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Eff ects of Soil Hydraulic and 
Transport Parameter Uncertainty 
on PredicƟ ons of Solute Transport 
in Large Lysimeters
Advanced numerical simulaƟ on models can potenƟ ally help improve guidelines for irri-
gaƟ on and salinity management. Many simulaƟ on model parameters have considerable 
uncertainty, and ideally that uncertainty should be refl ected in model predicƟ ons and rec-
ommendaƟ ons. In this work, we invesƟ gate solute transport predicaƟ on intervals that can 
be generated by propagaƟ ng model parameter uncertainty using Monte Carlo techniques. 
Flow and transport is simulated with a standard numerical model, while soil parameters 
and their uncertainty are esƟ mated with pedotransfer funcƟ ons. Generalized global sen-
siƟ vity coeffi  cients are computed to determine the parameters having the greatest impact 
on transport predicƟ on and uncertainty. SimulaƟ ons are compared with Br transport mea-
sured under unsaturated condiƟ ons in large lysimeters packed with clayey soil materials. In 
a 48 cm tall, homogeneous soil profi le, model predicƟ on intervals provided a reasonably 
good descripƟ on of a single, relaƟ vely “noisy” breakthrough curve. In replicated 180 cm tall, 
layered soil profi les, model structural errors limited the accuracy of the predicƟ on intervals 
under one irrigaƟ on water treatment, whereas under another treatment the predicƟ ons 
tracked the Ɵ me course of the data reasonably well but tended to overesƟ mate solute con-
centraƟ ons. The width of the predicƟ on intervals tended to be small relaƟ ve to the range 
of transport variability that existed across replicated lysimeters, parƟ cularly at shallow 
depths. AddiƟ onal work aimed at operaƟ onal fi eld tesƟ ng of model predicƟ on uncertainty 
is needed if advanced water management models are to reach their full potenƟ al.

AbbreviaƟ ons: HRU, hydrologic response units.

Although tremendous capabilities exist for modeling vadose zone 
hydrological processes (Šimůnek and Bradford, 2008), specifying the uncertainty in model 
predictions remains a signifi cant problem. Part of the diffi  culty in accounting for uncertainty 
lies in the fact that there are many diff erent kinds of models, with many diff erent purposes, 
and no single best approach to uncertainty exists (Beven, 2009). Rather, specifi c models and 
model applications—each having characteristic model structures, data, and informational 
constraints—need to be investigated and best practices need to be determined. Complete 
model testing requires both (i) scientifi c eva luation in which a model’s general agreement with 
current scientifi c understanding is tested; and (ii) “functional” or “operational” evaluation 
in which model prediction accuracy is evaluated quantitatively in the context of a particular 
model application (Willmott et al., 1985; Klemeš, 1986; Loague and Green, 1991; Vereecken 
et al., 1992; Wösten et al., 2001).

Our focus is modeling solute transport in the context of salinity management in irrigated 
agricultural systems. Maintaining agricultural productivity in irrigated lands requires that 
salts introduced by irrigation be periodically leached from soils. Several recent studies (Letey 
and Feng, 2007; Corwin et al., 2007; Dudley et al., 2008; Ben-Gal et al., 2008; Letey et al., 
2011; Oster et al., 2012; Suarez, 2012) have suggested that classical guidelines for salinity 
management (U.S. Salinity Laboratory Staff , 1954; Rhoades, 1974; Ayers and Westcot, 
1985) overestimate the leaching requirement as well as the negative impacts of irrigating 
with moderately saline waters. Accordingly, the traditional guidelines possibly encourage 
over-irrigation, which wastes water and increases contaminant transport to groundwater.

Th e traditional recommendations are based on a steady state analysis of irrigated soils, and 
it has been proposed that transient-state analyses, performed with well-known advanced 
numerical simulation models, could lead to more eff ective water and salinity management 
(Corwin et al., 2007; Letey et al., 2011; Oster et al., 2012; Suarez, 2012). A re-assessment of 
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guidelines for irrigation and salinity management is timely given 
that water availability for irrigated agriculture in arid and semiarid 
regions is decreasing, forcing a greater reliance on recycled or oth-
erwise degraded waters, and a greater use of marginal quality lands.

Th e degree to which transient-state modeling can improve water 
management depends on the accuracy of the model simulations. As 
a practical matter, routine recommendations must be made using the 
models in a purely predictive mode because it will not be possible to 
run, for example, a solute transport experiment that would permit 
the calibration of model parameters. In such a scenario, model 
parameter values will be uncertain, and ideally that uncertainty 
should be refl ected in the model prediction and recommendation.

Oster et al. (2012) evaluated several well-known models suitable 
for transient-state analyses. All of the surveyed models used the 
Richards equation to model variably saturated water fl ow and an 
advection-dispersion equation to model solute transport. Important 
model parameters include soil hydraulic parameters such as the 
hydraulic conductivity and transport parameters such as the dis-
persivity. In cropped scenarios, root water uptake and crop stress 
tolerance parameters are also essential.

Our objective was to examine the eff ects of soil hydraulic and trans-
port parameter uncertainty on predictions of solute transport, and to 
consider whether such uncertainty could be used benefi cially in pre-
dictions of salt accumulation and leaching. We do not address this 
issue, or the larger question of salinity management with transient 
state models, in a general or comprehensive way, but instead focus 
more narrowly on predictions of solute transport and uncertainty 
for a particular soil system, comparing predictions with transport 
data measured in large lysimeters over distances that are comparable 
to the root zones of agronomic crops. Th us this work constitutes a 
necessary step in what must be an incremental accumulation of basic 
knowledge about uncertainties in models of irrigated agricultural 
systems, and about methods for treating uncertainty.

