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ABSTRACT

Spatial variability has a profound influence on a variety of landscape-scale agricultural

issues including solute transport in the vadose zone, soil quality assessment, and site-specific

crop management. Directed soil sampling based on geospatial measurements of apparent soil

electrical conductivity (ECa) is a potential means of characterizing the spatial variability of any

soil property that influences ECa including soil salinity, water content, texture, bulk density,

organic matter, and cation exchange capacity. Arguably the most significant step in the
protocols for characterizing spatial variability with ECa-directed soil sampling is the statistical

sampling design, which consists of two potential approaches: model- and design-based sampling

strategies such as response surface sampling design (RSSD) and stratified random sampling

design (SRSD), respectively. The primary objective of this study was to compare model- and

design-based sampling strategies to evaluate if one sampling strategy outperformed the other or

if both strategies were equal in performance. Using three different model validation tests, the

regression equation estimated from the RSSD data produced accurate and unbiased predictions

of the natural log salinity levels at the independently chosen SRSD sites. Design optimality
scores (i.e., D-, V-, and G-optimality criteria) indicate that the use of the RSSD design should

facilitate the estimation of a more accurate regression model, i.e., the RSSD approach should

allow for better model discrimination, more precise parameter estimates, and smaller prediction

variances. Even though a model-based sampling design, such as RSSD, has been less prevalent

in the literature, it is concluded from the comparison that there is no reason to refrain from its

use and in fact warrants equal consideration.

Introduction

Ever since the classic paper by Nielson et al. (1973)

concerning the variability of field-measured soil water

properties, the significance of within-field spatial vari-

ability of soil properties has been scientifically acknowl-

edged and documented. Spatial variability of soil has

been the focus of books (Bouma and Bregt, 1989;

Mausbach and Wilding, 1991) and numerous compre-

hensive review articles (Warrick and Nielsen, 1980; Jury,

1985, 1986; White, 1988). The significance of soil spatial

variability lies in the fact that it is a key component of

any landscape-scale soil-related issue including solute

transport in the vadose zone, site-specific crop manage-

ment, and soil quality assessment.

The characterization of spatial variability is

without question one of the most significant areas of

concern in soil science because of its broad reaching

influence on all field- and landscape-scale processes.

There are a variety of methods for potentially charac-

terizing soil spatial variability including ground pene-

trating radar, aerial photography, multi- and hyper-

spectral imagery, time domain reflectometry, and

apparent soil electrical conductivity (ECa). Although

not commonly used, magnetometry is another method

for potentially characterizing soil spatial variability

(Rogers et al., 2006). However, none of these approach-

es has been as extensively investigated for applications

in agricultural geophysics as ECa, which can be

measured using either electrical resistivity (ER) or

electromagnetic induction (EMI) (Corwin and Lesch,

2005a). The geospatial measurement of ECa is a sensor

technology that has played, and continues to play, a

major role in addressing the issue of spatial variability
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characterization. Geospatial measurements of ECa have

been successfully used for (i) identifying the soil physical

and chemical properties influencing crop yield patterns

and soil condition, (ii) establishing the spatial variation

of soil properties that influence the ECa measurement,

and (iii) characterizing the spatial distribution of soil

properties influencing solute transport through the

vadose zone (Corwin et al., 1999, 2003a, 2003b, 2006;

Kaffka et al., 2005).

Since its early agricultural use for measuring soil

salinity, the application of ECa has evolved into a widely

accepted means of establishing the spatial variability of

several soil physical and chemical properties that

influence the ECa measurement (Corwin and Lesch,

2003, 2005a). Geospatial measurements of ECa are well-

suited for characterizing spatial variability for several

reasons: (i) geospatial measurements of ECa are reliable,

quick, and easy to take; (ii) the mobilization of ECa

measurement equipment is easy and can be accom-

plished at a reasonable cost; and (iii) ECa is influenced

by a variety of soil properties for which the spatial

variability of each could be potentially established.

Corwin and Lesch (2005a) provide a compilation of

literature pertaining to the soil physical and chemical

properties that are either directly or indirectly measured

by ECa.

Because the geospatial measurement of ECa is a

complex spatially measured property of soil that reflects

the influence of several soil physical and chemical

properties (including soil salinity, texture, water content,

bulk density, organic matter, and cation exchange

capacity) it is rarely used to map a single property, but

rather is used as a surrogate for general spatial

variability of those soil physical and chemical properties

that are spatially correlated with ECa. As such,

geospatial measurements of ECa are used to direct soil

sampling as a means of characterizing spatial variability

of those soil properties that correlate with ECa at that

particular study site. Characterizing spatial variability

with ECa-directed soil sampling is based on the notion

that when ECa correlates with a soil property or

properties, then spatial ECa information can be used

to identify sites that reflect the range and variability of

the property or properties.

In instances where ECa correlates with a particular

soil property, an ECa-directed soil sampling approach

will establish the spatial distribution of that property

with an optimum number of site locations to character-

ize the variability and keep labor costs minimal (Corwin

et al., 2003a). Details for conducting a field-scale ECa

survey for the purpose of characterizing the spatial

variability of soil properties can be found in Corwin and

Lesch (2005b). General guidelines appear in Corwin and

Lesch (2003) and Corwin et al. (2003a, 2003b).

