulic properties.

The irrigation scheme used in Scenario II resulted in a wide range 
of water applications relative to the potential transpiration rate. 
The ratio of (seasonal total) applied water to potential transpiration 
ranged from 0.45 to 1.7, with a mean value of 0.79 and a median 
value of 0.77. Deficit irrigation (ratio < 1) occurred in 83% of the 
cases. Compared with Scenario I (where the ratio was always 0.9 
or 1.1), the realizations in Scenario II presented greater extremes 
of deficit or excess water applications.

Table 5 summarizes the model outputs generated for Scenario II. 
A broad distribution of values for all four performance measures 
was obtained. Yield ranged from 45 to 99%, while the average 
root zone EC ranged from 3 to 12%. The distributions for salt 
and water leaching fractions were similarly wide (WLF between 
0 and 35%, SLF between 3 and 61%), although the distribution 
for WLF was skewed, with most realizations falling on the low 
end of the distribution.

Fig. 3. Scenario I elementary effects computed with respect to the salt leaching fraction (SLF) for different irrigation water compositions and irrigation 
rate constants (Kirr). Bars for mi* are light green if mi was positive and dark green if mi was negative.
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The salt leaching fractions obtained in the (mostly) deficit irrigated, 
single season simulations of Scenario II was smaller than those 
obtained in the quasi-steady, multiple season simulations of 
Scenario I. As was the case with the Pecos water in Scenario I, the 
drainage water used for irrigation in Scenario II had a chemical 
composition that was conducive to gypsum and calcite formation. 
In all realizations, significant amounts of precipitated solids were 
formed. The possibility of high levels of salt precipitation in the 
root zone when initially applying low quality irrigation waters is 
well established (e.g., Jury et al., 1978). Drainage water composition 
in the San Joaquin Valley (and elsewhere) varies greatly depending 
on location, so the water used in the current study should not be 
viewed as representative of drainage waters in the larger region. 
Again, specific sites generally require specific analyses.

Figure 4 shows the elementary effects for all four performance mea-
sures. Compared with Scenario I, the soil hydraulic properties as 
a group show elevated relative importance with respect to all four 
measures. Perturbing a by 0.017 cm−1, for example, produced on 
average an absolute change in computed relative yield of 0.21, a very 
big average effect. Although some of the increased 
parameter importance can be attributed to the 
generally drier soil conditions, mostly it is due to 
the moisture deficit-based irrigation scheme in 
which the hydraulic properties directly affected 
the timing and amount of irrigation. The rela-
tively large si for the hydraulic parameters (Fig. 
4) is partly due to interactions among themselves 
in determining FAW and partly due to interac-
tions with the irrigation threshold parameters 
IFAW and EFAW. The parameters IFAW and 
EFAW also had large si and generally manifested 
an intermediate level of importance across all four 
performance measures.

The significance of the plant stress parameters 
and the solute dispersivity is relatively lower in 
this scenario, although the absolute magnitude 
of the elementary effects for those parameters is 
not greatly smaller than in the cases from the 
previous scenario when low quality irrigation 
water was used. Rather, it is the increase in size 
of other elementary effects that has led to a 
diminished relative importance.

The soil chemistry parameters were relatively 
unimportant with respect to computing yield 
and WLF for this single, initial season of irri-
gating with degraded water (Fig. 4). However, 
with respect to RZEC and SLF, the initial ratio 
of exchangeable Ca and Mg had the largest ele-
mentary effect mi* of all parameters. This was 
partly due to the expansive range considered 
for ECa/EMg (Table 2), and partly due to the 

importance of the exchange phase as a source of Ca for calcite 
and gypsum formation. Cation exchange capacity and the Mg-Ca 
selectivity coefficient (KMg-Ca) had intermediate importance, 
also due to their effect on available Ca. Because initial exchange-
able Na and K were fixed at relatively low values, KCa-Na and 
KCa-K were only of minor importance.

Fig. 4. Scenario II elementary effects computed with respect to four model outputs. Bars for 
mi* are light green if mi was positive and dark green if mi was negative.

Table 5. Summary of model outputs for Scenario II.†

Performance measure‡ Min. Max. Mean

Relative yield (%) 45 99 69

RZEC (dS m−1) 2.9 12 5.8

WLF (%) 0 35 2.1

SLF (%) 2.6 61 17

† Based on 540 realizations.
‡ RZEC, average root zone salinity; WLF, water leaching fraction; SLF, salt 

leaching fraction.
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66Discussion
As noted above, the obtained sensitivity results are dependent on 
the specifics of the considered scenarios. Although Scenario I used 
multiple growing seasons as a setup for the final calculation, both 
scenarios considered in the current work evaluated parameter sen-
sitivities with respect to model simulations made for a single, full 
growing season; other timeframes may also be of interest.

