Colloid Interaction Energies for Physically and Chemically Heterogeneous Porous Media

Scott A. Bradford*‡ and Saeed Torkzaban‡

*US Salinity Laboratory, USDA, ARS, Riverside, California 92507, United States
‡CSIRO Land and Water, Glen Osmond, SA 5064, Australia

ABSTRACT: The mean and variance of the colloid interaction energy (Φ^*) as a function of separation distance (h) were calculated on physically and/or chemically heterogeneous solid surfaces at the representative elementary area (REA) scale. Nanoscale roughness was demonstrated to have a significant influence on the colloid interaction energy for different ionic strengths. Increasing the roughness height reduced the magnitude of the energy barrier ($\Phi_{\text{max}*}$) and the secondary minimum ($\Phi_{\text{2min}*}$). Conversely, increasing the fraction of the solid surface with roughness increased the magnitude of $\Phi_{\text{max}*}$ and $\Phi_{\text{2min}*}$. Our results suggest that primary minimum interactions tend to occur in cases where only a portion of the solid surface was covered with roughness (i.e., isolated roughness pillars), but their depths were shallow as a result of Born repulsion. The secondary minimum was strongest on smooth surfaces. The variance in the interaction energy was also a strong function of roughness parameters and h. In particular, the variance tended to increase with the colloid size, the magnitude of Φ^*, the height of the roughness, and especially the size (cross-sectional area) of the heterogeneity. Nonzero values of the variance for $\Phi_{\text{2min}*}$ implied the presence of a tangential component of the adhesive force and a resisting torque that controls immobilization and release for colloids at this location. Heterogeneity reduced the magnitude of Φ^* in comparison to the corresponding homogeneous situation. Physical heterogeneity had a greater influence on mean properties of Φ^* than similar amounts of chemical heterogeneity, but the largest reduction occurred on surfaces with both physical and chemical heterogeneity. The variance in Φ^* tended to be higher for a chemically heterogeneous solid.

INTRODUCTION

Colloid interactions with surfaces play a critical role in many industrial and environmental applications. Derjaguin–Landau–Verwey–Overbeek (DLVO) theory,¹ ² has been extensively employed to determine colloid interaction energies as the sum of van der Waals and electrostatic interactions. However, numerous deviations from standard DLVO predictions have been reported, especially in the presence of net repulsive electrostatic interactions.³–²³ These deviations have been attributed to intrinsic assumptions in DLVO theory regarding the controlling interactions and geometrically smooth and chemically homogeneous surfaces.⁴–⁸,¹⁰,¹⁴,¹⁶,²³ For example, DLVO theory sometimes needs to be extended to account for Born repulsion, steric interactions, hydrophobic interactions, and/or hydration effects.²⁴ Other researchers have employed surface integration approaches in conjunction with DLVO theory to account for the influence of microscopic physical and/or chemical heterogeneity on interaction energies.³–⁸,¹⁰,¹⁴,¹⁶,²³

Natural solid surfaces and colloids exhibit some degree of roughness at small scales.³ Surface integration calculations have demonstrated that microscopic surface roughness can reduce or eliminate the DLVO interaction energy barrier under unfavorable attachment conditions.³,⁵–⁷ Primary minima interactions have been reported to sometimes occur on top of surface roughness protrusions, especially at higher ionic strength (IS).⁷,¹⁰,¹⁴,¹⁶,²³ Conversely, pits and sides of surface roughness have been reported to increase the depth of the secondary minima.⁷,¹⁹,²³ Indeed, colloid deposition has been found to increase on rough surfaces in atomic force microscopy studies,¹⁵–²⁶ in parallel flow chamber experiments,²⁷–²⁸ and in column-scale transport investigations.²⁷,³⁰ Reversible secondary and/or primary minimum interactions may occur on rough surfaces with a reduction in solution IS depending the colloid size.⁻¹⁹–²³,³¹,³²

The above information indicates that colloid interactions with surfaces will be strongly dependent on surface roughness properties (e.g., height, size, and numbers) and that these effects will depend on the colloid size and solution IS. However, surface integration studies have typically been limited to very small spatial scales because they are very computationally intensive. Our understanding and ability to quantify the influence of surface roughness on colloid interactions is still incomplete, especially at larger spatial scales. Upscaled
information on colloid interactions is needed at the representative elementary volume (REV) and/or area (REA) scales for continuum transport models which are used for numerous real-world applications. Furthermore, colloid interactions will exhibit a distribution on physically heterogeneous (rough) surfaces at the REV scale. Consequently, spatial variations in colloid adhesive properties are expected, and only a fraction of the solid surface area may contribute to colloid immobilization.