Specifi cally, in this work we explore solute transport prediction 
intervals that may be generated by propagating model parameter 
uncertainty using the Monte Carlo method. Flow and transport 
is simulated with the HYDRUS-1D model (Šimůnek et al., 2005). 
Hydraulic parameters and their uncertainty are estimated with the 
Rosetta pedotransfer function (PTF) model (Schaap et al., 2001). 
Generalized global sensitivity analyses are presented to determine 
the parameters having the greatest impact on transport prediction 
and uncertainty.

 Background
A vast literature exists on stochastic methods for subsurface hydrol-
ogy, as summarized in books by Dagan (1989), Gelhar (1993), and 
Zhang (2002), among others. Th e impetus for much work on sto-
chastic methods has been subsurface heterogeneity. Many early 

eff orts modeled hydraulic conductivity and other material proper-
ties as spatial random fi elds, with transport equations developed 
for the mean and variance of the solute concentration (or pressure 
head). An alternative approach developed specifi cally for the vadose 
zone is stochastic stream tube modeling, wherein fl ow and transport 
in a fi eld is conceived to occur in independent, one-dimensional soil 
columns (e.g., Bresler and Dagan, 1979; Jury and Roth, 1990). A 
local-scale transport model is specifi ed for the columns, and fi eld-
average transport is determined based on the assumed random 
variation of local-scale model parameters across the fi eld.

Despite the abundant research, it is generally acknowledged that 
stochastic theories and approaches have rarely been adopted for 
the management of real-world problems (Dagan, 2002; Zhang and 
Zhang, 2004; Renard, 2007). Among other impediments, the use 
of stochastic methods in vadose zone hydrology is hindered by the 
fact that assumptions invoked in some stochastic models such as 
stationary random material properties are typically not applicable 
to fi eld soils (Jury and Roth, 1990). Also, it is very diffi  cult to 
obtain reliable statistical information about soil spatial variability 
(e.g., Russo and Jury, 1987).

Moreover, heterogeneity is only one of many sources of uncertainty 
aff ecting model applications. More generally, uncertainty enters 
the modeling process through informational constraints regard-
ing boundary conditions, model structures, model parameters, 
etc. (Beven, 2009). For example, distributed parameter modeling 
approaches divide the landscape into areas that are treated as inde-
pendent homogeneous units, sometimes called hydrologic response 
units (HRUs). Th e delineation of HRUs might, for example, coin-
cide with map units from a soil survey. Although the distributed 
approach is oft en viewed as a deterministic modeling framework, 
in practice uncertainty enters into model calculations from many 
sources. At the HRU scale, uncertainty exists in specifying a suit-
able local model, and once specifi ed, in specifying appropriate model 
parameter values. When models developed from consideration of 
lab- or plot-scale processes are used as the HRU process model, dif-
fi culties associated with model incommensurability arise (Beven, 
2009), including the impossibility of directly measuring model 
parameters. Parameters must therefore be estimated, and their 
values are necessarily uncertain (Brown and Heuvelink, 2005). A 
standard approach to uncertainty analysis is to specify uncertain 
model parameters in terms of probability density functions, and to 
propagate the uncertainty through the model using Monte Carlo 
methods or other techniques (Brown and Heuvelink, 2005).

In this context, one well known approach for estimating unknown 
soil parameters and their uncertainty is pedotransfer functions 
(e.g., Pachepsky and Rawls, 2004; Vereecken et al., 2010). Because 
most pedotransfer functions (PTF) have been developed from 
soil properties that were measured or analyzed at lab or plot 
scales (Jana et al., 2007), their parameter estimates can be consid-
ered incommensurate with fi eld scale calculations. Nevertheless, 
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several researchers have considered the eff ects of PTF-estimated 
parameter uncertainty on model predictions. As noted by Brown 
and Heuvelink (2005), making progress toward “policy-relevant” 
modeling in hydrology and environmental sciences will likely 
require some balance between physical and statistical reality on 
one hand and pragmatism on the other. Some recent examples 
of PTF-uncertainty propagation include: Stenemo and Jarvis 
(2007), who evaluated the eff ects of PTFs on pesticide leaching 
by sampling PTF regression errors and propagating them through 
a simulation model in a Monte Carlo analysis; van den Berg et al. 
(2012), who similarly used Monte Carlo uncertainty propagation 
in evaluating pesticide leaching to groundwater; and Loosvelt et 
al. (2011), who evaluated the impact of PTF-derived soil hydraulic 
parameter uncertainty on soil moisture modeling. A shortcoming 
of these and other similar studies is that the generated prediction 
uncertainties were not evaluated against measured data. Although 
in the present work we consider only plot scale processes and data, 
we do so with an eye toward the development of modeling practices 
associated with fi eld-scale management problems.

Methods and Materials
Transport Experiment
Skaggs et al. (2012) recently reported results for a soil salinization 
and leaching experiment conducted in 12 cylindrical lysimeters 
measuring 46 cm in diameter and 197 cm tall (Fig. 1). Th e lysim-
eters were packed with homogenized soil materials to create 12 
identical soil columns having a three-layer soil texture profi le: a 
0- to 100-cm clay loam surface layer, a 100- to 130-cm silty clay 
middle layer, and a 130- to 180-cm sandy loam bottom layer. Figure 
1 gives the percentages of sand, silt, and clay for each material, plus 
the packed bulk density for the layers. Th e soil materials were exca-
vated from agricultural lands in western San Joaquin Valley, CA, 
and were ground and sieved before being packed in 10-cm depth 
increments. Th e three-layer soil texture profi le was patterned aft er a 
west San Joaquin Valley cotton and tomato fi eld mapped by Shouse 
et al. (2006). Th e bottom of each lysimeter had a vacuum drainage 
system consisting of a 10 cm sand layer which enveloped ceramic 
candles that were connected to a constant vacuum source (35 kPa). 
Instrumentation included tensiometers and solution samplers 
installed at eight depths. Th e lysimeters were installed in a rhizo-
tron facility such that their top edges extended 18 cm above surface 
grade. Th e lysimeters were kept shaded from direct sunlight.