The basic elements of a field-scale ECa survey for

characterizing spatial variability include (i) ECa survey

design, (ii) geo-referenced ECa data collection, (iii) soil

sample design based on geo-referenced ECa data, (iv) soil

sample collection, (v) physico-chemical analysis of perti-

nent soil properties, (vi) spatial statistical analysis, (vii)

determination of the dominant soil properties influencing

the ECa measurements at the study site, and (viii) GIS

development (Corwin and Lesch, 2005b). Step (iii) is

arguably the most critical step because it establishes the

sample site locations based on the variation and

magnitude of the geospatial ECa measurements.

Currently, two ECa-directed soil sampling design

approaches are used: (i) design-based (probability)

sampling and (ii) model-based (prediction) sampling.

The former consists of the use of simple random, cluster,

unsupervised classification, and stratified random sam-

pling, whereas the latter typically relies on optimized

spatial response surface sampling designs. Throughout

the statistical literature model-based designs are less

common, although some statistical research has been

performed in this area (Valliant et al., 2000). Nathan

(1988) and Valliant et al. (2000) discuss the merits of

design- and model-based sampling strategies in detail.

Specific model-based sampling approaches, having

direct application to agricultural and environmental

survey work, are described by McBratney and Webster

(1981), Lesch et al. (1995a, 1995b) Van Groenigen et al.

(1999), and Lesch (2005). However, a comparison of the

prediction results of model- and designed-based sam-

pling has not been performed.

The objectives of this research are (i) to test

statistically the validity of using a model-based sampling

strategy in conjunction with ordinary regression mod-

eling to quantify the spatial salinity (ECe, dS m21)

pattern in an agricultural field and (ii) to compare a

model-based and design-based sampling strategy for

purposes of estimating the ordinary linear calibration

model between ECa and ECe.

Materials and Methods

Study Site Description

The on-farm research study site (lat. 33u 509 25.430

N, long. 117u 009 14.930 W) is located on Scott Brothers’

Dairy Farm in San Jacinto in southern California’s

Riverside County (Fig. 1). The 32-ha field site provided

an extensive range of spatial variability in ECa needed to

make a real-world evaluation of the sampling design

comparison.

Intensive EMI Survey

Geospatial ECa measurements were obtained with

the Geonics EM38 dual-dipole electrical conductivity
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meter1. The ECa survey followed the detailed survey

protocols outlined by Corwin and Lesch (2005b). The

ECa survey was conducted 22–23 June 2006. The survey

consisted of geospatial ECa measurements taken with

mobile EMI equipment where measurements were

simultaneously taken both in the horizontal (EMh)

and vertical coil configurations (EMv) every 5 m.

Measurements were taken at 16,122 locations on

transects running in a north-south direction as shown

in Fig. 1. Table 1(a) indicates the ECa summary

statistics for all 16,122 sites.

Sampling Protocol Details

Apparent soil electrical conductivity serves as a

surrogate to characterize the spatial variation of those

soil properties that are found to influence ECa within a

field. Based on the variation in ECa, soil sample sites

were selected that reflect the range and variation in ECa

using a model- and design-based sampling strategy. Soil

samples were collected for the following depth incre-

ments: 0–0.15, 0.15–0.30, 0.30–0.60, 0.60–0.90, 0.90–

1.20, 1.20–1.50 m. Saturation extracts of the soil sample

depth increments were prepared and the electrical

conductivity of the saturation extracts (ECe, dS m21)

were measured using the method presented in Rhoades

(1996). The depth-weighted average ECe at each sample

site was calculated over the 0–1.5 m depth using the 6

depth increments.

Both a 40-site model-based sampling plan (i.e.,

response surface sampling design, RSSD) and a 30-site

design-based site sampling plan (i.e., stratified random

sampling design, SRSD) were used to generate the full

70-site design. Table 1(b) indicates the summary statis-

tics for the soil salinity (ECe) for all 70 locations (i.e., 40

RSSD sites and 30 SRSD sites) for composite 1.5-m core

samples. The model-based sampling plan (i.e., RSSD)

was developed using the ESAP-RSSD software pro-

gram, version 2.35 (Lesch et al., 2000) and represented a

composite of two 20-site RSSDs. The locations of these

40 sites are shown in Fig. 2. In principal, either of the

two 20-site designs (Design A or B) can be used to

estimate an ordinary linear calibration model, and two

(or more) designs can be combined together in order to

estimate a geostatistical mixed linear model.

The locations of the 30 SRSD sites are also shown

in Fig. 2. The full SRSD is actually comprised of 20

primary sites and 10 secondary sites, where both sets of

sites were selected by stratifying on blocks of sequen-

tially acquired survey readings. Specifically, the SRSD

sites were chosen by first randomly selecting one

Figure 1. Scott Brothers’ Dairy Farm study site located near San Jacinto, CA. Dots indicate 16,122 locations of

electromagnetic induction measurements.