In addition to physical heterogeneity (roughness), microscopic chemical heterogeneities have been reported to contribute to colloid retention under unfavorable attachment conditions. Microscopic chemical heterogeneity may occur on natural colloids and solid surfaces as a result of mineral defects, isomorphous substitution, protonation/deprotonation of hydroxyl groups, and adsorption of different ions, organics, and clay particles. Zhang et al. demonstrated that colloid immobilization in the presence of hydroxyl groups, and adsorption of diatomic chemical heterogeneities and 2 nm surface protrusions. Zhang et al. demonstrated that colloid immobilization in the presence of fluid flow depended on the size and height of nanoscale heterogeneities.

Bradford and Torkzaban presented a method to determine colloid interaction energies on chemically heterogeneous surfaces at the REV scale. We extend this method in this work to consider the influence of physical and/or chemical heterogeneity on colloid interactions at the REV scale and validate our approach through comparison with published grid surface integration calculations. Numerical simulations provide insight into colloid interactions on surfaces with various degrees of roughness (height, number, and size) and chemical heterogeneity under different solution IS conditions.

THEORY

Physical Heterogeneity on the Solid–Water Interface.

Similar to Bendersky and Davis, physical heterogeneity is represented in this work as nanoscale pillars of a given cross-sectional area \(A_p, L^2 \) and height \(h_p, L \) that are randomly distributed on the solid–water interface (SWI). The colloid–SWI interaction energy depends on its spatial location and distance from the SWI and pillars. However, only a portion of the SWI contributes to the colloid–SWI interaction energy, and this area is known as the zone of electrostatic influence \(A_z, L^2 \). The value of \(A_z \) is given as

\[
A_z = \frac{4 \pi r_e}{\kappa} \tag{1}
\]

where \(r_e \) \([L]\) is the colloid radius and \(\kappa \) \([L^{-1}]\) is the Debye–Hückel parameter. The relationship between \(\kappa^{-1} \) and the IS of a 1:1 electrolyte solution is given as \(\kappa^{-1} = 0.301(\text{IS})^{-0.5} \), where \(\kappa^{-1} \) is in units of nm and IS has units of M. To account for the heterogeneous distribution of pillars within \(A_z \) this region is discretized into a number of equally sized cells. The cross-sectional area of each cell size is equal to \(A_z \) and the total number of cells \(N_t \) is equal to the ratio of \(A_z \) to \(A_p \). Each cell is associated with a surface roughness height equal to 0 or \(h_p \).

Grid surface integration (GSI) calculations (average of 200) indicated that the mean dimensionless (divided by the product of the Boltzmann constant, \(k_B \), and the absolute temperature, \(T \)) interaction energy \(\Phi \) on a physically heterogeneous surface is given by a linear combination of the dimensionless interaction energies associated with the pillar tops and the underlying SWI. The dimensionless interaction energy on a smooth SWI \(\Phi_s \) can be used to determined similar values for cells with and without pillars. The only difference in \(\Phi_s \) on cells with and without pillars is in their separation distance from the colloid. Consequently, the mean value of \(\Phi \) within \(A_z \) is determined as

\[
\Phi(h) = \left(1 - \frac{N_p}{N_t} \right) \Phi_s(h + h_p) + \frac{N_p}{N_t} \Phi_s(h) \tag{2}
\]

where \(h \) is the separation distance from the leading face of the colloid center to the pillar top and \(N_p \) is the number of cells that are associated with pillars. It should be mentioned that eq 2 is consistent with results from other surface integration techniques reported in the literature. Values of \(\Phi_s \) were calculated as the sum of interactions arising from electrostatics, retarded London–van der Waals attraction, and Born repulsion. Other non-DLVO interactions (e.g., steric forces, hydrophobic forces, and hydration effects) were not considered in this analysis. A sphere–plate geometry was assumed in eq 2, and zeta potentials \((\zeta) \) were used in place of surface potentials. Consequently, values of \(\Phi(h) \) through this work are implicit functions of \(\kappa, \) colloid and SWI zeta potentials, the colloid radius, the Hamaker constant, the characteristic wavelength, and the collision diameter.