A 13th lysimeter, called the evaporimeter, was installed on an 
electronic balance and used to monitor evaporation under the 
nonstandard evaporation conditions that existed for the lysim-
eter installation. Th e evaporimeter had the same diameter as the 
other lysimeters but was only 65 cm tall (Fig. 1). Th e evaporimeter 
was packed with 48 cm of the clay loam material used in the sur-
face-layer of the other lysimeters, had the same vacuum drainage 
system as the other lysimeters, and was installed in the rhizotron 
so that the surface conditions were the same. Regular, automated 

measurements of changes in the lysimeter and drainage water 
masses were used to determine daily values for evaporation. Full 
details of the construction and installation of the lysimeters and 
evaporimeter are given in Skaggs et al. (2012).

Th e experiment reported by Skaggs et al. (2012) had two irrigation 
phases. During the fi rst phase, which lasted 804 d, six lysimeters 
were regularly irrigated with low salinity (EC = 0.4 dS m−1) syn-
thetic waters containing 20 ppm Br, while six were irrigated with 
high salinity (8.3 dS m−1) synthetic waters also containing 20 ppm 
Br. During the second phase, which lasted 895 d, all lysimeters were 
regularly irrigated with low EC waters (0.4 dS m−1) that contained 
only trace amounts of Br. Th roughout, all lysimeters were irrigated 
at the same time and received the same amounts of irrigation water. 
Th us, with respect to Br transport, the experiment comprised six 
replications of two experimental treatments: treatment 1, in which 
Br was applied in a low EC irrigation water followed by leaching 
with a low EC water; and treatment 2, in which Br was applied 
in a high EC irrigation water followed by leaching with a low EC 
water. At all times, the same amount of Br and water was applied 
to all 12 lysimeters.

Figure 2 shows the record of lysimeter irrigations. Irrigation 
typically occurred three times per week. Th e amount applied per 
irrigation varied, with the goal being to obtain as high a water 
application rate as possible while still maintaining unsaturated soil 

Fig. 1. Schematic illustration of the lysimeter system used in the trans-
port experiments of Skaggs et al. (2012).
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conditions (as indicated by tensiometer readings). Because of the 
low permeability of the soil materials, particularly the middle silty 
clay layer, the rate that could be maintained turned out to be quite 
low, with the net water application, averaged over the duration of 
the experiment, being less than 1 mm d−1.

Figure 2 also shows the evaporation rate determined with the evap-
orimeter. Near the beginning of the experiment, a pulse of Br was 
added to the evaporimeter irrigation water for a short period (Fig. 
2). Over the course of the experiment, the Br concentration in the 
soil solution of the lysimeters was monitored using the solution 
samplers installed at eight depths, and in the drainage waters of the 
lysimeters and evaporimeter. See Skaggs et al. (2012) for full details.

Modeling
SimulaƟ on model
Simulations of water fl ow and solute transport were performed 
using the HYDRUS-1D model. Šimůnek et al. (2005) provide a 
full description of the complete code; we present here a summary of 
the components used in our calculations.

One-dimensional variably saturated water fl ow in soil was modeled 
with the Richards equation,

( ) ( )
hK h K h

t z z
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⎢ ⎥∂ ∂ ∂⎣ ⎦
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where θ [L3 L−3] is the volumetric water content, h [L] is the pres-
sure head, K [L T−1] is the hydraulic conductivity, t [T] is time, and 
z [L] is the vertical space coordinate. Th e soil hydraulic proper-
ties were modeled using the van Genuchten–Mualem constitutive 
relationships,
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where 1 1/m n= − , θs [L
3 L−3] is the saturated water content, θr

[L3 L−3] is the residual water content, K* [L T−1] is a matching 
point hydraulic conductivity for Se = 1, and n, α [L−1], and L are 
adjustable parameters. Although K* is usually equated with the 
saturated hydraulic conductivity, K* = Ks, a fi tted matching point 
conductivity for slightly unsaturated conditions, K* = K0 < Ks, may 
be preferable for modeling unsaturated soils since saturated fl ow is 
typically dominated by macroporosity that does not aff ect unsatu-
rated fl ow (Schaap and Leij, 2000; Weynants et al., 2009). Schaap 
and Leij (2000) observed that optimal fi tted values of K0 were oft en 
about an order-of-magnitude smaller than Ks.

Solute transport was modeled using the advection-dispersion model,

qCC CD
t z z z

⎛ ⎞ ∂∂θ ∂ ∂ ⎟⎜= θ −⎟⎜ ⎟⎜⎝ ⎠∂ ∂ ∂ ∂
  [4]

where C is the solute concentration [M L−3], q is the volumetric 
water fl ux density [L3 L−2 T−1], and D is the dispersion coeffi  cient 
[L2 T−1]. Th e dispersion coeffi  cient was specifi ed as D = λ q/θ, where 
λ [L] is the dispersivity.

