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» We extend the Duhamel theorem to the case of advective-dispersive solute transport.
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» Explicit analytical expressions are developed for selected particular cases.

» Results are compared with other specific solutions from the literature.
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Analytical solutions of the advection-dispersion solute transport equation remain useful for a large num-
ber of applications in science and engineering. In this paper we extend the Duhamel theorem, originally
established for diffusion type problems, to the case of advective-dispersive transport subject to transient
(time-dependent) boundary conditions. Generalized analytical formulas are established which relate the
exact solutions to corresponding time-independent auxiliary solutions. Explicit analytical expressions
were developed for the instantaneous pulse problem formulated from the generalized Dirac delta func-
tion for situations with first-type or third-type inlet boundary conditions of both finite and semi-infinite
domains. The developed generalized equations were evaluated computationally against other specific
solutions available from the literature. Results showed the consistency of our expressions.

Published by Elsevier B.V.

1. Introduction

Analyses of many contaminant transport problems require the
use of mathematical models commensurate with the application.
While many field problems require comprehensive numerical
models simulating transient fluid flow and solute transport, many
transport problems may well be addressed using simplified one-
or multi-dimensional analytical models. As pointed out in several
studies [1-5], analytical models are useful for providing initial or
approximate studies of alternative pollution scenarios, conducting
sensitivity analyses to investigate the effects of various parame-
ters or processes on contaminant transport, extrapolating results
over large times and spatial scales where numerical solutions
become impractical, serving as screening models, estimating

* Corresponding author. Address: US Salinity Laboratory, 450 W. Big Springs Rd.,
Riverside, CA 92507, USA. Tel.: +1 951 369 4853; fax: +1 951 342 4964.
E-mail address: Todd.Skaggs@ars.usda.gov (T.H. Skaggs).

1385-8947/$ - see front matter Published by Elsevier B.V.
http://dx.doi.org/10.1016/j.cej.2013.01.095

transport parameters from laboratory or well-defined field
experiments, providing benchmark solutions for more complex
transport processes that cannot be solved analytically, and for
verifying more comprehensive numerical solutions of the govern-
ing transport equations.

The literature contains many analytical solutions for advection-
dispersion type transport problems in one and multiple
dimensions, including solutions for sequential decay chains, non-
equilibrium transport problems and finite and infinite domains
(e.g. [2,6-15]). Most or all of these solutions are for boundary con-
ditions that are constant in time or change in only a very simple
manner with time (e.g., step or exponential functions). By contrast,
very few analytical solutions are available when the boundary con-
ditions are arbitrary functions of time. Still, it is known from the
heat conduction literature that Duhamel’s theorem provides a con-
venient approach for developing solutions to heat conduction
problems with time-dependent boundary conditions, and/or for
time-dependent energy generation scenarios by utilizing the
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solution to the same problem with time-independent energy
sources [16,17].

The objective of the present work is to apply Duhamel’s theo-
rem to one-dimensional advection-dispersion solute transport
problems with boundary conditions that are dependent upon time.
A general framework is provided to obtain the desired solutions
from known solutions of cases having time-independent boundary
conditions. The equations developed in this paper hence may be
used to extend existing solutions to situations where the boundary
conditions are time-dependent.

2. Problem formulation

Contaminant transport in homogeneous porous media is gener-
ally modeled by assuming a constant average transport velocity,
linear equilibrium sorption, and first-order decay. For a finite (of
length Ly) or semi-infinite medium, this problem can be formu-
lated as:

ac(x,t)

R
ot

= Le(x, t) (1a)

where L is a linear operator of the form:

NG d
L= DW - va - (1b)
which is to be solved here subject to the following initial and
boundary conditions:

c(x,0)=0 2)
c(0,t) = g(f) (32)
or

ac(0,t) B
-D o +vc(0,t) = vg(t) (3b)
ac(Lo, t)

o =0 (4a)
or
ac(oo,t)

o =0 (4b)

where c(x, t) is the dimensional concentration [M L~3] as a function
of distance x [L] and time ¢ [T], g(t) is some known time-dependent
function representing the inlet concentration [M L~3], R is a con-
stant retardation coefficient [—], v is a constant average pore water
velocity [L T~'], u is a constant first-order decay constant [T~!], and
D is a constant dispersion coefficient [L*> T~'].