Mean values of \(\Phi(h) \) were calculated for possible realizations of physical heterogeneity \((N_s = 0, 1, \ldots, N_s) \) within \(A_z \) using eq 2; \(h \) ranged from 0.1 to 20 nm in 0.1 nm increments. Note that the particular location of a pillar within \(A_z \) is not needed to determine these statistically mean values. The energy barrier height \(\Phi_{\text{max}} \), the depth of the secondary minimum \((\Phi_{\text{2min}}) \), and the depth of the primary minimum \((\Phi_{\text{min}}) \) were determined for each of these physical heterogeneity realizations using Boolean logic statements in conjunction with minimum and/or maximum functions over specified intervals in \(h \).

The above information describes the determination of mean values of \(\Phi(h) \), \(\Phi_{\text{2min}} \), \(\Phi_{\text{min}} \) and \(\Phi_{\text{max}} \) for possible physical heterogeneity realizations \((N_s = 0, 1, \ldots, N_s) \) within \(A_z \). Additional information is needed to determine the probability density functions (PDFs) for these interaction energy parameters on a physically heterogeneous porous medium at the REV scale. If the total fraction of cells that is occupied by pillars on the SWI is known at the REV scale of a porous medium \((P_s) \) and the pillars are randomly distributed, then the probability for the occurrence of each physical heterogeneity realization \(\text{Prob}(N_s) \) within \(A_z \) is obtained from the binomial mass distribution as

\[
\text{Prob}(N_s) = \frac{N_t!}{N_p!(N_t - N_p)!} (P_s)^N (1 - P_s)^{N_t - N_p} \tag{3}
\]

The associated PDFs for \(\Phi(N_s) \) at selected values of \(h \), \(\Phi_{\text{2min}}(N_s) \), \(\Phi_{\text{min}}(N_s) \), and \(\Phi_{\text{max}}(N_s) \), at the REV scale of a porous medium are obtained by plotting versus \(\text{Prob}(N_s) \). It
follows that the mean value of $\Phi_{2_{\text{min}}}^*$ on the entire heterogeneous surface at the REA scale is given as

$$\Phi_{2_{\text{min}}}^* = \langle \Phi_{2_{\text{min}}} \rangle = \sum_{N_i=0}^{N_i} \text{Prob}(N_{p_i}^*) \Phi_{2_{\text{min}}}^*(N_{p_i}^*)$$

(4)

Here the asterisk is used to denote the mean value of a given parameter at the REA scale. The variance of $\Phi_{2_{\text{min}}}^*$ is given as $\langle \Phi_{2_{\text{min}}}^* \rangle - \langle \Phi_{2_{\text{min}}} \rangle^2$, and the associated standard deviation is equal to the square root of the variance.\(^{45}\) Similar expressions were used to determine the mean, variance, and standard deviation of Φ_{max}^*, $\Phi_{1_{\text{min}}}^*$, and/or $\Phi(h)$ at the REV scale by replacing $\Phi_{2_{\text{min}}}^*$ and $\Phi_{2_{\text{min}}}^*$ terms in eq 4.

Physical and Chemical Heterogeneity on the SWI.

Similar to GSI simulations, we assume below that A_b is selected to represent the smallest sized physical or chemical heterogeneity of interest in the SWI. The simplest form of chemical and physical heterogeneity is introduced into eq 2 by assigning different ζ values to cells with (ζ_{++}, mV) and without pillars (ζ_{-}, mV). These values of ζ_{++} and ζ_{-} were subsequently used to calculate the dimensionless interaction energy on cells with (Φ_p) and without (Φ_b) pillars, respectively. In this case, eq 2 is rewritten as

$$\Phi = 1 - \frac{N_{p_i}^*}{N_i} \Phi_p(h + h_s^*) + \frac{N_{b_i}^*}{N_i} \Phi_b(h)$$

(5)

Equations 1, 3, and 4 are again used to determine interaction energy parameters at the REA scale.