1Geonics Ltd., Mississaugua, Ontario, Canada. Product
identification is provided for the benefit of the reader and does
not imply endorsement by USDA.
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sampling location from every 540 sequential survey

locations and then randomly assigning this location into

either the primary or secondary set (with 2/3’s or 1/3’s

probability, respectively). In principal, either SRSD sub-

design can also be used to estimate an ordinary linear

model, although the larger 20-site (primary) design is

obviously preferable because of the increased sample

size.

With respect to the two research objectives, the

aforementioned sampling designs were used as follows.

For purposes of testing the model-based sampling

strategy for accurately estimating a sensor calibration

model (Objective 1), the full 40-site RSSD plan was

treated as the calibration sampling plan and the full 30-

site SRSD plan was used as an independent set of

validation sites. In contrast, for purposes of comparing

sampling strategies (Objective 2), it is necessary that all

of the sampling designs contain the same number of

sites. Thus, one of the two individual 20-site RSSD

plans was compared and contrasted with the primary

20-site SRSD plan.

Statistical Methodology

Apparent soil electrical conductivity survey data

represent just one type of ancillary sensor data that is

commonly collected to help identify, quantify, and/or

predict various soil or crop properties. Being spatial in

nature (i.e., referenced across a spatial domain), it is

quite reasonable to consider some type of geostatistical

modeling technique when attempting to calibrate such

survey data to a specific soil or crop response variable.

Numerous examples exist in the literature of geostatis-

tical or spatial modeling approaches; the textbooks by

Isaaks and Srivastava (1989), Wackernagel (1998),

Webster and Oliver (2001), Schabenberger and Pierce

(2002), and Schabenberger and Gotway (2005) are

particularly relevant to the above mentioned calibration

problem.

In addition to the commonly used geostatistical

techniques like kriging with external drift or regression-

kriging, ordinary linear regression models are also often

employed when calibrating such data. In the mainstream

statistical literature, it is well known that ordinary linear

regression models represent a special case of a much

more general class of models commonly known as linear

regression models with spatially correlated errors

(Schabenberger and Gotway, 2005), hierarchical spatial

models (Banerjee et al., 2004), or geostatistical mixed

linear models (Haskard et al., 2007). This broader class

of models includes many of the geostatistical techniques

familiar to soil scientists, such as universal kriging,

kriging with external drift and/or regression-kriging, as

well as standard statistical techniques like ordinary

linear regression and analysis of covariance (ANO-

COVA) models.

Table 1. Basic summary statistics of (a) apparent soil electrical conductivity (ECa) survey data and (b) soil salinity

(ECe) samples.

(a) ECa survey data (N = 16,122) (b) ECe (dS m21) samples (RSSD plans A & B: n = 40)

EMh (mS m21) EMv (mS m21) ECe (dS m21)

Mean 41.81 47.40 Mean 2.06

Std. Dev 20.14 28.78 Std. Dev 1.44

Skewness 0.60 0.45 Skewness 1.29

Kurtosis 20.35 20.85 Min–Max 0.64–6.28

Quantiles: (SRSD plan: n = 30)

ECe (dS/m)

Minimum 10.8 7.2 Mean 1.78

1% 14.9 10.4 Std. Dev. 1.24

5% 17.3 12.5 Skewness 1.82

10% 18.9 14.0 Min–Max 0.66–5.97

25% 22.8 18.9

Median 39.1 43.5

75% 56.3 70.5

90% 68.5 86.7

95% 77.5 96.6

99% 94.9 115.4

Maximum 135.6 157.4
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Lesch and Corwin (2008) review the use of these

different modeling techniques for calibrating remotely

sensed survey data to soil properties. Lesch and Corwin

(2008) also describe the necessary set of statistical

assumptions for reducing a geostatistical mixed linear

model to an ordinary linear model. Historically,

ordinary linear models have often been used to

accurately calibrate ECa survey data to one or more

target soil properties (Corwin and Lesch, 2005b). For

example, field-scale soil salinity patterns are commonly

mapped quite accurately using ECa survey data and

ordinary linear regression models, since the residual

error distribution typically exhibits only short-range

spatial correlation (Lesch and Corwin, 2008; Lesch et

al., 2005; Corwin and Lesch, 2005b). Therefore, a

simpler linear regression model can be used in place of

the full geostatistical model to generate a map with a

high degree of prediction precision, provided that an

appropriate sampling strategy is employed (Lesch,

2005).