Egs. (3a) and (3b) describe two possible formulations of the in-
let boundary condition at x = 0, generally referred to as first-type
(or Dirichlet) and third-type (or Cauchy) boundary conditions,
respectively. Boundary condition (4a) for a finite transport domain
is often referred to as the Danckwerts outlet condition [18]. The
physical basis and applicability of these conditions are discussed
in great detail elsewhere [8,19,20].

3. Solutions using Duhamel’s theorem

Our solution follows the methodology outlined by Ozisik [16]
for heat conduction problems. We first give the general solution
for any arbitrary transient function of the inlet concentration,
g(t), and then present the solutions for two special cases: an
instantaneous pulse described by the Dirac delta function (Sec-
tion 3.2) and a finite pulse input function (Section 3.3).

3.1. General Duhamel solution

Let &(x, t; ) [M L 3], be the auxiliary solution of the following
problem where 7 is a parameter (but not the time variable):

0P(x, t;T) )
R = LO(x, £: 7) (5)
d(x,0;7)=0 (6)
(0, t; 7) = g(7) (7a)
or
_p220.67) vo(0, t; T) = vg(T) (7b)
ox

8@([,0, f; T) _

ox =0 (89
or
0P(00, t;T)
— =0 (8d)

Duhamel’s theorem relates c(x, t) of Eqgs. (1-4) to the solution &(x, t;
7) of Egs. (5-8) by means of the following integral expression:

c(x,t) = % /Ot &(x, t—1; 7)dt (9)

The proof of the extended Duhamel’s theorem for the advection-
dispersion equation is not shown here, but can be easily obtained
by applying Laplace transforms to Eqs. (1-4) and (5-8) and by con-
sidering the definition of the generalized convolution as defined by
Bartels and Churchill [21]. Because the initial condition (Eq. 6) is
zero, one obtains

c(x,t) = /Ot %@(X,t— T;7) dt (10)
We now adopt the following substitution:

Px, t;T) = @(x, )g(T) (11)
in which ¢(x, t) is dimensionless [—] and g(t) has the same dimen-

sion as before for the concentration [M L~3]. Substituting Eq. (11)
into Egs. (5) through (8) leads to

op(x,t)
R T Lo(x, t) (12)
¢(x,0)=0 (13)
@0,t)=1 (14a)
or

2¢(0, t) _
op(Lo,t)
= 0 (15a)
or
9p(o0, t)
ok = 0 (15b)
whereas c(x, t) given by Eq. (10) becomes:
t 7]

clx ) = [ 8ol t - e (16)
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By noting that 2 (x, t — 1) = -2 @(x, t —
can alternatively be written as:

/g o, t—1)dt

7), the last equation also

— g(0)p(x, ) + /0 oKX, t—1) dfé(f) dr (17)

3.2. Special case: instantaneous pulse

Assume that g(t) is an instantaneous pulse of the form g(t) = mg
5(t), where mg [M L3 T] is the amount of injected mass over a cer-
tain cross-sectional area divided by the volumetric water flux
through that same area, and §(t) is the generalized Dirac delta
function [T!]. Eq. (16) then reduces to

N
c(x, £) = mo/o (1) S plx. ¢~ T)de (18)
Using the property [22]:
[ o - oFde = Fio) (19)
Eq. (18) simplifies to
c(x, t) =mg 99, t) (20)

ot

3.3. Special case: Finite pulse

In this case, the function g(t) is defined as a finite pulse of the
form

L [f( 0<t<to
so-{') °7lT e1)

Using Eqgs. (17) and (21), and separating the integral at the discon-
tinuity (t = to) into two parts leads to

)= FOpx, 0+ [ px, t— 1)Lt t<to
00, ) —f(to)px.t—to) + [ px,t —T)Ldr t> ¢
(22)

4. Specific solutions for the instantaneous pulse

In the following we give solutions for the case of an instanta-
neous pulse for a solute transport scenario described by Eqs. (1-
4). The expressions were developed using Eq. (20), together with
equations compiled by van Genuchten and Alves [23] serving as
the auxiliary solution, ¢(x, t), of Eqs. (12-15) for the various types
of boundary conditions (BCs). The solutions are relatively routine,
but shown here to illustrate the implementation of Duhamel’s the-
orem. More involved examples are given in Section 5.