A different approach needs to be taken when the chemical heterogeneity is randomly distributed on the SWI. The mean value of Φ_b^* within A_b is determined as\(^{16}\)

$$\Phi_b^*(h) = \left(1 - \frac{N_{b_i}^*}{N_i}\right) \Phi_r(h) + \frac{N_{b_i}^*}{N_i} \Phi_b(h)$$

(6)

where $N_{p_i}^*$ is the number of cells with a positive zeta potential (ζ_{++}) and $N_{b_i}^*$ is the number of cells with a negative zeta potential (ζ_{-}). Values of ζ_{++} and ζ_{-} were used to determine $\Phi_r^*(h)$ and $\Phi_b(h)$, respectively. Consequently, the mean value of $\Phi_b(h)$ within A_b on a physically and chemically heterogeneous SWI is given by eq 2 using eq 6 to determine Φ_b^*.

The probability for each physical and chemical heterogeneity realization on the SWI at the REA scale is given by the joint binomial mass distribution as

$$\text{Prob}(N_{p_i}^*, N_{b_i}^*) = \text{Prob}(N_{p_i}^*) \text{Prob}(N_{b_i}^*)$$

(7)

Here $\text{Prob}(N_{p_i}^*)$ is given analogously to eq 3 but with $N_{p_i}^*$ and $P_{p_i}^*$ replacing N_{p_i} and P_{p_i}, respectively, where P_{p_i} is the total fraction of cells on the SWI at the REA scale with ζ_{++}. Equation 7 assumes that physical and chemical heterogeneity on the SWI act independently of each other.

The associated probability density function for $\Phi_{2_{\text{min}}}(N_{p_i}^*, N_{b_i}^*)$ at the REA scale is obtained by plotting versus $\text{Prob}(N_{p_i}^*, N_{b_i}^*)$ (eqs 3 and 7). In this case, $\Phi_{2_{\text{min}}}(N_{p_i}^*, N_{b_i}^*)$ was derived from $\Phi(h)$ that was determined using eq 5 (different zeta potentials on the tops and bottoms of pillars) or eqs 2 and 6 (random physical and chemical heterogeneity). It follows that the mean value of $\Phi_{2_{\text{min}}}$ on the entire physically and chemically heterogeneous SWI at the REA scale, $\langle \Phi_{2_{\text{min}}} \rangle$, is given as

$$\Phi_{2_{\text{min}}}^* = \sum_{N_{p_i}=0}^{N_i} \sum_{N_{b_i}=0}^{N_i} \text{Prob}(N_{p_i}^*, N_{b_i}^*) \Phi_{2_{\text{min}}}^*(N_{p_i}^*, N_{b_i}^*)$$

(8)

The variance of $\Phi_{2_{\text{min}}}^*$ is again given as $\langle \Phi_{2_{\text{min}}}^* \rangle - \langle \Phi_{2_{\text{min}}} \rangle^2$, and the associated standard deviation is equal to the square root of the variance.\(^{45}\) Similar expressions were used to determine the mean, variance, and standard deviation of Φ_{max}^*, $\Phi_{1_{\text{min}}}^*$ and/or $\Phi(h)$ at the REV scale by replacing $\Phi_{2_{\text{min}}}^*$ and $\Phi_{2_{\text{min}}}^*$ terms in eq 4.

RESULTS AND DISCUSSION

Numerical simulations are presented below to investigate the influence of microscopic surface roughness or the combined influence of surface roughness and chemical heterogeneity on $\Phi^*(h)$. The Hamaker constant equaled 5×10^{-21} J, the characteristic wavelength was 100 nm, and the zeta potential of the colloid (ζ) was -27 mV in these simulations. The collision diameter that was used to calculate Born repulsion was set equal to 0.5 nm.\(^{24}\)

Model Validation. Bendersky and Davis\(^{16}\) conducted multiple GSI simulations (~ 200) on a randomly generated physically heterogeneous SWI in which the zeta potentials for pillar tops and bottoms were different. Specific parameter values used in these GSI simulations included $\zeta_{++} = 54$ mV and $\zeta_{-} = -27$ mV, $IS = 5.8$ mM ($\kappa^{-1} = 4$ nm), $r_c = 500$ nm, $A_b = 25133$ nm2, $A_s = 78.5$ nm2, $P_r = 0.196$, and $h_s^* = 1$ nm. Figure 1 presents our simulation model output (eqs 1 and 3–5) for the physically and chemically heterogeneous SWI described by Bendersky and Davis.\(^{16}\) Model parameters included $\zeta_{++} = 54$ mV and $\zeta_{-} = -27$ mV, $IS = 5.8$ mM ($\kappa^{-1} = 4$ nm), $r_c = 500$ nm, $A_b = 25133$ nm2, $A_s = 78.5$ nm2, $P_r = 0.196$, and $h_s^* = 1$ nm. The error bars in this figure represent ± 1.5 standard deviations of Φ^*.