To statistically address the two objectives of the

study, we first discuss in Appendix A how an ordinary

linear model can be derived from the more complicated

geostatistical mixed linear model (see Appendix A—

Geostatistical and Ordinary [Spatially Referenced]

Linear Models). We then review both model-based
and design-based sampling strategies (see Appendix A—

Sampling Strategies for Spatially Referenced Linear

Models) for estimating ordinary linear models and

compare and contrast a model-based sampling design

with a design-based, stratified random sampling strategy

using three statistical design optimality criteria (i.e., D-,

V-, and G-optimality criteria) described in the Appendix

A—Sample design optimality criteria. We also describe
(see Appendix A—Prediction validation tests for the

ordinary linear model) and employ three different model

Figure 2. Model-based response surface sampling design (RSSD) plans (Designs A and B; triangles) and stratified

random sampling design (SRSD) plans (Primary-A and Secondary-B; circles) overlaid upon the apparent soil electrical

conductivity (ECa) measurements taken with electromagnetic induction in the (a) vertical coil configuration (EMv) and (b)

horizontal coil configuration (EMh).
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validation tests (i.e., composite model F-test, joint-

prediciton F-test, and mean-prediciton t-test) to verify

that the regression equation estimated from the model-

based sample data produces accurate and unbiased

predictions of the natural log salinity levels at the

independently chosen stratified random sample sites.

We demonstrate both the model validation techniques

and assessment of sampling strategies using data from a

detailed soil salinity survey performed in San Jacinto,

CA in 2006. All statistical analyses discussed were

carried out using SAS/IML (SAS, 1999a) and SAS/

STAT software (SAS, 1999b).

Model Specification

In most soil salinity surveys using EMI Geonics

EM38 equipment, it is commonly observed that the

natural log of the EM38 readings exhibit near linear

relationships with the natural log ECe levels, and that

these natural log functions exhibit more homogeneous

variance relationships (Lesch et al., 2005). However, the

ln(EMh) and ln(EMv) readings also tend to be highly

correlated. To remove this multi-collinear signal effect,

one can equivalently consider regressing on the first two

standardized principal component scores computed

from the natural log transformed EM38 readings

(Lesch, 2005). Let z1 and z2 represent these calculated

first and second principal component scores. The

following four plausible natural log salinity/natural

log sensor data relationships can then be specified for

yi~ ln ECeð Þi:
yi~b0zb1 z1ð Þize sð Þi, ð1Þ

yi~b0zb1 z1ð Þizb2 z2ð Þize sð Þi, ð2Þ

yi~b0zb1 z1ð Þizb2 z1
2

� �
i
ze sð Þi, ð3Þ

yi~b0zb1 z1ð Þizb2 z2ð Þizb3 z1
2

� �
i
ze sð Þi: ð4Þ

Equation (1) relates the natural log salinity level to the

collocated first principal component score, which is

roughly proportional to the average value of the natural

log EM38 readings. Similarly, Eq. (2) relates the natural

log salinity level to both principal component scores,

which is similar to regressing on the average and

differenced EM38 values, respectively. Equation (3)

extends Eq. (1) by allowing for a curvi-linear (quadratic)

relationship between the natural log salinity and the

principal component score. Likewise, Eq. (4) extends

Eq. (2) in a similar manner.

In some EM38 surveys it is also not uncommon to

observe a certain level of instrument drift and/or for the

EM38 signal data to be simultaneously influenced by

secondary soil properties that change slowly over the

survey area (Robinson et al., 2004). In either scenario,

the accuracy of Eqs. (1)–(4) can be improved by adding

first-order trend-surface parameters to the specified

equations. Upon noting that si~ ux, i, uy, i

� �
defines the

coordinate locations of all the survey and sample

locations, Eqs. (1)–(4) can be readily expanded to

include additional coordinate location parameters; i.e.,

yi~b0zb1 z1ð Þizb2 uxð Þizb3 uy

� �
i
ze sð Þi, ð5Þ

yi~b0zb1 z1ð Þizb2 z2ð Þizb3 uxð Þizb4 uy

� �
i
ze sð Þi, ð6Þ

yi~b0zb1 z1ð Þizb2 z1
2

� �
i
zb3 uxð Þizb4 uy

� �
i
ze sð Þi, ð7Þ

yi~b0zb1(z1)izb2(z2)izb3(z1
2)izb4(ux)izb5(uy)i

ze(s)i: ð8Þ

Equations (1)–(8) define eight plausible regression

models that potentially can be used to describe the

relationship between the natural log salinity and natural

log sensor data.

Results and Discussion

Model Identification, Estimation, and Validation

Figure 3 shows the observed relationship between

the natural log salinity measurements at the 70 sampling

locations and the collocated first principal component

scores (derived from the natural log transformed EM38

signal data). The pattern is clearly curvi-linear, suggest-

ing that Eqs. (3), (4), (7), or (8) might represent plausible

Figure 3. Relationship between the ln(ECe) sample data

and first principal component scores (as computed from

the collocated EM38 signal data).
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models for describing the natural log ECe/natural log

ECa relationship. After estimation of Eq. (8), the t-test

associated with the z2 parameter estimate was found to

be nearly significant at the 0.05 significance level (p 5

0.058). However, the ux and uy coefficients appeared to

be only marginally important (p 5 0.157 and p 5 0.085,

respectively). Additionally, Eq. (4) produced a slightly

smaller jack-knifed mean square error estimate than Eq.

(8), although this difference was fairly trivial (,1%).

Thus, the most parsimonious model was Eq. (4).

