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It has been widely reported that colloids can travel faster and over longer distances in natural
structured porous media than in uniform structureless media used in laboratory studies. The
presence of preferential pathways for colloids in the subsurface environment is of concern
because of the increased risks for disease caused by microorganisms and colloid-associated
contaminants. This study presents amodel for colloid transport in dual-permeability media that
includes reversible and irreversible retention of colloids and first-order exchange between the
aqueous phases of the two regions. The model may also be used to describe transport of other
reactive solutes in dual-permeability media. Analytical solutions for colloid concentrations in
aqueous and solid phases were obtained using Laplace transformation and matrix decompo-
sition. The solutions proved convenient to assess the effect of model parameters on the colloid
distribution. The analytical model was used to describe effluent concentrations for a bromide
tracer and 3.2- or 1-μm-colloids that were observed after transport through a composite 10-cm
long porous medium made up of a cylindrical lens or core of sand and a surrounding matrix
with sand of a different grain size. The tracer data were described very well and realistic
estimates were obtained for the pore-water velocity in the two flow domains. An accurate
description was also achieved for most colloid breakthrough curves. Dispersivity and retention
parameters were typically greater for the larger 3.2-μm-colloids while both reversible and
irreversible retention rates tended to be higher for the finer sands than the coarser sand. The
relatively small sample size and the complex flow pattern in the composite medium made it
difficult to reach definitive conclusions regarding transport parameters for colloid transport.

© 2013 Elsevier B.V. All rights reserved.
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1. Introduction

Many porous media or geological formations consist of
regions with different porosity and permeability that can create
preferential flow pathways for water and contaminants. Exam-
ples of such media are fractured rock, cracked clay soils,
agricultural soils containing macropores created by burrowing
earthworm and animals, or structured soils with inter- and
intra-aggregate pore space. Factors that influence soil formation
and management will also create spatial variations in soil
hydraulic properties that areubiquitous innatural environments.

Field experiments frequently indicate that colloids can travel
faster and over longer distances than would be expected based
on results from laboratory studies in homogeneous porous
media because of these types of preferential flow pathways
(Beven and Germann, 1982; Cey and Rudolph, 2009; Cey et al.,
2009; Dean and Foran, 1992; Evans and Owens, 1972; Jarvis,
2007; McGechan and Lewis, 2002; Pang et al., 2008; Passmore
et al., 2010). The preferential transport of colloids is of special
concern because of the increased risk of dissemination and
exposure of humans and animals to disease causing microor-
ganisms and colloid-associated contaminants (Simunek et al.,
2006; Unc and Goss, 2003).

It is extremely difficult, if not impossible, to deterministi-
cally model the complexities of preferential flow pathways in
natural subsurface environments. Simplified deterministic and
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stochastic models have therefore been developed to simulate
the preferential transport of contaminants (Gerke and van
Genuchten, 1996; Selim and Ma, 1998; Simunek and van
Genuchten, 2008; Toride et al., 1995). In the most widely
examined scenario, there is water flow in an inter-aggregate or
“mobile” aqueous region and no flow in an intra-aggregate or
“immobile” aqueous region (Selim and Ma, 1998). Analytical
solutions have been developed for mobile–immobile transport
of solutes by assuming linear solute exchange between the
mobile and immobile regions (Coats and Smith, 1964; Lapidus
and Amundson, 1952; van Genuchten and Wierenga, 1976) or
kinetic and linear exchange between the two regions (Leij and
Bradford, 2009). For well-defined aggregates it is possible to
directly apply Fick's law for diffusive transfer in the immobile
region (cf. van Genuchten and Dalton, 1986).

More general dual-permeability models are needed when
there is flow in both pore domains to account for many of the
complexities that are observed, e.g., multi-peak breakthrough
curves (Gerke and van Genuchten, 1996; Simunek and van
Genuchten, 2008). Analytical approaches for solute transport
with water flow in both domains have received limited
attention (e.g., Dykhuizen, 1991; Leij et al., 2012). The utility
of analytical solutions for simplified transport models has been
pointed out by, amongmany others, Javandel et al. (1984) and
Vanderborght et al. (2005). The emphasis of this study is on the
analytical modeling of the fate and transport of colloids in
dual-permeability media. It should be mentioned that the
dual-permeability modeling approach has also been applied to
describe colloid transport in homogeneous media because of
the potential for different rates of colloid migration with
advection in the bulk aqueous phase and rolling of colloids on
the solid phase (Bradford et al., 2009, 2011).

Subsurface transport of colloids has often beenmodeled in a
similar manner as that of generic solutes, but additional
complexities are to be expected. For example, colloid retention
in homogeneous soils is dependent on attachment and
straining processes that are sensitive to the system hydrody-
namics, the input colloid concentration, the colloid size, the soil
type and texture, the solution and solid phase chemistry, and

the water content (Bradford and Torkzaban, 2008; Ryan and
Elimelech, 1996). These retention processes may be reversible
or irreversible depending on the nature and location of the
interaction. Colloids experience strong, largely irreversible
interactions in a primary minimum when there is no energy
barrier to attachment (favorable conditions). Conversely, the
interactions are muchweaker and reversible when colloids are
associated with a secondary minimum under unfavorable
(in the presence of an energy barrier) attachment conditions.
In this case, enhanced colloid retention has been observed in
locations associated with weaker hydrodynamic forces (grain–
grain contacts and larger surface roughness locations) or
enhanced adhesive forces (chemical heterogeneity arising
from metal oxides, adsorbed divalent cations, and clays)
(Bradford and Torkzaban, 2008).

It is hence clear that models for colloid transport will be
more complex and approximate than models for solute
transport. Application of a dual-permeabilitymodel that allows
for both reversible and irreversible colloid retention processes
is believed to partly deal with the added complexity. There will
be some error in lumping reversible attachment and
depth-dependent straining (Bradford et al., 2003, 2011) that
is sensitive to the presence of textural interfaces (Bradford
et al., 2005; Silliman, 1995) into effective dual-permeability
model parameters. Furthermore, the exchange of colloids
between the two flow domains is expected to be a function of
the amount of colloid retention in each region and there may
be size exclusion in finer texturedmedia (Bradford et al., 2003;
Ginn et al., 2002; Ryan and Elimelech, 1996).