Figure 1. Predicted values of Φ^* as a function of h (eqs 1 and 3–5) for the physically and chemically heterogeneous SWI described by Bendersky and Davis.\(^{16}\) Model parameters included $\zeta_{++} = 54$ mV and $\zeta_{-} = -27$ mV, $IS = 5.8$ mM ($\kappa^{-1} = 4$ nm), $r_c = 500$ nm, $A_b = 25133$ nm2, $A_s = 78.5$ nm2, $P_r = 0.196$, and $h_s^* = 1$ nm. The error bars in this figure represent ± 1.5 standard deviations of Φ^*. The value of $\Phi_{\text{max}}^* = 14$ and $\Phi_{2_{\text{min}}}^* = 0.25$ in Figure 1. The mean values and error bars shown in Figure 1 are very similar to that reported by Bendersky and Davis.\(^{16}\) Consequently, slight differences in the simulation results are to be expected. However, nearly identical simulation results could be achieved by adjusting a single
parameter (the characteristic wavelength) in our selected model for retarded London—van der Waals interactions.43

Physical Heterogeneity on the SWI. Figure 2 presents plots of Φ^* as a function of h for various $h_i^* (0, 1, 2.5, 5,$ and $10 \text{ nm})$ and IS (5.8, 50, and 100 mM). Specific parameter values used in these simulations included $\zeta_s = -11.1 \text{ mV}$, $r_c = 500 \text{ nm}$, $A_h = 78.5 \text{ nm}^2$, and $P_p = 0.196$.

Equation 2 indicates that the total interaction energy at a particular location depends on the relative proportions of cells larger separation distances, respectively.5 Furthermore, increasing h_i^* sometimes produced nonmonotonic changes in Φ^* in the absence of a repulsive interaction energy (Figure 2c). Similar to unfavorable attachment conditions, this implies that colloids may diffuse over an energy barrier under favorable attachment conditions to obtain a stronger interaction in $\Phi_{1\text{min}}^*$. This observation may help explain increased resistance to detachment with reductions in solution IS with increasing deposition aging time.46,47

Figure 3 presents plots of Φ^* as a function of h for various P_p^* (0.05, 0.1, 0.2, 0.4, and 0.6) and IS (5.8, 50, and 100 mM). Specific parameter values used in these simulations included $\zeta_s = -11.1 \text{ mV}$, $r_c = 500 \text{ nm}$, $A_h = 78.5 \text{ nm}^2$, and $h_i^* = 10 \text{ nm}$. Equation 2 indicates that the total interaction energy at a particular location depends on the relative proportions of cells...
with and without pillars. Pillar tops provide a greater contribution to the total interaction energy as P^*_p increases because of the associated greater frequency of higher values of N^*_{p}. The value of Φ_1 on pillar tops is also higher than Φ_1 on cells without pillars. Consequently, increases in P^*_p produced an increase in the magnitude of Φ_{max}^* and Φ_{2min}^* in Figure 3. Primary minimum interactions tended to occur for higher h^*_r and lower P^*_p values, e.g., for isolated pillars. Note that Φ_{max}^* and Φ_{2min}^* were highest on completely smooth surfaces that occurred when $P^*_p = 1$. Consequently, the magnitude of Φ_{max}^* and Φ_{2min}^* increased as P^*_p increased and approached a smooth surface (i.e., pillars cover almost all the surface). Similar to homogeneous surfaces, this increase in the depth of Φ_{2min}^* with P^*_p was enhanced at higher IS. These trends are consistent with previous findings, although these studies have not systematically investigated the effects of P^*_p or determined upscaled values of Φ^*.

The values of h^*_r and P^*_p also had a strong influence on the depth of the Φ_{1min}^*. This effect was not very apparent in Figures 2 and 3 because Φ_{1min}^* occurred when h was around 0.4 nm. Figure 4 shows plots of Φ_{1min}^* as a function of h^*_r using the same model parameters as in Figure 2. The depth of Φ_{1min}^* varies in a nonlinear fashion with h^*_r. The maximum depth of Φ_{1min}^* occurred in the absence of roughness. Increasing h^*_r initially produced an increase in Φ_{1min}^*, and sometimes positive values of Φ_{1min}^* (repulsive interaction energy), as a result of the combined effect of Born repulsion and surface roughness. However, further increases in h^*_r produced a decrease in Φ_{1min}^* due to the dominant effect of van der Waals attraction and the electric double layer. It should be emphasized that finite values of Φ_{1min}^* > -21.4 occurred when $h^*_r > 0$, even in the absence of an energy barrier to attachment (e.g., when the IS = 100 mM). In addition, the depth of Φ_{1min}^* increased with IS. Consequently, Φ_{1min}^* behaves in many ways like a deep potential well, similar to Φ_{2min}^* (Figure 3), the depth of Φ_{1min}^* increased (became more negative) with P^*_p (data not shown).