Table 2 lists the model summary statistics and

parameter estimates for Eq. (4), after estimating this

model using all 70 sampling locations. This model

produced an R2 value of 0.814 and a root mean square

error (RMSE) estimate of 0.272. All four parameter

estimates were statistically significant; three of the four

estimates were highly significant (p , 0.001). Addition-

ally, the residual errors associated with Eq. (4) appeared

to be Normally distributed, devoid of any outliers, and

spatially uncorrelated; the empirical residuals passed

both the Shapiro-Wilk test for Normality (SW 5 0.9854,

p 5 0.593) and the Moran test for spatial correlation

(zM 5 0.778, p 5 0.218). These results confirm that an

ordinary linear model can be used in place of a more

elaborate geostatistical model for purposes of predicting

the natural log salinity levels from the associated

(natural log transformed and de-correlated) sensor

readings.

After identifying and estimating a suitable ordi-

nary linear regression calibration model, we performed

the tests described in the Appendix (see Appendix A—

Prediction validation tests for the ordinary linear model)

to validate the suitability of the 40-site model-based

sampling plan. Table 2 shows the corresponding sum-

mary statistics and parameter estimates for Eq. (4) using

the 40-site model-based (RSSD) and 30-site design-

based sampling plans (SRSD), respectively. The results

shown in Table 2 suggest that both sampling plans yield

very similar model summary statistics and parameter

estimates.

A formal test of the hypothesis of equivalent

parameter estimates was carried out using a composite

model F-test. Likewise, a joint-prediction F-test and

mean-prediction t-test were used to formally test the

accuracy of the Eq. (4) natural log salinity predictions

derived from the 40-site RSSD plan (i.e., to test if the

predictions associated with the 30 randomly chosen

SRSD locations were sufficiently accurate and globally

unbiased). Table 3 shows the model validation test

results for the above mentioned tests. The composite

model F-test produced an F-score of 0.63 (p 5 0.640),

suggesting that the Eq. (4) parameter estimates associ-

ated with the RSSD and SRSD plans were statistically

equivalent. Likewise, the joint-prediction F-test pro-

duced an F-score of 0.69 (p 5 0.846), suggesting that the

predictions associated with the 30 randomly chosen

Table 2. Regression model summary statistics and parameter estimates; Eq. (4). RSSD represents responses surface

sample design and SRSD represents stratified random sample design.

Model Sample size (n) R2 Root mean square error (RMSE) F-score Pr . F

Combined 70 0.814 0.272 96.25 ,0.001

RSSD 40 0.805 0.293 49.38 ,0.001

SRSD 30 0.843 0.248 46.57 ,0.001

Parameter estimates and test statistics

Parameter Estimate Std. error t-score Pr . |t|

Combined Sample Set (n 5 70) b0 0.372 0.049 7.67 ,0.001

b1 0.493 0.031 16.14 ,0.001

b2 20.060 0.030 22.01 0.048

b3 0.116 0.029 3.98 ,0.001

RSSD Samples (n 5 40) b0 0.421 0.067 6.39 ,0.001

b1 0.504 0.043 11.60 ,0.001

b2 20.068 0.039 21.72 0.093

b3 0.108 0.038 2.86 0.007

SRSD Samples (n 5 30) b0 0.285 0.076 3.75 ,0.001

b1 0.477 0.043 11.17 ,0.001

b2 20.035 0.049 20.72 0.481

b3 0.142 0.049 2.88 0.008
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SRSD locations were unbiased and within the specified

precision of the regression model. Figure 4 shows these

30 observed and predicted ln(ECe) measurements (r 5

0.916), where Eq. (4) was in turn estimated using only

the data from the 40-site RSSD plan. The mean-

prediction t-test score was also non-significant (t 5

21.23, p 5 0.226), suggesting that the average predicted

natural log salinity value across these 30 SRSD

locations was also statistically equivalent to the average

measured value. Thus, when Eq. (4) was estimated using

only the 40 RSSD plan sites, the resulting equation

passed all three model validation tests.

Figure 5 shows the predicted spatial salinity

pattern for the entire field, after using the 40-site RSSD

plan to estimate Eq. (4). Likewise, Fig. 6 shows the

predicted salinity pattern generated by the same

equation, but estimated using the 30-site SRSD plan.

Clearly, both sampling designs result in nearly equiva-

lent spatial salinity maps.

Sampling Design Optimality Scores

The 40-site model-based sampling plan was gener-

ated by combining two 20-site RSSD plans together (e.g.,

Designs A and B). We used this compositing approach in

order to develop a larger (n 5 40) sampling plan,

specifically in case a geostatistical mixed linear model

needed to be estimated. Additionally, although both 20-

site designs were generated with the same ESAP-RSSD
software program, the response surface sampling designs

used to generate Design A were purposely degraded (in

order to keep the sampling locations selected by both 20-

site designs from being located too close together).

Hence, from a statistical perspective, Design B would

represent the preferable model-based sampling plan for

estimating an ordinary linear model, if data from only

one RSSD were available.