The objective of this work is to provide an analytical
solution for colloid transport in dual-permeability media for a
model that includes reversible and irreversible retention of
colloids and first-order exchange between the aqueous phases
of the two regions. The analytical solution can also be applied to
transport of other reactive solutes in porous media. The
analytical solution will be applied to colloid displacement
experiments reported by Bradford et al. (2004) involving a
mediummade up of a cylindrical volume of soil embedded in a
different soil packed in a hollow aluminum cylinder. Due to

Fig. 1. Schematic of dual-velocity model for colloid transport.
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differences in permeability and other soil properties, the
colloids were transported at a substantially different rate in
the two soil materials with rate-limited exchange between
them and the composite soil may be viewed as a dual-
permeability medium. Simultaneously observed transport of a
bromide tracer was modeled by modifying the solution by Leij
et al. (2012) for transport of generic solutes in dual-
permeabilitymedia according to the dual-advection dispersion
equation (DADE).

2. Mathematical problem and solution

The following transport mechanisms are considered:
advection, dispersion, and exchange between the liquid phase
of the low- and high-permeability regions 1 and 2. Two kinetic
retention sites are available for each region. Fig. 1 provides a
schematic outline of the various processes and the notation
that will be employed. The general equation for transport in
region i with linear exchange to region j is given by:

ρ
∂Sai
∂t þ ρ

∂Ssi
∂t þ θi

∂Ci

∂t ¼ θiDi
∂2Ci

∂x2
−θivi

∂Ci

∂x þ α Cj−Ci

� �
i ¼ 1;2; j ¼ 2;1ð Þ

ð1Þ

where t is time [T], x is distance [L],Di is longitudinal dispersion
coefficient [L2/T], vi is pore-water velocity [L/T] — where it is
arbitrarily assumed that v1 b v2, Ci is the liquid phase
concentration expressed as number of colloids per aqueous
volume of region i [Nc L−3], Sai and Ssi are the solid phase
concentrations for reversibly and irreversibly retained colloids,
respectively, expressed as number of colloids originating from
aqueous region i per mass of bulk soil [Nc M−1], θi is the
volumetric water content in terms of volume ofwater in region
i per bulk volume [Lw,i

3 L−3], ρ is the soil bulk density assumed
to be equal for both soils and given asmass of bulk soil per bulk
volume [ML−3], and α is the coefficient for mass transfer
between the two aqueous regions [T−1]. One kinetic retention
site employs a conventional attachment and detachment
model to describe behavior of reversibly retained colloids to
and from the aqueous and solid phases as:

ρ
∂Sai
∂t ¼ θikaiCi−ρkdSai i ¼ 1;2ð Þ ð2Þ

where kai is the coefficient for attachment of colloids from
aqueous region i onto the solid phase [T−1] and kd is the
coefficient for detachment of colloids from the solid into the
aqueous phase [T−1]. The second kinetic site considers
irreversible colloid retention due to straining or attachment
in a primary minimum as:

ρ
∂Ssi
∂t ¼ θiksiCi i ¼ 1;2ð Þ ð3Þ

with ksi as the coefficient for irreversible colloid retention from
the aqueous region i onto the solid phase [T−1]. It should be
mentioned that the irreversible retention site may also be
employed to account for processes such as inactivation or
degradation.

The problem is solved for the case where the medium is
initially free of colloids and a step pulse of magnitude Co is
applied to the inlet with a zero-gradient concentration at a
fictitious outlet at infinity. The corresponding conditions are:

Ci−δκ i
∂Ci

∂x ¼ Co δ ¼ 0 first type
1 third type

�
ð4Þ

Ci x;0ð Þ ¼ 0 ð5Þ

∂Ci

∂x ∞; tð Þ ¼ 0 ð6Þ

where Co is the concentration of the applied solution and δ is
used to allow the inlet condition to be applicable to either a first-
or third-type inlet condition, which respectively corresponds to
a flux- or volume-averaged detection mode. A zero-gradient
outlet condition is assumed at an infinite distance.

The dispersion coefficient is written as

Di ¼ κvi ð7Þ

with κ as dispersivity (L). The solution of the governing
equations is outlined in Appendix A. The solution may be
written as:

C1 x; tð Þ ¼ ∫
t

a1 t
a1þa2

F τð Þ
(
exp −d1τ

a1

� �
J0 ωϕ0ð Þ

þ exp − τ−η1
a1=d1

þ γ1

kd

� �
J

γ1

kd
; kdη1

� �
þ

þ∫
τ1

0

exp − τ−η
a1=d1

−kdη
� � ffiffiffiffi

γ
η

r
I1 2

ffiffiffiffiffiffi
γη

pð ÞJ0 ωϕð Þ

− exp − τ−η
a1=d1

þ γ
kd

� �"
J

γ
kd

; kdη
� �

ω t−τð Þ
a2=a1

J1 ωϕð Þ
ϕ

þ b1
a1kd

1−J kdη;
γ
kd

� �� 	
−d4

a1
J

γ
kd

; kdη
� �� �

J0 ωϕð Þ�dη
)
dτ

− ∫
t

a1 t
a2−a1

F τð Þ
(
exp −d1τ

a1

� �
J0 ωϕ0ð Þ

− exp − τ−η2
a1=d1

þ γ2

kd

� �
J

γ2

kd
; kdη2

� �
þ

þ∫
τ2

0

exp − τ−η
a1=d1

−kdη
� � ffiffiffiffi

γ
η

r
I1 2

ffiffiffiffiffiffi
γη

pð ÞJ0 ωϕð Þ

− exp − τ−η
a1=d1

þ γ
kd

� �"
J

γ
kd

; kdη
� �

ω t−τð Þ
a2=a1

J1 ωϕð Þ
ϕ

þ b1
a1kd

1−J kdη;
γ
kd

� �� 	
− d4

a1
J

γ
kd

; kdη
� �� �

J0 ωϕð Þ�dη
)
dτ

ð8Þ
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C2 x; tð Þ ¼ ∫
t

− a1 t
a2þa1

F τð Þ
(
exp −d1τ

a1

� �
J0 ωϕ0ð Þ

þ exp − τ−η2
a1=d1

þ γ2

kd

� �
J

γ2

kd
; kdη2

� �
þ

þ∫
τ2

0

exp − τ−η
a1=d1

−kdη
� � ffiffiffiffi

γ
η

r
I1 2

ffiffiffiffiffiffi
γη

pð ÞJ0 ωϕð Þ

þ exp − τ−η
a1=d1

þ γ
kd

� �"
J

γ
kd

; kdη
� �

ω t−τð Þ
a2=a1

J1 ωϕð Þ
ϕ

− b1
a1kd

1−J kdη;
γ
kd

� �� 	
−d3

a1
J

γ
kd

; kdη
� �� �

J0 ωϕð Þ�dη
)
dτ

− ∫
t

a1 t
a1þa2

F τð Þ
(
exp −d1τ

a1

� �
J0 ωϕ0ð Þ

þ exp − τ−η1
a1=d1

þ γ1

kd

� �
J

γ1

kd
; kdη1

� �
þ

þ∫
τ1

0

exp − τ−η
a1=d1

−kdη
� � ffiffiffiffi

γ
η

r
I1 2

ffiffiffiffiffiffi
γη

pð ÞJ0 ωϕð Þ

þ exp − τ−η
a1=d1

þ γ
kd

� �"
J

γ
kd

; kdη
� �

ω t−τð Þ
a2=a1

J1 ωϕð Þ
ϕ

− b1
a1kd

1−J kdη;
γ
kd

� �� 	
−d3

a1
J

γ
kd

; kdη
� �� �

J0 ωϕð Þ�dη
)
dτ:

ð9Þ

For a first-type inlet condition (flux-averaged concentration)

F τð Þ ¼ Co

2
xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

8πv1v2κ t−τð Þ3=a2
q exp − a2x−2v1v2 t−τð Þ½ �2

8a2v1v2κ t−τð Þ −d2
a2

t−τð Þ
 !

ð10aÞ

while for a third-type condition (volume-averaged
concentration):

F τð Þ ¼ Co

2
exp − d2

a2
t−τð Þ

� 	

×

( ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2v1v2

πa2κ t−τð Þ

s
exp − a2x−2v1v2 t−τð Þ½ �2

8a2v1v2κ t−τð Þ

 !
:

− v1v2
a2κ

exp
x
κ

� �
erfc

a2xþ 2v1v2 t−τð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8a2v1v2κ t−τð Þp

 !)
ð10bÞ

The following auxiliary variables are used in the expres-
sions for the two concentrations:

a1 ¼ v2 � v1; a2 ¼ v2 þ v1 ð11a;bÞ

b1 ¼ ka1v2 � ka2v1ð Þkd ; b2 ¼ ka1v2 þ ka2v1ð Þkd ð12a;bÞ

d1 ¼ ka1 þ ks1 þ α1ð Þv2− ka2 þ ks2 þ α2ð Þv1 ;

d2 ¼ ka1 þ ks1 þ α1ð Þv2 þ ka2 þ ks2 þ α2ð Þv1
ð13a;bÞ

d3 ¼ ka1 þ ks1 þ α1ð Þv2− ka2 þ ks2−α2ð Þv1 ;

d4 ¼ ka1 þ ks1−α1ð Þv2− ka2 þ ks2 þ α2ð Þv1
ð14a;bÞ

and

ω ¼ 2
a1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α1v1α2v2

p
; αi ¼ α=θi: ð15a;bÞ

Dummy temporal variables are as follows:

γ ¼ t−τ
a2=b2

þ τ−η
a1=b1

; γ1 ¼ t−τ
a2=b2

þ τ−τ1
a1=b1

; γ2 ¼ t−τ
a2=b2

þ τ−τ2
a1=b1

ð16a;b; cÞ
with

τ1 ¼ τ− t−τ
a2=a1

; τ2 ¼ τ þ t−τ
a2=a1

ð17a;bÞ
and

ϕ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
τ−ηð Þ2− t−τ

a2=a1

� �2
s

; ϕ0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
τ2− t−τ

a2=a1

� �2
s

: ð18a;bÞ

Furthermore, J0 and J1 are zero- and first-order Bessel
functions of the first kind, I0 and I1 are the corresponding
modified Bessel functions, and J denotes Goldstein's J-function
(cf. Goldstein, 1953; van Genuchten, 1981).

The solid phase concentration for reversible and irreversibly
retained colloids in domain i, Sai and Ssi, are expressed as
number of colloids per mass of bulk soil. They are obtained
from the aqueous concentrations according to:

Sai ¼
kaiθi
ρ

∫
t

0

exp −kd t−τð Þ½ �Ci z; τð Þdτ ð19Þ

Ssi ¼
ksiθi
ρ

∫
t

0

Ci z; τð Þdτ: ð20Þ

The effluent concentration of a colloid or tracer is defined as
the ratio of the advective solute flux and thewater flux for both
domains or as the sum of individual effluent concentrations:

Ce ¼ Ce1 þ Ce2 ; Cei ¼ θiviCi=θv: ð21Þ

The total colloid concentration in the soil, given as number
of colloids per mass of soil, is given by:

CT ¼ θ1C1 þ θ2C2ð Þ=ρþ Sa1 þ Ss1 þ Sa2 þ Ss2: ð22Þ

The integrals in the analytical solutions were evaluated
using 100-point Gauss–Chebyshev quadrature. The results of
the analytical solution were compared to those obtained by
numerically inverting the Laplace transform according to de
Hoog et al. (1982). Fig. 2 contains effluent curves predicted
analytically and numerically for a pulse application of colloids
subject to two different transfer parameters, reversible attach-
ment, and no irreversible retention. There is a close correspon-
dence between the analytical and the numerical results.