HYDRUS-1D uses a Galerkin fi nite-element method to solve the 
fl ow and transport equations. Th e soil profi le was discretized into 
1-cm elements. An atmospheric boundary condition (Šimůnek et al., 
2005) was implemented at the soil surface, which required specifying 
on a daily basis the irrigation rate, evaporation rate, and solution con-
centration in the irrigation water. Th e lower boundary was specifi ed 
as a free drainage condition (Šimůnek et al., 2005).

Model Parameter DistribuƟ ons
Th e eff ects of parameter uncertainty on predicted solute transport 
were investigated with Monte Carlo techniques. Probability distribu-
tions for the soil hydraulic parameters in Eq. [2–3] were determined 
using the Rosetta pedotransfer function model (Schaap et al., 2001). 
Rosetta contains a hierarchy of neural network-based models which 
require diff erent levels of input data. We evaluated two models, the 
Rosetta textural class model, which estimates retention parameters 
and Ks based on a soil’s textural class, and the SSCBD model, which 
estimates the same parameters based on the soil bulk density and the 
percentages of sand, silt, and clay. Rosetta also computes values for 
K0 and L based on the estimated retention parameters. Th e Rosetta 

Fig. 2. Record of lysimeter (and evaporimeter) irrigations, and the 
evaporation rate measured with the evaporimeter. Th e text panel indi-
cates the periods in which Br tracer was added to the irrigation waters. 
(Redrawn from Skaggs et al., 2012).



www.VadoseZoneJournal.org p. 5 of 12

parameter estimates also include parameter standard deviations. 
Table 1 gives parameters values and standard deviations estimated 
using the Rosetta SSCBD model with data for the soil materials 
used in the Skaggs et al. (2012) experiment. Table 1 gives estimates 
for both K* = Ks and K* = K0. Th e parameters θr, θs, and L were 
taken to be normally distributed, whereas Ks, K0, n, and α were 
lognormally distributed (Schaap et al., 2001). Due to a lack of infor-
mation about parameter correlations, the hydraulic parameters were 
considered uncorrelated in the Monte Carlo realizations.

Th e other uncertain model parameter expected to signifi cantly 
aff ect solute transport simulations is the dispersivity, λ . Jury et 
al. (1991) note that typical reported values for λ are 0.5 to 2 cm in 
packed laboratory columns and 5 to 20 cm in fi eld soils. Literature 
review articles indicate that λ is aff ected by soil texture, scale (soil 
volume and transport distance), boundary conditions (method of 
solute application and irrigation), and other experimental factors 
(Beven et al., 1993; Vanderborght and Vereecken, 2007; Bromly et 
al., 2007; Koestel et al., 2012). Various analyses of transport data 
sets in relation to the scale of observation has led to an informal 
rule-of-thumb that λ is oft en found to be equal to about 1/10 of 
the transport distance (Skaggs and Leij, 2002).

In principle it might be possible to prescribe or reduce uncertainty 
in λ by fi nding literature studies with comparable experimental 
parameters, but data compiled by Vanderborght and Vereecken 
(2007) indicate that unsaturated clayey systems, such as consid-
ered in the present work, are perhaps the least studied conditions 
for solute transport. Lacking information that would dictate an 
alternative, we specifi ed λ to have a uniform distribution while 
considering diff erent possibilities for the lower and upper bounds, 
as discussed below in the Results section.

Generalized SensiƟ vity Analysis
Generalized parameter sensitivity coeffi  cients for the Monte Carlo 
simulations were determined by performing linear regression 
analyses of computed concentrations against model parameters. 
For N model parameters, let pij be the value of the jth parameter 
generated in the ith realization, and let Ci be the concentration 

computed for that realization at t = T and z = Z. Th e basic model 
for the regression analysis is (Saltelli et al., 2005)

1 1 1, ,i i ij j iN N iC p p p i M= β + β + + β +ε =… …   [5]

where ( )/
i ii i C CC C= −μ σ  and ( )/

ij ijij ij p pp p= −μ σ are stan-
dardized variables; 

iCμ , ijpμ , 
iCσ , and 

ijpσ are the means and 
standard deviations of Ci and pij, respectively; βj are standardized 
regression coeffi  cients; εi is the error term; and M is the number of 
Monte Carlo realizations. A goodness-of-fi t measure for the linear 
regression is given by the coeffi  cient of determination,
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where *
iC is the concentration predicted by the regression model, 

iCμ  is the mean of *
iC , and 2 [0,1]R ∈ . Although the model used 

in our work is not actually linear in its parameters, Saltelli et al. 
(2005) indicate that an R2 value greater than about 0.7 is evidence 
that Eq. [5] is a reasonable approximation and that in such cases the 
regression parameters βj can be interpreted as parameter sensitivity 
coeffi  cients. Th e coeffi  cients are global in the sense that their magni-
tude is aff ected by sensitivities over the whole parameter space, which 
is in contrast to classical sensitivity measures (e.g., Skaggs and Barry, 
1996) that indicate sensitivity only at a single point in the parameter 
space (Saltelli et al., 2005).