4.1. Instantaneous pulse, first type inlet BC; semi-infinite domain

The auxiliary solution ¢(x, t) is given by Case C5 of van Genuch-
ten and Alves [23]. Differentiation of that solution with respect to
time as indicated by Eq. (20) leads to the well-known solution (e.g.,
Skaggs and Leij [20]; Table 6.1-3):

2 (tv—Rx)? t
c(x,t) DRxexp [ — ]

Co 2/ (DRt)*?

(23)

4.2. Instantaneous pulse, third type inlet BC; semi-finite domain

The auxiliary solution ¢(x, t) is given by Case C6 of van Genuch-
ten and Alves [23]. Differentiation versus time gives (e.g., Skaggs
and Leij [20]; Table 6.1-3):

(tv—Rx)®> ot
cx, t) vexp {_ 4Rt T]

Co  a(DRt)'?
vZexp( — & tv+Rx
_ DR erfc (DR (24)

4.3. Instantaneous pulse, first-type inlet BC; finite domain

The auxiliary solution ¢(x, t) is given by Case C7 of van Genuch-
ten and Alves [23], which if differentiated versus time leads imme-

diately to
o Bm VX Ve B2Dt
ZE” Bm: %) 4DR 2r| P <2D R 4DR~ R
(25a)
28, sin (£n*
Epa(Bn.X) = —— (L0> (25b)

2 g\2 | VL
Bu+ (38) +358
in which the eigenvalues g, are roots of the following transcenden-
tal equation:

Bm €Ot(fm) + 575 =0 (26)

4.4. Instantaneous pulse, third type inlet BC; finite domain

The auxiliary solution ¢(x, t) is now given by Case C8 of van
Genuchten and Alves [23]. Differentiation versus time of that solu-
tion gives

e gD VX ut vt pLDt
ZE” P % <4DR 28 ) P\2D" R "aDR ™ 2R

(27a)
2ng PmX ‘Lo BmX
Pm|Bm COS + 52 sin
Esp (B, X) = | (& ‘,L) ‘L( ) (27b)
[+ )+ ] [+ ()]
in which the eigenvalues f,, are obtained from:
oty PnD Vo g (28)

v, 4D

5. Example applications

The solutions listed in the previous section are relatively stan-
dard and could be obtained easily without application of Duhamel’s
theorem. Here we show two additional solutions implemented
within a more general Duhamel framework, and compare them with
previously developed exact solutions.

5.1. Example 1: Exponential inlet distribution; decay

We solve the transport problem for a semi-infinite medium
subject to a third-type inlet boundary condition. The governing
equations are given by Egs. (1) and (2) subject to Egs. (3b) and
(4b), along with the following data set: g(t)=C,+Cp exp(—Ait),
R=1, u=03day !, D=0.7 m?/day, v=0.3m/day, C,=1kg/m>
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Table 1
Concentration values c(x, t) at t = 0.1 and t = 1.0 day (example 1).

(x 1) C14, Eq. (29)