3. Sensitivity analysis

The analytical solutions presented in the previous section
are convenient to illustrate the sensitivity of colloid concen-
tration, as a function of time or position, to the various
transport and retention parameters. The effect of the transfer
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parameter α is illustrated in Fig. 3 for a nonreactive solute such
as the bromide. Values of Ce are normalized by the input
concentration (Co). A solute was applied for a period of to =
0.2 h and the effluent concentration was predicted as a
function of time at a distance of 10 cm using the solutions in
Section 2 for a step input (cf. Toride et al. 1993). The
contribution of slower and more prevalent domain 1 (v1 =
12.5 cm/h, θ1 = 0.4) and domain 2 (v2 = 100 cm/h, θ2 = 0.1)
are depicted in Fig. 3 for the three transfer rates of α = 0.001,
0.1, and 10 h−1. At the relatively low value for α of 0.001 h−1

there is very little solute transfer between the two domains.
The overall effluent curve has two distinct peaks with early
breakthrough for domain 2 and later breakthrough for domain
1. There is more solute exchange at the intermediate value of
0.1 h−1 with earlier breakthrough in domain 1, due to solute
that resided originally in domain 2, and tailing in domain 2,
which is caused by solute that moved from domain 1 to 2. The
overall breakthrough curve still has two distinct peaks. Finally,
for α = 10 h−1 transport is essentially an “equilibrium”

process with rapid exchange between the two flow domains
to counteract any difference in concentration. Hence the
breakthrough curve has a single peak and is formed by
superposition of two very similar curves for domains 1 and 2.

Reversible retention of colloids is illustrated in Fig. 4. The
colloid is subject to attachment at a rate of 10 h−1 for both
domains. Irreversibly colloid retention was not considered in
this scenario. Colloids profiles in a 50-cm long soil show the
contribution of the aqueous and solid phase to the total
concentration. For a relatively low detachment rate kd =1 h−1,
virtually all the colloid is attached with little remaining in (or
returning to) the aqueous phase. There is virtually no bimodal
behavior of the colloid profiles. For the higher detachment rate of
10 h−1, appreciable amounts of colloids can be found in both the
aqueous and the solid phases. Furthermore, the colloid profiles
exhibits bimodality. Notice that for the faster region 2 the
amount of colloid in the solid phase of the first 5 cm greatly
exceeds the amount in the aqueous phase, the latter wasmostly
subjected to an attachment-detachment sequence. For a high kd
of 100 h−1 colloid will not remain attached for considerable

time and the amount of colloid in the solid phase is minuscule
compared to the aqueous phase. The total colloid concentration
profile shows strong bimodal behavior with peaks at approxi-
mately 5 and 25 cm.

Finally, the effect of irreversible colloid retention is
illustrated in Fig. 5. Profiles of reversibly and irreversibly
retained colloids are shown as a function of distance for
domains 1 and 2. Three different values of ks1 = ks2 were used
(viz. 1, 2, and 4 h−1) whereas the attachment and detachment
rates were 5 and 10 h−1, respectively, in both domains. As
expected, the solid phase concentrations of irreversibly
retained colloids rapidly decrease with distance. For the lower
ks1 = ks2 = 1 h−1, the total colloid profile exhibits a bimodal
distributionwith a substantial part of the colloid in the aqueous
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phase or attached to the solid phase. Increasing ks1 and ks2 to
2 h−1 and, especially, 4 h−1 results in an increased amount of
irreversibly retained colloids, which can no longer appear in
the aqueous or attached phases.

4. Experimental and data optimization

4.1. Experimental procedure

Bradford et al. (2004) used 10-cm-long, 5-cm-diameter
aluminum columns that were macroscopically nonuniform as
illustrated in Fig. 6 and consisted of different Ottawa sands,
which will be identified by their median grain size of 710,
360, 240, and 150 μm. The interior of the medium is formed
by a 6-cm-long, 2.3-cm-diameter sand column — referred to
as the lens. The remainder of the space of the aluminum core

was filled with sand with a different median grain size —

referred to as the matrix. During steady-state, upward flow
through the vertical column, a 1.33-h pulse of 0.001 M NaBr
and 1-μm- or 3.2-μm-diameter colloids (microspheres with a
carboxyl surface) was applied to the soil column. Approxi-
mately 50 effluent sampleswere collected over a period of four
hours during displacement experiments to determine bromide
and colloid concentrations versus time.

Because the permeability of the lens and the matrix will be
different, water flow will not be uniform. Based on numerical
simulations by Bradford et al. (2004), the flow appears to be
approximately one-dimensional in a substantial part of the
column and transport in the column may be described by the
dual-permeability model. The porosity and the Darcy flux for
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dispersivity κ = 0.5 cm, transfer parameter α = 0.1 h−1, and reaction rates
ka1 = ka2 = 10 h−1, ks1 = ks2 = 0, and kd = 1, 10, or 100 h−1.
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Fig. 5. Solute profiles for a reactive solute at t = 0.4 h as result of a pulse
input (to = 0.2 h) with v1 = 12.5 cm/h, θ1 = 0.4, v2 = 100 cm/h, θ2 = 0.1,
dispersivity κ = 0.5 cm, transfer parameter α = 0.1 h−1, and reaction rates
ka1 = ka2 = 5 h−1, kd = 10 h−1, and ks1 = ks2 = 1, 2, or 4 h−1.
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the heterogeneous (composite) medium were determined
from the overall bulk density, assuming a specific solid density
of 2.65 g/cm3, and the volumetric flow rate of the effluent,
respectively. A total of twelve experiments were conducted
with the 710-μmOttawa sand being thematrix (sleeve) for the
first six and the lens (center) for the last six experiments.
Table 1 lists the median particle diameter, dsand, for matrix and
lens, the colloid size, dcolloid, the overall volumetric water
content, θ, and the Darcy flux, q, for each experiment. Also
presented is the recovered fraction of colloids, which is
determined from the total number of colloids detected in the
effluent samples relative to the total number applied.