Results and Discussion
Evaporimeter
Evaporimeter Water Flow
We fi rst consider measured and predicted water fl ow and water 
potential in the evaporimeter. Although we are primarily inter-
ested in solute transport, we examine water fl ow here to verify that 
the general modeling approach is sound. Th e simulation model is 
driven by the surface boundary condition, which in this case was 

Table 1. Soil physical characteristics and simulation model parameters.†

Soil 
material Sand Silt Clay

Bulk 
density θr θs log10 α log10 n log10Ks log10K0 L

 ——— % ————— g cm−3  ——— cm3 cm−3 ———— log10 cm  ——— log10 cm d−1 ——— 

Clay loam 42 25 33 1.25 0.0857 
(0.0099)

0.4811 
(0.0095)

−1.8207 
(0.0822)

0.1504 
(0.0183)

1.4120 
(0.2143)

0.6828 
(0.2560)

−0.6640 
(0.9691)

Silty clay 16 41 43 1.25 0.0980 
(0.0084)

0.5070 
(0.0120)

−1.8751 
(0.0798)

0.1440 
(0.0161)

1.3458 
(0.1382)

0.5560 
(0.2755)

−0.6768 
(1.1238)

Sandy loam 78 11 11 1.6 0.0482 
(0.0044)

0.3656 
(0.0057)

−1.4545 
(0.0461)

0.2016 
(0.0149)

1.7423 
(0.0748)

1.3020 
(0.2511)

−1.0413 
(0.7437)

† Estimated mean parameter values and, in parentheses, standard deviations.
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specifi ed based on daily irrigation and evaporation data that were 
available from direct gravimetric measurements (Fig. 2). Figure 3 
shows measured and predicted soil water pressure heads at the 10- 
and 30-cm depths and measured and predicted drainage (outfl ow) 
rates (depth = 48 cm). Th e model prediction intervals shown in the 
fi gure are the 5th, 50th, and 95th percentiles of the model output 
distributions computed with the Monte Carlo method using M = 
5000 parameter set realizations. Figures 3a–3c show results obtained 
using the Rosetta estimate for K* = K0, whereas Fig. 3d through 
3f show results for K* = Ks. Th e pressure head data in Fig. 3 were 
not used in any way in the model calculations. Th e drainage data 
were not used directly in the model calculations, but indirectly those 
data were used to determine the evaporation rate (Fig. 2) that was 
incorporated into the model surface boundary condition, and thus 
the results in Fig. 3c and 3f are not independent model predictions.

Figures 3a, 3b and 3d, 3e show that the soil water pressure head 
predicted with K0 was in better agreement with measured data 
than was the pressure head predicted with Ks. With K0 (Fig. 3a 
and 3b), greater than 90% of the daily pressure head readings fall 
within the bounds given by the 5th and 95th percentiles (shown 
as a shaded gray area). With Ks (Fig. 3d and 3e), the data gener-
ally fall outside the interval, with the predicted soil pressure head 

being lower than observed. Th e high-frequency oscillations in the 
measured and predicted pressure head at 10 cm are due to wetting/
drying that occurred during/between irrigations. Model and data 
comparisons for pressure heads at the 15- and 45-cm depths were 
similar to those presented in Fig. 3 and are not shown.

Figures 3c and 3f show that whatever diff erences existed in the 
pressure heads modeled with K0 and Ks, it made almost no diff er-
ence with respect to the predicted drainage rates. Th e computed 
drainage rates for the two cases were nearly identical, with very 
little variability existing between Monte Carlo realizations, such 
that the interval between the 5th and 95th percentiles (again indi-
cated with gray shading) is barely visible in Fig. 3c and 3f due to 
its narrowness. Although the data generally fall outside that pre-
diction interval, the model calculation is, all things considered, a 
very good representation of the time course of the drainage rate. 
Overall, Fig. 3 indicates that the implemented modeling approach 
provides a good description of soil–water conditions in the evapo-
rimeter, particularly with K* = K0.

Evaporimeter Solute Transport
Figure 4 shows comparisons of predicted and measured solute break-
through in the evaporimeter drainage water (outfl ow). Th e hydraulic 
parameter distributions (and the water fl ow calculations) are the 
same as in Fig. 3. In Fig. 4a and 4d, the dispersivity λ was taken to 
be uniformly distributed between 2 and 10 cm. Absent any other 
information, these bounds would be a plausible estimate for making 
a modeling prediction, based on the following reasoning. Th e trans-
port distance is 48 cm. Th e 10% rule-of-thumb discussed above 
suggests a dispersivity of about 5 cm; doubling that value gives our 
assumed upper bound of 10 cm. Th e assumed lower bound of 2 cm 
is near intersection of the upper limit of values reported for repacked 
soil column experiments and the lower limit reported in fi eld studies, 
which seems appropriate considering that the evaporimeter is larger 
than a typical soil column and close to the size of a small fi eld plot.

Overall, the model predictions in Fig. 4a and 4d follow the basic 
trend of the measured solute breakthrough curve, which includes 
some infl ections not typically present in classical, Gaussian shaped 
curves. Recall that during the period when the evaporimeter irriga-
tion water contained Br tracer, the irrigation water concentration 
(C0) was constant. However, the evaporation and irrigation rates 
varied (Fig. 2), leading to a time-varying evapoconcentration of the 
applied water at the soil surface. Th us the surface experienced time-
varying fl uxes and concentrations, a more complex (and realistic) 
boundary condition than typically imposed in controlled solute 
transport experiments. Th e time-varying evapoconcentration rate 
produced the inflections in the measured and modeled break-
through curves, and concentrations C/C0 > 1.