To assess the suitability of using a 20-site, model-

based design to calibrate a regression equation, we

computed and compared the design optimality scores

for the RSSD plan B design with the 20-site primary

SRSD plan. The design optimality scores for Eqs. (1)–(8)

are shown in Table 4 for both sampling designs. The

optimality criteria computed in Table 4 include the D-,

V-, and two G-optimality scores for each of the eight
hypothesized regression models. Note that the RSSD

always outperforms the equivalent sized SRSD with

respect to all three optimality criteria. The score

differences are especially pronounced for the Dopt and

Gmax criteria, as well as for the more complex regression

functions (Eqs. (4) and (8), respectively). For Eq. (4)

specifically, the use of the RSSD results in about a 4%

reduction in the expected average prediction, a 7.5%
reduction in the 90th percentile variance, and about a 36%

reduction in the expected maximum prediction variance.

Although these optimality scores quantify just one

sampling event, the results shown in Table 4 are expected.

The RSSD tends to select sampling locations that exhibit

a greater range in the observed EMI signal levels and

hence the target soil property, provided that the soil

property and signal data are strongly correlated (Myers
and Montgomery, 2002). Therefore, RSSD yields many

desirable statistical properties, such as high regression

Table 3. Model validation test results for Eq. (4).

Model Eq. (4) F-score Pr . F

Composite model F-test (ndf 5 4, ddf 5 62)1 0.63 0.640

Joint-prediction F-test (ndf 5 30, ddf 5 36)2 0.69 0.846

t-score Pr . |t|

Mean-prediction t-test (ndf 5 1, ddf 5 36)2 21.23 0.226

1 Eq. (4) with unique parameters for each sample set.
2 Eq. (4) estimated using response surface sampling design (RSSD) data.

Figure 4. Observed versus predicted ln(ECe) sample

data at 30 SRSD locations, where SRSD represents the

stratified random sampling design.
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coefficient precision and low average prediction variance.

A more detailed discussion on the statistical performance

characteristics of this prediction-based sampling ap-

proach can be found in Lesch (2005).

A practical example of this effect is shown in

Table 5, which summarizes the mean square prediction

error (MSPE) estimates for Eqs. (3), (4), (7), and (8) for

each design. In Table 5, these MSPE estimates have

Figure 5. Predicted spatial ECe pattern from Eq. (4), using the n = 40 RSSD locations, where RSSD represents the
response surface sampling design.

Figure 6. Predicted spatial ECe pattern from Eq. (4), using the n = 30 SRSD locations, where SRSD represents the

stratified random sampling design.
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been calculated as:

MSPEEq, Design~(1=30)
X30

i~1

(yi{ŷyi)
2, ð9Þ

using the 20 sites associated with RSSD Design A and

the 10 secondary SRSD sites (i.e., 30 independent

samples not considered in Table 4). For the regression

equations without any trend surface parameters, these

MSPE estimates are essentially equivalent. However,

upon including the first-order trend surface parameters,

the RSSD Design B produces MSPE estimates that are

about 10% to 16% lower than the primary SRSD.

Additionally, Fig. 7 shows the predicted ECe map

generated by Eq. (4) when this equation was calibrated

using just the 20 RSSD Design B sites. Note that Fig. 7

is essentially identical to Fig. 5 (and Fig. 6), confirming

that this 20-site, model-based sampling plan (i.e., RSSD)

can in fact be used to accurately estimate the specified

calibration model.

Conclusions

The model validation tests presented in Table 3

show that the model-based sampling design can be

reliably used to estimate the ln(ECe) calibration function

and to provide an accurate and unbiased prediction of

the validation sample sites chosen by the SRSD. The

regression models estimated using the model- and

design-based sampling plans can not be judged to be

significantly different. Additionally, the field average

ln(ECe) predictions and salinity prediction maps pro-

duced by the two sampling approaches are quite similar.

Even though both RSSD and SRSD approaches

provided similar validation results, it is apparent from

the design optimality scores shown in Table 4 that the

use of the RSSD should in principle facilitate the

estimation of a more accurate regression model; i.e., this

sampling approach should allow for better model

discrimination, more precise parameter estimates, and

smaller prediction variances. These issues are obviously

important in practice, since a sampling plan needs to

allow for both effective model selection and accurate

parameter estimation. Although only one property that

influences ECa was used in the comparison of model-

Table 4. Response suface sampling design (Design B) and stratified random sampling design (Primary Design) D-, V-,

and G-optimality scores for Eqs. (1)–(8).

Sample design Regression equation

Design optimality scores

Dopt Vopt Gmax G90

RSSD (Design B) (1) 1.43 1.09 1.25 1.13

(2) 2.31 1.12 1.81 1.19

(3) 2.72 1.11 1.88 1.14

(4) 4.02 1.14 1.94 1.23

(5) 3.30 1.18 1.73 1.27

(6) 4.96 1.21 2.15 1.32

(7) 5.87 1.20 1.92 1.30

(8) 8.05 1.24 2.16 1.36

SRSD (Primary Design) (1) 1.12 1.10 1.30 1.15

(2) 1.46 1.14 2.03 1.24

(3) 0.78 1.15 2.82 1.22

(4) 0.85 1.19 3.03 1.33

(5) 1.87 1.19 2.22 1.31

(6) 2.30 1.24 2.38 1.40

(7) 1.02 1.25 3.96 1.41

(8) 0.83 1.33 5.55 1.58

Table 5. Mean square prediction error (MSPE)

estimates for Eqs. (3), (4), (7), and (8). RSSD

represents responses surface sample design and SRSD

represents stratified random sample design.