4.2. Bromide effluent curves

Breakthrough data for the nonreactive bromide tracer
were described by using the analytical solution for the DADE
(Leij et al., 2012) with a data optimization routine based
upon the CXTFIT program (Toride et al., 1995). There are
many potential optimization parameters. Two velocities, one
volumetric water content, transfer parameter, α, dispersivity,
κ, and pulse duration, to, were optimized in this study. Some
of the optimized parameters for the bromide displacement
were later used as input in the model for colloid transport.
Table 2 lists pertinent parameters along with the coefficient
of determination r2 for the description of the bromide
effluent curves for the twelve experiments. The pore-water

velocity for the matrix and lens are respectively denoted by
vm and vl while the volumetric water content of the matrix is
denoted by θm — the water content for the lens θl follows
from the total porosity. Fig. 7 shows the optimized and
observed breakthrough curves. The bromide effluent curves
were described fairly well judging by the r2-values and the
curves shown in Fig. 7. In the first six experiments the soil
matrix is made up of the relatively permeable 710-μm
Ottawa sand and transport occurs almost exclusively in the
matrix. The results for the analytical model suggest that
transport occurs in both lens and matrix for experiments 7
through 12, which is plausible because the 710-μm Ottawa
sand is now the lens. The fit of the effluent data is slightly
poorer and the breakthrough curves exhibited some tailing.
The low values for the transfer coefficient α suggest limited
transfer between the lens and the matrix for all twelve
experiments. The difference in parameter values between a
coarser matrix and a coarser lens (i.e., the 710-μm Ottawa
sand) was further explored with a t-test for the mean. Table 3
shows the means for vm, vl, κ, and α as well the p values to
assess significance in the difference between the means. For
experiments 1 through 6 (coarser matrix) the pore-water
velocity in the matrix of 24.5 cm/h far exceeds the mean
velocity in the lens (vl has a mean of 1.46 cm/h). On the other
hand, the average velocity in the lens is 36.9 cm/h if it is
made up of the coarser 710-μm Ottawa sand (experiments
7–12). The difference in velocity is highly significant both in

matrix

v

vm

lens

vl

Fig. 6. Schematic of composite medium with a lens and matrix of different
soil material.

Table 1
Experimental conditions (median grain size diameter of Ottawa sand, dsand;
colloid diameter, dcolloid; volumetric water content, θ; Darcy flux, q) and the
recovered fraction of colloids in the effluent (Meff).

# dsand (μm) dcolloid
(μm)

θ q
(cm/h)

Meff

Matrix Lens

1 710 360 3.2 0.320 7.56 0.607
2 710 360 1.0 0.323 7.26 0.613
3 710 240 3.2 0.320 6.12 0.505
4 710 240 1.0 0.328 6.54 0.614
5 710 150 3.2 0.339 7.74 0.536
6 710 150 1.0 0.329 7.62 0.636
7 360 710 3.2 0.318 7.2 0.297
8 360 710 1.0 0.309 5.7 0.585
9 240 710 3.2 0.321 6.48 0.221
10 240 710 1.0 0.307 7.02 0.532
11 150 710 3.2 0.328 6.90 0.148
12 150 710 1.0 0.329 6.36 0.435

Table 2
Optimization to bromide breakthrough curves.

# vm (cm/h) vl (cm/h) θm κ (cm) α (hr−1) to (hr) r2

1 27.5 0 0.291 0.128 0.0972 1.30 0.9999
2 23.4 0.0191 0.289 0.0797 0.119 1.28 0.9996
3 21.3 8.76 0.296 0.138 0.015 1.29 1.0000
4 22.5 0 0.288 0.125 0.0894 1.29 0.9992
5 26.5 0 0.300 0.106 0.15 1.28 0.9995
6 26.0 0 0.295 0.133 0.0708 1.29 0.9995
7 15.8 40.9 0.201 0.443 0.0084 1.25 0.9989
8 11.8 30.0 0.180 0.209 0.231 1.24 0.9992
9 9.25 34.8 0.180 0.209 0.128 1.26 0.9987
10 10.1 37.3 0.165 0.241 0.123 1.26 0.9994
11 15.6 37.0 0.180 0.206 0.0246 1.25 0.9995
12 13.5 41.4 0.196 0.551 0 1.26 0.9990
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the lens and the matrix. The mean dispersivity is 0.310 cm if
there is appreciable flow in both lens and matrix (experi-
ments 7–12) and a slight but significant reduction in κ occurs
to a mean of 0.118 cm because almost all flow occurs in the
matrix consisting of the 710-μm sand. There is no significant
difference in the transfer parameter α between the coarse
lens and matrix (p = 0.922).

4.3. Colloid effluent curves

Values for velocities and water contents that were
optimized to the bromide data (Table 2) were also used to
describe the colloid effluent curves. The optimization param-
eters were κ and α — bromide results will be different but
were used as initial estimates nonetheless — and the

retention parameters kam, ksm, kal, ksl, and kd. Of course, it is
desirable to lower the number of optimization parameters by
conducting additional experiments to independently deter-
mine, for example, reaction parameters.

There is negligible flow in the fine-textured lens for
experiments 1 through 6 (cf. Table 2). In this case the
retention parameters for the lens were not optimized but set
equal to those for the matrix instead. Optimized parameter
values and the r2-values are given for all twelve experiments
in Table 4. A good description of the data was achieved with
the exception of experiment 11. If the values in Table 4 are
compared to those in Table 2, it appears that dispersivity has
increased whereas there is less transfer between the two
aqueous regions judging by the lower α. Fig. 8 depicts the
effluent concentrations and the optimized breakthrough

Fig. 7. Observed and optimized effluent curves for bromide tracer: a) 710-μm-Ottawa sand matrix and 3.2-μm colloid, b) 710-μm-Ottawa sand matrix and 1-μm
colloid, c) 710-μm Ottawa sand lens and 3.2 μm colloid, and d) 710-μm Ottawa sand lens and 1-μm colloid.

Table 3
t-Test for difference between parameters for bromide transport in a medium with a 710-μm matrix or a 710-μm lens.

# vm (cm/h) vl (cm/h) κ (cm) α (hr−1)

Mean 710-μm-matrix 1–6 24.5 1.46 0.118 0.0902
Mean 710-μm-lens 7–12 12.7 36.9 0.310 0.0858
p (two-tail) 6.64 × 10−8 3.22 × 10−5 0.0207 0.922
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curves. The effluent data were generally well described
except for colloid concentrations near background levels
(Ce/Co b 0.03) such as in experiment 11.

Table 5 considers differences in parameter values due to
colloid size or sand fraction. The first comparison is between

the means of five optimized parameters for either a coarser
matrix or lens. In experiments 1 through 6 the matrix was
relatively coarse, with no independently optimized retention
parameters for the lens, while in experiments 7 through 12
the lens was made up of the coarser 710-μm Ottawa sand.