Figure 5 presents plots of Φ^* and the standard deviation of Φ^* (σ_Φ) as a function of h for various A_h (10, 100, 500, 1000, and 5000 nm2) and IS (5.8 and 50 mM). Specific parameter values used in these simulations included $\zeta^* = -11.1$ mV, $A_h = 78.5$ nm2, and $P^*_p = 0.196$.

![Figure 4](image-url) Simulated values of Φ_{1min}^* as a function of h^*_r for various IS (5.8, 50, and 100 mM) conditions. Parameter values used in these simulations included $r_c = 500$ nm, $\zeta^* = -11.1$ mV, $A_h = 78.5$ nm2, and $P^*_p = 0.196$.

![Figure 5](image-url) Simulated values of Φ^* (a) and σ_Φ (b, c) as a function of h for various A_h (10, 100, 500, 1000, and 5000 nm2). The IS equaled 5.8 mM in (b) and 50 mM in (c). Other parameter values were $\zeta^* = -11.1$ mV, $r_c = 500$ nm, $P^*_p = 0.196$, and $h^*_r = 10$ nm.
increased with \(h' \) but varied in a more complex manner with \(P'_r \) (data not shown).

Figure 6 presents plots of \(\Phi^* \) and \(\sigma_0 \) as a function of \(h \) for various \(r_c \) (250, 500, 1250, and 2500 nm) at IS = 50 mM. Other parameter values included \(\zeta^* = -11.1 \text{ mV}, A_0 = 78.5 \text{ nm}^2, P'_s = 0.196, \) and \(h'_r = 10 \text{ nm} \).

![Figure 6](image_url)

Specific parameter values used in these simulations included \(\zeta^* = -11.1 \text{ mV}, A_0 = 78.5 \text{ nm}^2, P'_s = 0.196, \) and \(h'_r = 10 \text{ nm} \). As expected, the values of \(\Phi^* \) and \(\Phi_{\text{min}}^* \) increased and decreased, respectively, with increasing \(r_c \). More importantly, values of \(\sigma_0 \) also increased with \(r_c \). This implies greater values of the horizontal component of the adhesive force with \(r_c \). However, colloid immobilization and release depends on the balance of applied hydrodynamic and resisting adhesive torques.\(^{12,27,32-34} \) The fluid drag force and corresponding applied hydrodynamic torque increases with \(r_c \), so the influence of \(r_c \) on colloid immobilization cannot be ascertained without information about pore-scale variations in fluid velocity.

Physical Heterogeneity versus Chemical Heterogeneity. Figure 7 presents plots of \(\Phi^* \) and \(\sigma_0 \) as a function of \(h \) when the SWI was homogeneous, physically heterogeneous, or chemically heterogeneous. The homogeneous simulation employed values of \(\zeta = -11.1 \text{ mV}, r_c = 500 \text{ nm}, \) and IS = 50 mM. The physically heterogeneous simulation employed values of \(\zeta = -11.1 \text{ mV}, r_c = 500 \text{ nm}, IS = 50 \text{ mM}, A_0 = 500 \text{ nm}^2, P'_s = 0.196, \) and \(h'_r = 10 \text{ nm} \). The chemically heterogeneous model was a special case of the physically and chemically heterogeneous model described above when \(h'_r = 0 \text{ nm} \). Other parameter values for the chemically heterogeneous simulation were \(\zeta^* = 54 \text{ mV}, \zeta_- = -27 \text{ mV}, IS = 50, A_0 = 500 \text{ nm}^2, \) and \(P'_s = 0.196 \). Note that the mean value of \(\zeta \) was the same for all the models, and values of \(P'_r \) and \(P'_s \) both equaled 0.196. Consequently, differences in the simulation results reflect the relative importance of physical (microscopic roughness) and chemical heterogeneities. As expected, both physical and chemical heterogeneity reduced values of \(\Phi^*(h) \) in comparison to the homogeneous case. Physical heterogeneity reduced \(\Phi^*(h) \) to a greater extent than a similar amount of chemical heterogeneity. Conversely, chemical heterogeneity had a much greater influence on \(\sigma_0 \) than physical heterogeneity. This observation implies that chemical heterogeneity will have a greater effect on the horizontal component of the adhesive force that is involved in colloidal immobilization and release. However, when the difference in \(\zeta^* \) and \(\zeta_- \) was decreased the values of \(\sigma_0 \) were also decreased.