Regression

equation

MSPE estimates

RSSD

(design B)

SRSD

(primary design)

Eq. (3) 0.129 0.125

Eq. (4) 0.120 0.119

Eq. (7) 0.125 0.150

Eq. (8) 0.131 0.147
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and design-based sampling approaches, past experience

has shown that any property that strongly correlates

with ECa at a given site will render similar results.

The significance of this sampling design compar-

ison is that an alternative sampling approach (i.e.,

RSSD) has been shown to be viable and that RSSD in

principle provides an increased level of assurance of the

spatial characterization of soil properties with ECa-

directed soil sampling. The level of technical knowledge

needed for RSSD is greater than other sampling designs

but software is available (i.e., ESAP; Lesch et al., 2000)

that significantly reduces the statistical expertise neces-

sary to create a RSSD plan from geo-referenced ECa

data.
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APPENDIX A

STATISTICAL CONSIDERATIONS

Geostatistical and Ordinary (Spatially Referenced)

Linear Models

In a field survey where remote sensor readings are

collected, the sensor data is generally used to predict a

specific, unobserved soil property. For example, assume

that a dense grid of ECa data has been collected across a

particular field and soil samples have been collected at
some of these survey locations for purposes of

calibrating the ECa data, with the intention to use these

sensor and calibration sample readings to estimate a

model that in turn will be used to predict the detailed

spatial pattern of the soil property. Assume that the

relationship between the remote sensing data and target

soil property (e.g., soil salinity) can be adequately

approximated using the following geostatistical mixed
linear model (Haskard et al., 2007):

y~Xbzg(s)zj(s), ðA-1Þ

where y represents an (n|1) vector of observed soil

property data, s represents the corresponding vector of

paired (sx,sy) survey location coordinates, X represents

an (n|p) fixed data matrix that includes observed

functions of sensor readings and possibly also the survey

location coordinates, b represents a (p|1) vector of

unknown parameter estimates, g(s) represents a 0-mean,
second order stationary spatial Gaussian error process,

and j(s) represents a vector of jointly independent

Normal(0, s2
n) random variables. Lesch and Corwin

(2008) discuss Eq. (A-1) in detail and describe when and

under what conditions this equation reduces to a

spatially referenced, ordinary linear model.

Generally speaking, the most common justifica-
tion for using an ordinary linear model is when the

physical locations of the calibration sample sites are

spread sufficiently far apart, such that the residual

errors do not exhibit any spatially correlated structure.

Conceptually, this condition occurs when one samples

beyond the effective range of the residual covariance

structure; Lesch and Corwin (2008) refer to such

residuals as ‘‘effectively uncorrelated’’. More formally,
under this assumption the model calibration errors in

Eq. (A-1) can be treated as being statistically indepen-

dent. Thus, from a statistical estimation viewpoint, Eq.

(A-1) is no different from an ordinary linear regression

model and can therefore be fit using ordinary least

squares estimation techniques.

In the remainder of this section we will assume

that the residual errors in Eq. (A-1) are spatially

uncorrelated, thus allowing Eq. (A-1) to be re-expressed

as an ordinary, spatially referenced linear model:

y~Xbze(s): ðA-2Þ

Under this residual error assumption, one can readily

verify that the best linear unbiased estimate for b
becomes:

b̂~(XTX){1XTy, ðA-3Þ

with a corresponding variance of
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Var(b̂)~t2(XTX){1, ðA-4Þ

for Var e(s)ð Þ~t2. Thus, when the residual spatial

independence assumption holds, one can in turn use

standard results from (non-spatial) linear modeling

theory to assess the statistical optimality of competing

sampling designs and/or the statistical validity of a fitted

model, etc.

Sampling Strategies for Spatially Referenced

Linear Models

Both design- and model-based sampling strategies

can be employed to estimate spatially referenced linear

models. Design-based sampling strategies have a well

developed underlying theory and can be useful in many

spatial applications (Thompson, 1992; Brus and de

Gruijter, 1993). Likewise, model-based sampling strat-

egies have been applied to the optimal collection of

spatial data by Müller (2001); the specification of

optimal designs for variogram estimation by Russo

(1984), Warrick and Myers (1987), and Müller and

Zimmerman (1999); the estimation of spatially refer-

enced leaching requirement models by Lesch et al.,

(1995b) and Lesch (2005), and the estimation of

geostatistical linear models by Zhu and Stein (2006),

Brus and Heuvelink (2007), and Minasny et al., (2007).