Table 4
Optimization to colloid effluent curves with the dual-permeability model.

# κ (cm) α (hr−1) kam (hr−1) ksm (hr−1) kal (hr−1) ksl (hr−1) kd (hr−1) r2

1 0.578 0.0004 1.447 0.365 0.119 0.9883
2 0.282 0.0374 0.105 0.953 0.221 0.9964
3 0.579 0 1.433 0.291 0.085 0.9908
4 0.264 0.0035 0.207 0.948 0.583 0.9978
5 0.559 0.0446 1.847 0 0.0648 0.9849
6 0.334 0.0249 0.193 0.934 0.321 0.9972
7 1.230 0.0001 6.478 0.0381 2.833 0.824 0.134 0.9862
8 0.402 0.0771 0.0882 0.550 0.0225 1.338 0.0513 0.9975
9 0.969 0 0.0713 7.324 2.939 3 × 10−4 0.779 0.9555
10 0.581 0.0433 1.797 0 0 1.019 0 0.9985
11 2.599 0.0867 16.88 2.903 5.365 2.35 0.378 0.7794
12 1.158 0 2 × 10−4 2.806 1.766 0.0624 0.0347 0.9978

Fig. 8. Observed and optimized effluent curves for colloid particles: a) 710-μm-Ottawa sand matrix and 3.2-μm colloid, b) 710-μm-Ottawa sand matrix and 1-μm
colloid, c) 710-μm Ottawa sand lens and 3.2 μm colloid, and d) 710-μm Ottawa sand lens and 1-μm.
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The dispersivity is greater for the coarser lens, when there is
considerable flow in both matrix and lens, than in exper-
iments 1 through 6 with the coarser matrix. The two-tail
value for p is 0.0503, rendering the difference just insignif-
icant at the 5% confidence level. All other differences between
the mean are clearly not significant. Although not reported,
there was also no significant difference in either reversible or
irreversible retention between the mean for a 710-μm
Ottawa sand, either lens or matrix, and that for the three
other sands (150-, 240-, and 320-μm sands). The second
comparison involves the means for the two different colloid
sizes. The dispersivity is significantly (p = 0.0295) greater
for the 3.2- than the 1-μm-colloids presumably because of
greater tortuosity and fewer accessible pores for the larger
colloid particles. All retentions rates appear greater for the
larger 3.2-μm-colloids. This is in line with the breakthrough
curves shown in Fig. 8 and the smaller fraction of the 3.2-
than the 1-μm colloids that was recovered from the effluent
(Table 1). However, a significant dependency of retention
rate on colloid size could only be established for reversible
retention in the lens material (p =6.09 × 10−3). Although
only three samples are compared, kal is significantly greater
for the larger colloids.

Finally, a comparison is made between the means of
reversible and irreversible retention rates for both the
coarser 710-μm-sand, either as lens or matrix, and the finer
sands, only as matrix (Table 6). The first two rows of Table 6
pertain to both colloid sizes, subsequently only experiments
with either 3.2- or 1-μm-colloids are considered. Except for
the 1-μm-colloids, the rate of reversible retention is greater
than that of irreversible attachment. The effect is only
significant for retention of 3.2-μm colloids by the 710-μm
sand (p = 2.05 × 10−3). Also notice that both reversible and
irreversible rates appear greater for the finer than the coarse
textured material for all colloid sizes. Perhaps due to the
small sample size and the variability of the optimized
parameters, this difference is not significant.

5. Summary and conclusions

An analytical solution was presented for reactive transport
in a dual-permeabilitymediumwith reversible and irreversible
mass transfer between the aqueous and the sorbed phases and
linear exchange between the two aqueous phases. The solution
was derived to provide an approximate description of
subsurface colloid transport in aggregated media. The differ-
ence between flow rates in the two regions will affect the
transport of the colloids. Furthermore, colloids are subject to
complex attachment and straining processes that are con-
trolled by a myriad of factors, among them the distinct
hydrodynamics for the two flow domains. The analytical
model can also be used to model transport of other reactive
solutes in dual-permeability media. The solution for the
concentrations in aqueous and solid phases were obtained
using Laplace transformation and matrix decomposition as
outlined in Appendix A.

The analytical solutions were used to illustrate the behavior
of the (effluent) breakthrough curve for different values of the
transfer parameter α (Fig. 3) and the dependency of depth
profile on reversible and irreversible rates (Figs. 4 and 5). The
analytical solution is convenient to partition the total concen-
tration into two contributions from the aqueous phase and four
from the solid phase.

Subsequently, the analytical model was used to describe
effluent curves for a bromide tracer and 3.2- or 1-μm-colloids
that were obtained by Bradford et al. (2004) for a composite
medium made up of a cylindrical lens or core of sand and a
surrounding matrix with sand of a different grain size. The
analytical solution provided a very good description of the
bromide tracer and yielded physically plausible estimates for
the velocity in the two flow domains (Table 2). Subsequently,
these velocities were used to describe breakthrough curves for
the colloid particles. This involved optimization of dispersivity
κ, transfer parameter α, and a maximum of five retention
parameters. An adequate description of the data could be

Table 5
t-Test for difference between parameters of matrix and lens for colloid transport.

# κ (cm) α (hr−1) kam (hr−1) ksm (hr−1) kal (hr−1) ksl (hr−1) kd (hr−1)

Mean 710-μm-matrix 1–6 0.433 0.0185 0.872 0.582 0.232
Mean 710-μm-lens 7–12 1.157 0.0345 4.219 2.270 0.230
p (two-tail) 0.0503 0.223 0.239 0.229 0.989
Mean 3.2-μm-colloid 1,3,5,7,9,11 1.086 0.0220 4.693 1.820 3.712 1.058 0.260
Mean 1.0-μm-colloid 2,4,6,8,10,12 0.504 0.0310 0.398 1.032 0.596 0.806 0.202
p (two-tail) 0.0295 0.716 0.177 0.575 6.09 × 10−3 0.839 0.767

Table 6
t-Test for difference in reversible and irreversible retention parameters for different sands.