Th e solute transport prediction made using K0 (Fig. 4a) was better 
than that made using Ks (Fig. 4d). Th e 5th through 95th percentile 
prediction interval in Fig. 4a contains 75% of the data points versus 

Fig. 3. Comparison of measured and modeled soil water potential 
and drainage in the evaporimeter. Th e gray shaded region indicates 
the interval between the 5th and 95th percentiles of the Monte Carlo 
output, whereas the blue line is the 50th percentile. Plots (a–c) show 
results obtained using the matching point conductivity K* = K0, 
whereas (d–f ) show results obtained with the saturated conductivity 
K* = Ks. In (d) and (e), a signifi cant portion of the 5th–95th interval 
has been truncated at the lower limit of the y axis.
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62% in Fig. 4d. However, evaluating the quality of the prediction 
interval in terms of the fraction of data points it contains is per-
haps of limited value in this case. It is clear, for example, that the 
prediction with Ks shown in Fig. 4d is relatively inaccurate when 
the bulk of the solute is breaking through (say, Days 50–250) but 
is relatively accurate at later times on the tail end of the curve. Th us, 
the percentage of data points in the interval is in part dependent 
on the sampling scheme; more-or-fewer samples at early-or-late 
times would aff ect the percentage. Overall, the prediction of solute 
transport in terms of a prediction interval provides a more realis-
tic representation of the concentration data than would a single 
breakthrough curve.

We next consider the eff ect of the assumed dispersivity distribution 
on the transport predictions. Figures 4b and 4e show results com-
puted assuming signifi cantly larger uncertainty, with λ assumed to 
be uniformly distributed between 1 and 25 cm. Compared with 
the previous results (Fig. 4a and 4d), the concentration distribution 
is broader and more asymmetric. However, the broader predic-
tion interval encompassed about the same fraction of the data as 
before (72% in Fig. 4b and 66% in Fig. 4e), so in that sense the 
predictions for the alternative dispersivity distribution were not 
greatly diff erent.

Because we are mainly interested in model predictions (rather than 
fi tting), we specifi ed the solute model boundary condition based on 
irrigation records, assuming nothing was known about the solute 
transport data. In solute transport experiments, it is common that 
solute mass balance is signifi cantly diff erent from 100%, and in eval-
uating process models, it is routine to scale or fi t the model applied 
mass so that it agrees with the observed (Skaggs et al., 2002). In the 
evaporimeter experiment, the Br mass collected in the drainage water 
was about 88% the applied mass. To determine the eff ect of the mass 
balance error on the prediction accuracy, we repeated the calculations 
aft er adjusting the model irrigation water concentration so that the 
simulated applied solute mass agreed with the measured drainage mass. 
Th e results, shown in Fig. 4c and 4f, indicate that the predictions were 
not greatly diff erent, with the prediction intervals encompassing 79% 
and 63% of the measured data points, respectively.

Generalized parameter sensitivity coeffi  cients, βj(t), for the simula-
tions of Fig. 4a are presented in Fig. 5a, and the corresponding R2(t) 
for the standardized regression model is given in Fig. 5b. Sensitivity 
results for the other simulations were similar and are not shown. 
Th e relatively high R2 values in Fig. 5b indicate that the coeffi  cients 
βj of the linear model can be utilized for sensitivity analysis. Th us 
Fig. 5a shows that the model parameters having the greatest impact 
on the modeled outfl ow concentration and uncertainty were λ, K*, 
and n. Th e least sensitive were θr and α . Th e relative sensitivities for 
model parameters are expected to be dependent on experimental 
conditions—an experiment with a surface boundary condition 
that imposed cycles of signifi cant wetting and drying, for example, 
would likely have diff erent sensitivities than the current experi-
ment, where the soil was maintained at a high, unsaturated water 
content. Note that in Fig. 5 the low βj and R2 values at early times 
are because the sensitivity calculations are for the outfl ow concen-
tration; at early times, solute has not reached the exit, and thus 
no sensitivity to the parameter values exists. Figure 4f shows the 

“optimal” simulated breakthrough curve resulting from a simulta-
neous optimization of the two most sensitive parameters, λ and K*, 
based on a least-squares fi t of the model to the solute breakthrough 
data. Th e optimized value for the conductivity, K* = 6.5 cm d−1, 
was close to the Rosetta mean estimate for K0 (4.8 cm d−1), and far 
out on the tail of the estimated distribution for Ks (Pr[ Ks < 6.5 cm 
d−1] = 0.003). Th e fi tted dispersivity, λ  = 2.6 cm, was near the low 
end of our assumed uniform parameter distribution.

We also considered model calculations using the Rosseta class 
average hydraulic parameters. However, the large uncertainty 
(standard deviation) in the parameter estimates complicates their 
use in simulations. Th e distributions for some of the parameters are 
suffi  ciently broad to encompass, with non-negligible probability, 
parameters or parameter combinations that are undefi ned (non-
physical) or lead to numerical instabilities (e.g., n≤ 1, θr < 0, θs < 
θr). While the possibility exists for developing rules for eliminat-
ing unusable parameter sets, we decided not to further pursue this 
approach at this time.

Fig. 4. Comparisons of measured and predicted Br concentration in 
the evaporimeter outlfl ow using various parameter sets. In plots a, c, 
d, and f, the dispersivity λ was uniformly distributed between 2 and 
10 cm, and in Plots b and e, between 1 and 25 cm. In Plots c and f the 
input solute mass was scaled to match the output mass. See the text for 
a full description of the various parameter sets.



www.VadoseZoneJournal.org p. 8 of 12

Lysimeters
Lysimeter Water Flow
A diffi  culty arose in modeling the lysimeters due to the water bal-
ance. Th e net applied water in the lysimeters was expected to be 
the same as that measured in the (identically irrigated and situ-
ated) evaporimeter. Given that assumption, the measured lysimeter 
drainage was only about half of what was expected. Part of the dis-
crepancy might be due a misestimation of the change in lysimeter 
water storage, and part might be due to the lysimeter evaporation 
diff ering somewhat from the evaporimeter evaporation. However, 
it is unlikely that these factors would be suffi  cient to account for 
the discrepancy. It appears that the main cause for the discrepancy 
was that, over the course of the 4 year experiment, frequent opera-
tion of the solution samplers removed a nonnegligible volume of 
water. Th e volume extracted cannot be determined directly because 
the sampling protocol, wherein the vacuum was left  running for 
extended periods, produced an overfl owing of small collection 
vials that was uncontrolled and unrecorded (the need for lengthy 
vacuum applications was due to the low conductivity of the soils). 
Indirectly, we can estimate the water loss based on the diff erence 
between the net applied water (assumed known from evaporimeter 
measurements) and the measured drainage.