Physical and Chemical Heterogeneity on the SWI. Figure 8 presents plots of \(\Phi^* \) and \(\sigma_0 \) as a function of \(h \) when the SWI was homogeneous or when the SWI had both physical and chemical heterogeneity. The homogeneous simulation employed values of \(\zeta^* = -11.1 \text{ mV}, r_c = 500 \text{ nm}, \) and IS = 50 mM. The physically and chemically heterogeneous simulations both employed values of \(r_c = 500 \text{ nm}, IS = 50 \text{ mM}, A_0 = 500 \text{ nm}^2, P'_s = 0.196, P'_r = 0.196, \) and \(h'_r = 10 \text{ nm} \). However, in one case random chemical heterogeneity was assumed with \(\zeta^*_c = 54 \text{ mV} \) and \(\zeta^- = -27 \text{ mV} \). In the second case, the zeta potential of
the pillar tops ($\zeta_T = 54$ mV) and bottoms ($\zeta_B = -27$ mV) were different. The mean value of ζ^* was the same again for the models. Note that combined physical and chemical heterogeneity produced a greater reduction in $\Phi^*(h)$ than when only physical or chemical heterogeneity was considered (comparison of Figures 7 and 8). There was not a large difference in $\Phi^*(h)$ values for the two cases of physical and chemical heterogeneity (pillar tops or random). However, values of $\Phi^*(h)$ were more negative (favorable) and σ_Φ was somewhat larger when the positive zeta potentials were distributed on the pillar tops in comparison to randomly on the SWI.

CONCLUSIONS

Nanoscale surface roughness and charge heterogeneity has been widely recognized to influence colloid retention and release.\(^1\)\(^-\)\(^8\)\(^,\)\(^10\)\(^,\)\(^14\)\(^,\)\(^16\)\(^,\)\(^23\) However, previous publications have not yet reported the mean and variance of Φ^* on physically and chemically heterogeneous solid surfaces at the REA scale. The approach of Bradford and Torkzaban\(^1\)\(^6\) was extended in this work to overcome these limitations. This information is needed to better understand and predict colloid interactions and retention in natural environments. Simulation results were validated by comparison with published Monte Carlo simulations using the grid surface integration technique.\(^1\)\(^6\)

The mean and variance of Φ^* were strong functions of the roughness parameters. Increasing the fraction of the roughness on the solid increased the magnitude of Φ_{max}^* and Φ_{min}^*, whereas increasing the roughness height reduced the magnitude of Φ_{max}^* and Φ_{min}^*. Primary minimum interactions tended to occur on isolated roughness pillars, but their depths were shallow as a result of Born repulsion. Conversely, the secondary minimum was strongest on smooth surfaces. The variance in Φ^* increased with the colloid size, the magnitude of Φ^*, height of the roughness, and especially and size (cross-sectional area) of the heterogeneity. The variance of Φ_{min}^* was greater than zero on heterogeneous surfaces, especially at higher IS and for larger colloids. This implies the presence of a tangential component of the adhesive force and a resisting torque that controls immobilization and release for colloids interacting in a secondary minimum.

Physical and/or chemical heterogeneity reduced the magnitude of Φ^* in comparison with the corresponding homogeneous situation. In general, physical heterogeneity had a greater influence on mean properties of Φ^* than similar amounts of chemical heterogeneity. However, the largest reduction in the mean value of Φ^* occurred on surfaces with both physical and chemical heterogeneity. The variance in Φ^* tended to be greatest on surfaces with chemical heterogeneity.

AUTHOR INFORMATION

Corresponding Author

Phone 951-369-4857; e-mail Scott.Bradford@ars.usda.gov.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

This research was supported by the USDA, ARS, NP 214.

REFERENCES