# Colloid ka (hr−1) ks (hr−1) p (two-tail)

Mean 710-μm-sand 1–12 1 and 3.2 μm 1.513 0.757 0.131
Mean 150-, 240-, or 360-μm-sand 7–12 1 and 3.2 μm 4.219 2.270 0.550
Mean 710-μm-sand 1,3,5,7,9, and 11 3.2 μm 2.644 0.638 2.05 × 10−3

Mean 150-, 240-, or 360-μm-sand 7,9,11 3.2 μm 7.810 3.422 0.553
Mean 710-μm-sand 2,4,6,8,10, and 12 1 μm 0.382 0.876 0.321
Mean 150-, 240-, or 360-μm-sand 8, 10, 12 1 μm 0.628 1.119 0.748
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achieved (Table 4). Dispersivity and retention parameterswere
typically greater for the larger 3.2-μm-colloids while both
reversible and irreversible retention rates tended to be higher
for the finer sands than the coarser 710-μm Ottawa sand. The
relatively small sample size and the complex flow pattern in
the composite medium made it difficult to reach definitive
conclusions regarding transport parameters for colloid
transport.

Appendix A. Solution procedure

The mathematical problem given by Eqs. (1)–(7) is solved
by first taking the Laplace transform of the two governing
equations, then decoupling and solving the resulting ordinary
differential equations, and finally inverting to the regular time
domain. The solution of a similar problem, albeit considerably
simpler due to the omission of interactionwith the solid phase,
was treated in detail by Leij et al. (2012). In the following we
will briefly review the solution procedure with an emphasis on
novel aspects for the colloid transport model with attachment/
detachment and irreversible retention.

The following Laplace transform with respect to time
(with s as complex transformation variable)

L Ci x; tð Þf g ¼ C i x; sð Þ ¼ ∫∞
0
C x; tð Þ exp −stð Þdt ðA1Þ

is applied to the governing Eq. (1), the boundary condi-
tions (4)–(6), and the rate Eqs. (2) and (3). The resulting
ordinary differential equation for transport in region imay be
written as:

κvi
d2C i

dx2
−vi

dC i

dx
¼ s 1þ kai

sþ kd

� �
þ ksi þ αi

� 	
Ci−αiC j

i ¼ 1;2; j ¼ 2;1ð Þ

ðA2Þ

where αi is given by Eq. (15b).
The two governing equations are written in matrix form:

G Cð Þ ¼ AC ðA3Þ

with the advection–dispersion operator

G ::ð Þ ¼ κ
d2 ::
dx2

− d ::
dx

ðA4Þ

while the coefficient matrix and solution vector are respec-
tively given by:

A ¼
s
v1

1þ ka1
sþ kd

� �
þ ks1 þ α1

v1
−α1

v1

−α2

v2

s
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The system is diagonalizable by using the eigenvalues and
eigenvectors of the coefficient matrix (Esfandiari, 2008;
Kreyszig, 2006; Zwillinger, 1989). The resulting two ordinary
differential equations are decoupled and can be readily solved
to obtain the two respective concentrations in the Laplace

domain. After implementing the boundary conditions, the
solution for the first region is
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The variables a, b, c, and dwere given by Eqs. (11a,b)–(14a,b)
while the auxiliary variable r is defined by:

r ¼ a1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s− b1=a1

sþ kd
þ d1

a1

� �2
þω2

s
ðA7Þ

with ω given by Eq. (15a,b). The inverse Laplace transform is
carried out by using the shifting and convolution theorems.

The following transformation pairs are used that were
obtained directly from Abramowitz and Stegun (1970) and
Polyanin and Manzhirov (1998) or derived by using elemen-
tary properties of the Laplace transform:
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where H is the unit-step or Heaviside function, δ is the
Dirac delta function, J0 and J1 are zero- and first-order Bessel
functions of the first kind, I0 and I1 are the corresponding
modified Bessel functions, and J denotes Goldstein's J-function
(cf. Goldstein, 1953; van Genuchten, 1981). Substituting the
expressions for the inverse Laplace transform in Eq. (A6) and
evaluating the Dirac and Heaviside functions leads to the
analytical solution given by Eqs. (8) and (9).

75F.J. Leij, S.A. Bradford / Journal of Contaminant Hydrology 150 (2013) 65–76



Author's personal copy

References

Abramowitz, M., Stegun, I.A., 1970. Handbook of Mathematical Functions.
Dover Publications Inc., New York.

Beven, K., Germann, P., 1982. Macropores and water-flow in soils. Water
Resources Research 18, 1311–1325.

Bradford, S.A., Torkzaban, S., 2008. Colloid transport and retention in
unsaturated porous media: A review of interface-, collector-, and pore-
scale processes and models. Vadose Zone Journal 7, 667–681.

Bradford, S.A., Simunek, J., Bettahar, M., van Genuchten, M.T., Yates, S.R.,
2003. Modeling colloid attachment, straining, and exclusion in saturated
porous media. Environmental Science & Technology 37, 2242–2250.

Bradford, S.A., Bettahar, M., Simunek, J., van Genuchten, M.Th., 2004.
Straining and attachment of colloids in physically heterogeneous porous
media. Vadose Zone Journal 3, 384–394.

Bradford, S.A., Simunek, J., Bettahar, M., Tadassa, Y.F., van Genuchten, M.T.,
Yates, S.R., 2005. Straining of colloids at textural interfaces. Water
Resources Research 41, W10404.

Bradford, S.A., Torkzaban, S., Leij, F.J., Simunek, J., van Genuchten, M.T., 2009.
Modeling the coupled effects of pore space geometry and velocity on
colloid transport and retention. Water Resources Research 45, W02414.

Bradford, S.A., Torkzaban, S., Simunek, J., 2011. Modeling colloid transport
and retention in saturated porous media under unfavorable attachment
conditions. Water Resources Research 47, W10503.

Cey, E.E., Rudolph, D.L., 2009. Field study of macropore flow processes using
tension infiltration of a dye tracer in partially saturated soils. Hydrological
Processes 23, 1768–1779.

Cey, E.E., Rudolph, D.L., Passmore, J., 2009. Influence of macroporosity on
preferential solute and colloid transport in unsaturated field soils.
Journal of Contaminant Hydrology 107, 45–57.