Because of the water balance problem, simulations were done two 
ways. First, predictions were made without any consideration of the 
water balance discrepancy. Hence the simulations were a pure predic-
tion based only on data recorded for the surface boundary condition. 
In a second set of simulations, we added a sink term to Eq. [1] to 
account for the water and solute extractions. Th e sink removed water 
and solute at a steady rate from the eight depths where the solution 
samplers were installed, such that the fi nal simulated cumulative 
drainage was approximately equal to the average measured amount.

In the lysimeter simulations, the eff ects of K0 vs. Ks were similar 
to those noted in the evaporimeter, so we present hereaft er only 
the K0 results in an eff ort to avoid overcomplicating the fi gures. 
Figure 6 shows comparisons of the measured and modeled drain-
age rate and pressure heads at three depths (30, 120, and 165 cm), 
one from each soil layer. Results for other depths were similar and 
are not shown. To improve legibility, only a subset of the very 
large number of measured tensiometer and drainage data points 
are shown. Data for the two experimental treatments (high or 
low EC irrigation water during Br application) are indicated 
with color: red symbols correspond to the low EC treatment 
(Lysimeters 1–6) and green symbols to the high EC treatment 
(Lysimeters 7–12). Monte Carlo results for simulations with the 
drainage correction are shown as a blue line (50th percentile) 
and gray interval (5th–95th percentiles). Th e red line is the 50th 
percentile for the uncorrected simulations. Th e size and shape of 
5th to 95th interval about the 50th percentile in the uncorrected 
simulations was comparable to that in the corrected simulations 
and is not shown due to legibility considerations.

Figures 6a through 6c show that the predicted or modeled pressure 
head is generally lower than the measured values. Th e predictions 
made without drainage correction are in marginally better agree-
ment with the data, with many of the data lying within or near 
the upper limit of the 5th–95th prediction interval (not shown), 
whereas in the simulations with drainage correction, the data are 
almost entirely outside the prediction interval. In Fig. 6d, the drain-
age rate predicted with the uncorrected simulations is clearly a poor 
fi t to the data. Th e drainage rate obtained aft er correcting for the 
water balance is better, although the modeled drainage does not 
track the data as well as it did in the evaporimeter calculations. Th e 
range of variability among the measured lysimeter drainage rates 
is generally greater than the relatively narrow width of 5th to 95th 
prediction interval, whereas the opposite is true of the pressure head 
data, where the width of the prediction interval generally exceeds 
the variation among lysimeters. Note that the variability in water 
fl ow that existed among the lysimeters does not appear to correlate 
with the two experimental treatments (Skaggs et al., 2012).

Lysimeter Solute Transport
Figure 7 compares the measured Br data with the Monte Carlo 
results. Results for fi ve profi le depths and the drainage are pre-
sented. Results for the other depths were comparable and are 

Fig. 5. (a) Generalized sensitivity coeffi  cients, βj(t), for the model 
parameters, computed with respect to the outfl ow concentration, 
C(t), shown in Fig. 4a. (b) Th e corresponding coeffi  cient of deter-
mination, R2, for the standardized regression model used in the 
sensitivity analysis.
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not shown. Only a subset of the data points measured for each 
breakthrough curve are shown (every third point is shown for 
solution samplers, every 10th point for drainage). In the Monte 
Carlo computations, the dispersivity was specifi ed to be uniformly 
distributed between 2 and 20 cm.

Overall, the general time course of the simulations agrees with 
the data, except at later times in the high EC treatment lysimeters 
(green symbols), which will be discussed below. Th e simulations 
with and without drainage correction are nearly identical to one 
another at the shallowest depths (Fig. 7a and 7b). Deeper in the soil 
(Fig. 7c–7f), diff erences emerge, with the breakthrough computed 
with drainage correction increasingly lagging behind that com-
puted without. Th e breakthrough computed with the corrected 
drainage appears to be in better overall agreement with the mea-
sured data, although in both cases the predicted concentrations 
generally exceed the measured data.

As can be seen from the red (low EC) and green (high EC) data 
points in Fig. 7, the two experimental treatments reported by 
Skaggs et al. (2012) produced distinctly diff erent transport behav-
iors. For most of the salinization phase, Br concentrations increased 
identically in all lysimeters, with no apparent diff erences between 
treatments. But aft er about 1.5 yr, the breakthrough data from the 
two treatments diverged. Th e initial break occurred near Day 550 
to 575, a time during the salinization phase in which the surface 
boundary was experiencing a diminishing evapoconcentration rate, 
such that the eff ective inlet concentration was decreasing, leading 
to a decrease in salt concentrations at shallow depths (note the 
irrigation water concentration was not changing). Th is period of 
relative leaching led to multi-peaked breakthrough curves near the 
surface (at deeper depths, those features were largely damped out). 
Aft er the start of the actual irrigation leaching phase (Day 804), 
the bifurcation of the two treatments became more pronounced. 
Th e Br concentrations decreased readily in the low EC treatment 
lysimeters (1–6), whereas in the high EC lysimeters (7–12) an ini-
tial rapid decrease in Br was followed by a lengthy period of tailing 
(Skaggs et al., 2012). Th e reason for the diff erent leaching behaviors 
is not known, although Skaggs et al. (2012) speculated that a type 
of salt sieving mechanism may have contributed.