X c(x, 0.1) Eq. (16) c(x,0.1) Eq. (17) c(x, 0.1) C14, Eq. (29) c(x, 1) Eq. (16) c(x, 1) Eq. (17)
0 0.345747-4.14732E-11 i 0.345747-2.95659E-28 i 0.345747 0.636578 0.636578 0.636578
1 0.00129972 0.00129972 0.00129972 0.239872 0.239872 0.239872
2 1.11677E-8 1.11677E-8 1.11677E-8 0.0533083 0.0533083 0.0533083
3 1.14162E-16 1.14162E-16 1.14162E-16 0.00658916 0.00658916 0.00658916
4 1.12897E-27 1.12897E-27 1.12897E-27 0.000436546 0.000436546 0.000436546
5 9.93261E-42 9.93261E-42 9.93261E-42 1.51316E-05 1.51316E-05 0.0000151316
6 7.46131E-59 7.46131E-59 7.46131E-59 2.69961E-7 2.69961E-7 2.69961E-7
7 4.67686E-79 4.67686E-79 4.67686E-79 2.45109E-9 2.45109E-9 2.45109E-9
8 2.41191E-102 2.41191E-102 2.41191E-102 1.12344E-11 1.12344E-11 1.12344E-11
9 1.01396E-128 1.01396E-128 1.01396E-128 2.58411E-14 2.58411E-14 2.58411E-14
10 3.45271E-158 3.45271E-158 3.45271E-158 2.96977E-17 2.96977E-17 2.96977E-17
. v Rx — wt
. B(x, t) = e*“{ exp { } { }
10°
2 ' w4y 2+v/DRt
& \J exp {(V—«—W) } e [Rx+wt]
£ _
& — : - w—v 2D 2v/DR
x 2+ Finite Domain, Eq. (25) 2 Rx + vt
= - = = SemiInfinite Domain, Eq. (23) n v exp vx _pt erfc X+t 31)
=] Eq. (25) with velocity reversed 2D(,u — AR) D R 2 v DRt
E e ® @ @ Ref. [25]
E 1 Rx — vt v2t Rx — vt)?
3 Eix ) —e 4 serfe S exp |- B0
O - 2+v/DRt 4DRt
e} 1 vx V2t VX Rx + vt
o ——<1 exp( ) erfc| =12 (32)
E os 2 D DR D 2+/DRt
7]
P . .
5 in which
o
0 ey u=/v2+4uD (33)
0 2000 4000 6000 8000
TIME [s]
w=/v2+4D(u — /R) (34)

Fig. 1. Outlet concentration for a finite domain (Eq. (25)) and semi-infinite (Eq.
(23)) domain. Also, the concentration computed for a finite domain with the
velocity reversed (“flow against dispersion”).

Cy, =2 keg/m>, and 2 =1 day . The analytical solution for this prob-
lem corresponds to the Case C14 in van Genuchten and Alves [23].

Egs. (16) or (17) can be used together with auxiliary solution C8
of van Genuchten and Alves [23] to obtain the desired solution.
Although closed-form expressions can be obtained using appropri-
ate integral transform, Laplace transform or other techniques, we
obtain the results here by direct numerical integration. A large
number of numerical integration routines could be used for this
purpose. In our study we used the very flexible NIntegrate subrou-
tine from the Mathematica software package [24]. This numeric
alternative for the integral is appropriate when the exact analytical
solution cannot be derived, or when the resulting closed-form
expressions are very difficult to evaluate (e.g., by containing inte-
gral themselves).

Table 1 shows that results obtained with Eqgs. (16) and (17) are
the same as the closed form solution given by Case C14 van
Genuchten and Alves [23]. For completeness we restate that solu-
tion here:

[ CAX, t) +CpB(x, t) p+# IR
0= { 0L o) o )
where

v (v—u)x Rx — ut
Alx, t) = Ty exp [ 3D }erfc{zm}

Ve {(v + u)x} erfc {Rx + ut}
u—v |7 2p 2v/DRt
V2 vx o ut Rx + vt
+ D exp (E - f) erfc {27 W} (30)

5.2. Example 2: instantaneous pulse; flow in the negative x direction
(v<0)

Recently Ziskind et al. [25] obtained an analytical solution of the
advection-dispersion equation with a decay term for a finite one-
dimensional domain with an instantaneous pulse boundary condi-
tion modeled using the generalized Dirac delta function. They
specified the following initial conditions and boundary conditions:

x1010
9 Eq. (25), D=1.8x10% cm d", p=4.1x10 5"
Eq. (25), D=1.2x10% cm d, p=4.7x10+ 5"
I = _ _ _ Model 2 of Ref. [25]
75 ! \ (D=6.0x10% cm d"', u=2.5x10 s, reversed velocity)
' Y ___ Model 1 of Ref. [25]