The results also depend on the parameter ranges specified in Table 
2. The “correct” level of uncertainty or variability to assign to a 
parameter will vary depending on circumstances. For soil hydraulic 
parameters, one might determine a range or distribution based on 
measurements made across a field, from soil survey data, or from 
estimates provided by pedotransfer functions such as described by 
Schaap et al. (2001). For other parameters, relatively less guidance 
may be available. As noted, salinity uptake reduction parameters 
are usually specified based on a presumed correspondence with 
whole-plant salt tolerance parameters such as those discussed by 
van Genuchten and Gupta (1993). However, relatively few data 
are available for field testing parameters obtained this way. Skaggs 
et al. (2006a,b,c) reported mixed results in attempting to derive 
model parameter values and bounds from literature studies of the 
salt tolerance of alfalfa (Medicago sativa L.) and tall wheatgrass 
[Thinopyrum elongatum (Host) D.R. Dewey]. In Table 2, the 2000-
cm range ascribed to p50 for forage corn is considerably smaller 
than would be inferred for alfalfa or tall wheatgrass based on the 
results of Skaggs et al. (2006a,b,c). Rerunning our Scenario I cal-
culations using a 4000-cm range for p50 leads to mean elementary 
effects for p50 that are much larger than those of any other param-
eter, leading to the conclusion that p50 is by far the most important 
model parameter. Future research aimed at determining appropri-
ate field values for p50 would be of great benefit toward reducing 
uncertainty in model simulations of degraded water use.

Lastly, the outcome of the Morris (1991) sensitivity analysis can 
depend on the choice of the algorithmic parameters r (the number 
of random parameter trajectories), p (the level of discretization), 
and D = (p/2)/(p − 1) (the size of the parameter perturbation). 
Various authors have reported good results using the relatively 
small values p = 4 (D = 2/3) and r = 10 (Saltelli et al. (2008), 
and references given therein on p. 119). Others have found it 
advantageous to use significantly larger values, such as p = 40 and 
r = 100 (Yang, 2011). For our computations, we experimented 
with different values and found that conclusions regarding the 
importance of model parameters obtained for p = 4 and r = 10 
were unchanged when larger values were used, although some 
minor fluctuations in the computed elementary effects were seen at 
r = 10 realizations. We opted to report results for r = 30, where the 
fluctuations where largely removed. Using values larger than p = 4 
(i.e., smaller than D = 2/3) had a negligible effect. If a performance 
measure were a linear function of a model parameter, then the 
computed elementary effect would not be affected by the choice 
of D. Similarly, if a model response to a parameter perturbation is 

monotonic and not excessively nonlinear, then the choice of D will 
have only a limited effect. That was the case in our computations, 
at least with respect to the model parameters having the largest 
impact on model output (plant salinity stress parameters).

66Summary and Conclusions
Global sensitivity analyses were performed for UNSATCHEM sea-
sonal simulations of forage corn production with differing irrigation 
rates and water compositions. Two scenarios were evaluated. The first 
considered a single season of crop production after many irrigation 
cycles had brought the system to a quasi-steady state. The analysis 
found that overall the most important model parameters were the 
plant salt tolerance parameters p50 and pp, followed by the solute 
dispersivity DL. The relative importance of soil hydraulic parameters, 
particularly a and n, increased in scenarios involving lower irriga-
tion rates (drier soils) and better quality (low EC) irrigation water. 
In several scenarios considered, model outputs varied only slightly 
in response to variations in all parameters. General trends included 
the following: (i) decreasing irrigation water quality increased the 
relative importance of plant salinity stress parameters, and (ii) the 
importance of hydraulic parameters is relatively higher when irriga-
tion rates are low (drier soil conditions).

The second scenario considered a single season of degraded water 
irrigation on a cropped field that was initially nonsaline and 
nonsodic. Irrigation scheduling was based on soil water deficit as 
determined by daily “observations” of soil moisture. Sensitivity 
analyses for this scenario found that soil hydraulic parameters had 
overall high importance due to both the relatively dry soil condi-
tions and the direct impact of hydraulic properties on irrigation 
scheduling. With respect to salt leaching, the most important 
model parameter was the ratio of exchangeable Ca to Mg in the 
initial soil. The initial exchange phase is a source of Ca and affects 
the amount of gypsum and calcite that formed in the root zone 
during the growing season.

With respect to further developing modeling techniques for 
degraded irrigation water and salinity management, the results 
of this study indicate that future work aimed at determining 
appropriate field parameter values and bounds for different crops 
and conditions would improve model predictions and reduce 
uncertainty. Procedures for routine use of models for site-specific 
management should include uncertainty and sensitivity analy-
ses. The elementary effects method used in this work is a useful 
approach for obtaining parameter sensitivity information at rela-
tively low computational cost.
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