Clearly the model tracks the low EC data better than the high EC 
data. To our knowledge, no model exists that could have predicted 
the diff erences in leaching behavior exhibited by the two irrigation 
treatments. Modeling of transport processes in clayey soils poses sig-
nifi cant challenges due to the strong eff ect that the surface charge 
of clay particles has on soil hydraulic properties and on the mobility 
of solutes (Nielsen et al., 1986). Yet clayey soils with low infi ltration 
rates are among those most likely to be impacted by salinity.

In terms of modeling uncertainty, the discrepancy between the 
model and the high EC data constitutes a “structural” model error 
that, in this case, is much more signifi cant than the parameter uncer-
tainty. From the standpoint of making a pure model prediction, it 
would not have been possible to anticipate this error. Clearly in this 
case the model would have underestimated the time or water needed 
to lower the salinity in the profi le.

Fig. 6. Comparison of measured and modeled soil water potential and 
drainage for the lysimeters.
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Aside from the structural errors, the width of the prediction intervals 
are fairly narrow relative to the range of transport variability that 
existed across replicated lysimeters, particularly at shallow depths. 
At deeper depths, the prediction interval is a reasonably good repre-
sentation of the variability in the low EC lysimeters.

Figure 8 shows sensitivity coeffi  cients computed for the hydraulic 
and transport parameters of the three soil layers. Sensitivities for the 
21 parameters were evaluated with respect to the solution concentra-
tion at three depths, one in each layer. Th e R2 results were similar to 
that given in Fig. 5 and are not shown. Figure 8a through 8c indicate 
that the soil concentration at 30 cm is, as expected, most sensitive 
to the parameters of the surface layer, and mostly insensitive to the 
parameters of the second and third layers. Similar to the evaporim-
eter results, the surface layer parameters with the largest sensitivity 
coeffi  cients are λ, K0, and n. Figure 8d through 8f show that at 120 
cm (in the second layer), the concentration is again greatly impacted 
by the surface layer parameters, especially λ. Sensitivity to the second 
layer parameters is comparatively minor, a result aff ected by the rela-
tive thinness of the second layer (Fig. 1). Th e third layer parameters 
K0 and L also impact the concentration in the second layer (Fig. 8f). 
At 165 cm, the surface layer dispersivity remains important (Fig. 
8a), as do the parameters K0 and L for the coarser third layer. Th e 
sensitivity results, in addition to being dependent on the boundary 
condition, are aff ected by the relative thickness of the three layers.

Fig. 8. Generalized sensitivity coeffi  cients of the model parameters for the three soil layers, computed with respect to the solute concentration at the three 
indicated soil profi le depths.

Fig. 7. Comparisons of measured and modeled Br concentrations for 
various depths in the lysimeters.
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 Conclusions
Monte Carlo techniques were used to propagate uncertainty in soil 
hydraulic and solute transport parameters. Simulations of solute 
transport were compared with Br transport measured in large lysim-
eters packed with clayey soil materials. Th e following conclusions 
may be drawn.

1. For the investigated unsaturated systems, simulations per-
formed using the Rosetta estimate for K0 as the matching point 
conductivity K* were in better agreement with experimental 
data than simulations performed using the estimate for Ks.

2. Although specifi c information about dispersivity uncertainty is 
frequently lacking, plausible parameter bounds may be estimated 
based on literature studies.

3. Texture class average pedotransfer function uncertainty esti-
mates for model parameters were suffi  ciently broad to include 
parameter values or combinations of values that are undefi ned 
(non-physical) or lead to numerical instabilities (e.g., n ≤ 1, θr < 0, 
θs < θr). Further work is needed to develop rules for eliminating 
unusable parameter sets.

4. Generalized sensitivity coeffi  cients computed with regression 
analyses were useful for identifying the most signifi cant model 
parameters. In a single layer system, the model parameters having 
the greatest impact on the modeled outfl ow concentration and 
uncertainty were λ, K*, and n. Th e least sensitive were θr and 
α . In a three layer system, model parameters (λ, K*, and n) for 
the surface layer had the highest sensitivity coeffi  cients, even 
with respect to computing concentrations in deeper depths. Th e 
parameters K* and L in the coarser bottom layer also signifi -
cantly aff ected the outfl ow concentration. Sensitivity results are 
expected to be dependent on the boundary conditions imposed 
in the experiment.

5. Prediction intervals based on the propagation of PTF param-
eter uncertainties are more realistic in their representation of 
solute transport processes than any single model run, but in 
this study the generated intervals tended to somewhat under-
estimate the variability that existed in the transport data. Th is 
was particularly true with respect to solute transport at shal-
low depths.

6. Clayey soils are among the most likely to suff er from salinity 
problems, and they pose signifi cant challenges for modeling 
transport. In a 48 cm tall, homogeneous soil profi le, model 
prediction intervals provided a reasonably good description of 
a single, relatively “noisy” breakthrough curve. In replicated 
180 cm tall, layered soil profi les, model structural errors limited 
the accuracy of the prediction intervals under one irrigation 
water treatment, whereas under another treatment the predic-
tions tracked the time course of the data reasonably well but 
tended to overestimate solute concentrations. Th e experimen-
tal data were obtained in repacked soils; solute dispersion in 
undisturbed soils may diff er (Elrick and French, 1966; Koestel 
et al., 2012). Additional work aimed at operational fi eld testing 
of model prediction uncertainty is needed if advanced water 
management models are to reach their full potential.
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