(D=4.5x10* cm d"!, p=3.0x10* s, reversed velocity)
O O OpH=7
X XxpH=8

[
1

w
1

OUTLET CONCENTRATION (kg m)
& &
L I

TIME [s]

Fig. 2. Re-analysis of transport data presented in Fig. 5 of Ziskind et al. [25]. The
model calculations and parameter estimates in [25] were obtained with the velocity
reversed (dashed lines). The solid lines show the model fit obtained with the
velocity specified in the correct direction.
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c(x,0)=0 (35)
dc(x=0,1)

= 0 (36)
c(x = = Lo, t) = med(t) (37)

in which x is represents the longitudinal variable used by [25]. The
spatial coordinates x and x (the latter being the longitudinal posi-
tion used in our study) are related by X = L, — x. With this relation-
ship the boundary conditions given by Egs. (36) and (37) are
equivalent to Egs. (4a) and (3a), respectively.

The analytical solution of the above problem is given Egs. (25)
and (26) in Section 4.3, where the velocity values must be consid-
ered negative in the equations. It is easily verified that our analyt-
ical solution is the same as the solution obtained by [25]. However,
the index of summation in our Eq. (25) starts with “m = 1" and not
with “m = 0" as specified in Eq. (21) of Ziskind et al. [25].

Numerical evaluations were made for the following data set
used in [25]: R=1, u=3x10"%s"!, D=7 x10°%m?[s, v=3 x
10> m/s, Lp=0.23m, mg=M;/Q with Mr=8 x 1073 kg, and
Q=8.57 x 10~8 m?[s. Fig. 1 compares the solutions for both a finite
domain (Eq. 25) and a semi-infinite-domain (Eq. (23)). The number
of summed terms used in Eq. (25) was N =20. Some results pre-
sented in [25] were apparently computed, whether intentionally
or not, with the velocity reversed, i.e. <0 in our formulation or
v> 0 in [25]. Such an arrangement, with flow directed toward the
contaminant source boundary, has been termed “flow against dis-
persion” [26] in the hydrology literature. Fig. 1 also shows results ob-
tained for Eq. (25) with the velocity reversed (v=—3 x 107> m/s),
along with a few points digitized from a curve presented in Fig. 2
of [25]. Results obtained using the solution developed by [25] were
exactly the same as obtained with our Eq. (25), provided the summa-
tion is assumed to start with “m=1".

Fig. 2 presents a re-analysis of bacteriophage transport data
from [27] which were analyzed in Fig. 5 of [25]. The dashed lines
are a reproduction of the modeling results presented in Fig. 5 of
[25]. The dashed lines were computed using Eq. (25) with the D
and u values estimated in [25] (given in Fig. 2), the velocity re-
versed, and the other model parameter values the same as given
above for Fig. 1. The solid lines show the optimal model fit with
velocity specified in the correct direction, where the indicated D
and u values were obtained from a new least-squares fit of Eq.
(25) to the data. Fig. 2 shows that the obtained fitted model param-
eters and model agreement with the data differ considerably from
those reported in [25]. The model fit for pH = 8 is particularly good.

6. Conclusion

Applications of the Duhamel Theorem were extended to advec-
tion-dispersion type solute transport problems in porous media
when the boundary conditions are time-dependent. Solutions were
obtained from solutions of corresponding non-time dependent
auxiliary solutions using very generalized formulas. In this paper
we illustrated the approach for relatively standard cases with
known exact solutions. In particular, we emphasized cases of
instantaneous and finite pulse applications to transport problems
in finite and semi-infinite domains. The developed generalized for-
mulas obtained duplicated several specific solutions available in
the literature. In this paper we showed applicability to relatively
simple one-dimensional equilibrium transport problems, including
decay. In future work we intend to show that the general Duhamel
approach is equally applicable to more complicated scenarios of
transport in multi-dimensional media of solutes subject to non-
equilibrium sorption or sequential decay chain reactions.
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