Coats, K.H., Smith, B.D., 1964. Dead-end pore volume and dispersion in
porous media. Society of Petroleum Engineers Journal 4, 73–84.

de Hoog, F.R., Knight, J.H., Stokes, A.N., 1982. An improved method for
numerical inversion of Laplace transforms. SIAM Journal on Scientific
and Statistical Computing 3, 357–366.

Dean, D.M., Foran, M.E., 1992. The effect of farm liquid waste application on
tile drainage. Journal of Soil and Water Conservation 47, 368–369.

Dykhuizen, R.C., 1991. Asymptotic solutions for solute transport in dual-
velocity media. Mathematical Geology 23 (3), 383–401.

Esfandiari, R.S., 2008. Applied Mathematics for Engineers. Atlantis Publishing
Company, Los Angeles, CA.

Evans, M.R., Owens, J.D., 1972. Factors affecting the concentration of faecal
bacteria in land-drainage water. Journal of General Microbiology 71,
477–485.

Gerke, H.H., van Genuchten, M.T., 1996. Macroscopic representation of
structural geometry for simulating water and solute movement in dual-
porosity media. Advances in Water Resources 19, 343–357.

Ginn, T.R., Wood, B.D., Nelson, K.E., Scheibe, T.D., Murphy, E.M., Clement, T.P.,
2002. Processes in microbial transport in the natural subsurface.
Advances in Water Resources 25, 1017–1042.

Goldstein, S., 1953. On the mathematics of exchange processes in fixed
columns I:Mathematical solutions and asymptotic expansions. Proceedings
of the Royal Society of London, Series A: Mathematical and Physical
Sciences 219, 151–185.

Jarvis, N.J., 2007. A review of non-equilibrium water flow and solute transport
in soil macropores: principles, controlling factors and consequences for
water quality. European Journal of Soil Science 58, 523–546.

Javandel, I., Doughty, Ch., Tsang, C.-F., 1984. Groundwater Transport:
Handbook of Mathematical Models. Water Resour. Monograph, no. 10.
Am. Geophys. Union, Washington, D.C.

Kreyszig, E., 2006. Advanced Engineering Mathematics. John Wiley,
New York.

Lapidus, L., Amundson, N.R., 1952. Mathematics of adsorption in beds.VI. The
effects of longitudinal diffusion in ion exchange and chromatographic
columns. Journal of Physical Chemistry 56, 984–988.

Leij, F.J., Bradford, S.A., 2009. Combined physical and chemical nonequilibrium
transport model: analytical solution, moments, and application to colloids.
Journal of Contaminant Hydrology 110, 87–99.

Leij, F.J., Toride, N., Field, M., Sciortino, A., 2012. Solute transport in dual-
permeability porous media. Water Resources Research 48, W04523.

McGechan, M.B., Lewis, D.R., 2002. Transport of particulate and colloid-
sorbed contaminants through soil, part 1: General principles. Biosystems
Engineering 83, 255–273.

Pang, L., McLeod, M., Aislabie, J., Simunek, J., Close, M., Hector, R., 2008.
Modeling transport of microbes in ten undisturbed soils under effluent
irrigation. Vadose Zone Journal 7, 97–111.

Passmore, J.M., Rudolph, D.L., Mesquita, M.M.F., Cey, E.E., Emelko, M.B., 2010.
The utility of microspheres as surrogates for the transport of E. coli RS2g
in partially saturated agricultural soil. Water Research 44, 1235–1245.

Polyanin, A.D., Manzhirov, A.V., 1998. Handbook of Integral Equations. CRC
Press, Boca Raton.

Ryan, J.N., Elimelech, M., 1996. Colloid mobilization and transport in
groundwater. Colloids and Surfaces A: Physicochemical and Engineering
Aspects 107, 1–56.

Selim, H.M., Ma, L., 1998. Physical Nonequilibrium in Soils: Modeling and
Applications. Ann Arbor Press, Chelsea, MI.

Silliman, S.E., 1995. Particle transport through two-dimensional, saturated
porous media: influence of physical structure of the medium. Journal of
Hydrology 167, 79–98.

Simunek, J., van Genuchten, M.Th., 2008. Modeling nonequilibrium flow and
transport processes using HYDRUS. Vadose Zone Journal 7, 782–797.

Simunek, J., He, C., Pang, L., Bradford, S.A., 2006. Colloid-facilitated solute
transport in variably saturated porous media: numerical model and
experimental verification. Vadose Zone Journal 5, 1035–1047.

Toride, N., Leij, F.J., van Genuchten, M.Th., 1993. A comprehensive set of
analytical solutions for nonequilibrium solute transport with first-order
decay and zero-order production. Water Resources Research 29,
2167–2182.

Toride, N., Leij, F.J., van Genuchten, M.Th, 1995. The CXTFIT code for
estimating transport parameters from laboratory or field tracer exper-
iments. Version 2.0. Res. Rep. 137. U.S. Salinity Lab, Riverside, CA.

Unc, A., Goss, M.J., 2003. Movement of faecal bacteria through the vadose
zone. Water, Air, and Soil Pollution 149, 327–337.

van Genuchten, M.Th., 1981. Non-equilibrium transport parameters from
miscible displacement experiments. Report 119. U.S. Salinity Laboratory,
Riverside, CA.

van Genuchten, M.Th., Dalton, F., 1986. Models for simulating salt movement
in aggregated field soils. Geoderma 38, 165–183.

van Genuchten, M.Th., Wierenga, P.J., 1976. Mass transfer studies in sorbing
porous media: I. Analytical solutions. Soil Science Society of America
Journal 40, 473–480.

Vanderborght, J., Kasteel, R., Herbst, M., Javaux, M., Thiéry, D., Vanclooster,
M., Mouvet, C., Vereecken, H., 2005. A set of analytical benchmarks to
test numerical models of flow and transport in soils. Vadose Zone
Journal 4, 206–221.

Zwillinger, D., 1989. Handbook of Differential Equations. Academic Press,
San Diego.

76 F.J. Leij, S.A. Bradford / Journal of Contaminant Hydrology 150 (2013) 65–76