The goals of this study were (1) to relate ECa

survey data to soil salinity measurements using a

spatially referenced linear model, (2) to assess the

suitability of using a model-based sampling strategy

for eliciting and estimating a suitably specified linear

model to produce these salinity predictions, and (3) to

statistically compare and contrast a model-based and

design-based sampling strategy. Thus, two different

sampling designs were employed to estimate the

regression model relating salinity to ECa: a RSSD plan

and a SRSD plan.

Sample design optimality criteria. For a hypothe-

sized ordinary linear model, various statistical criteria

have been proposed in the response surface design

literature for assessing the ‘‘optimality’’ of competing

sampling designs (Myers and Montgomery, 2002). Most

of these criteria measure either the expected precision of

the regression model parameter estimates (e.g., D- and A-

optimality) or quantify some measure of precision in the

model predictions (i.e., G-, V-, and Q-optimality). In this

study we chose to compare and contrast the RSSD and

SRSD plans using the D-, V-, and G-optimality criteria.

Let X represent the design matrix associated with a

specific regression model, xi represent the regression

vector associated with the ith survey location, and p

represent the number of parameters in the regression

model (including the intercept). Additionally, let n and

N represent the number of calibration soil sample sites

and ECa survey sites, respectively. The D-, V- and G-

optimality scores can then be defined as follows:

Dopt~ XTX
�� ���np, ðA-5Þ

Vopt~(1=N)
XN

i~1

1zx T
i (XTX){1xi

� �
, and ðA-6Þ

Gmax~max 1zx T
i (XTX){1xi

� �
i~1,::,N

, ðA-7Þ

where the function :j j represents the determinant of a

matrix. Intuitively, the Dopt score measures the expected

precision in the regression model parameter estimates;

larger scores imply higher precision and a sampling

design that maximizes this score is said to be D-optimal.

The Vopt score measures the expected average prediction

error associated with the linear model predictions,

assuming that the prediction errors are spatially

independent. A smaller score implies a smaller average

prediction error and a sampling design that minimizes

this score is said to be V-optimal. Likewise, the Gmax

score measures the expected maximum prediction error

in the regression model predictions, again assuming that

the prediction errors are spatially independent. A

sampling design that minimizes this score is said to be

G-optimal.

When N is large, it can also be useful to compute

G scores for certain quantiles associated with the

prediction error distribution, such as the 90th or 95th

quantile, etc. The interpretation of such a ‘‘G-quantile’’

score (for example, the 90th quantile score) would be

that 90% of the regression model predictions exhibit an

expected relative prediction error that is less than this

value, etc. Finally, note that each of the previously

defined optimality scores can be computed for any

plausible (hypothesized) ordinary linear model.

If an ordinary linear model is to be successfully

used in place of the geostatistical mixed linear model,

then more restrictive modeling assumptions need to be

met. In addition to the Gaussian error process, the

residual errors associated with the calibration sample

site locations must be at least approximately uncorre-

lated. Thus, some type of test for residual spatial

correlation should always be performed before deciding

to adopt the ordinary linear modeling approach.

Residual diagnostic tests. A formal test for spatial

correlation in the residual pattern can be carried out

using either a nested likelihood ratio test or via the

Moran residual test statistic (Upton and Fingleton,

1985; Haining, 1990; Tiefelsdorf, 2000; Schabenberger
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and Gotway, 2005). The likelihood ratio test can only be

performed after first estimating a suitable geostatistical

mixed linear model (Schabenberger and Gotway, 2005).

In contrast, the Moran test can be carried out directly

on the ordinary linear model residuals.

The Moran residual test statistic (dM) is defined as:

dM~
rTWr

rTr
, ðA-8Þ

where r~y{Xb̂ (e.g., the vector of observed model

residuals), W represents a suitably specified proximity

matrix, and b̂ is calculated using Eq. (A-3). While the

specification of W can be application-specific, in most

soil survey applications it is generally reasonable to

specify W as a scaled inverse distance squared matrix.

Under such a specification, where dij represents the

computed distance between the ith and jth sample

locations, the fwijg elements associated with the ith

row of the W matrix are defined as:

wii~0 and wij~d{2
ij

,Xn

j~1

d{2
ij : ðA-9Þ

Brandsma and Ketellapper (1979) provide the

formulas for computing both the mean and variance

of the Moran test statistic; see also Lesch (2005) and

Lesch and Corwin (2008). The corresponding Moran

test score can then be computed as:

zM~ dM{E(dM)ð Þ
. ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Var(dM)
p

, ðA-10Þ

and compared to the upper (one-sided) cumulative

standard Normal probability density function.

A test score in excess of 1.65 (a&0.05) is normally

interpreted as being statistically significant. Provided

that the fixed effects in the regression model have been

correctly specified, such a test score implies that the

ordinary linear regression model residuals exhibit

significant spatial correlation. In this situation, the

linear regression parameter estimates and survey pre-

dictions may be highly inefficient and the mean square

error estimate and parameter test statistics may be

substantially biased. If sufficient data is available (or

additional data can be collected), then a suitable spatial

or geostatistical linear modeling approach should

instead be employed.

In addition to the spatially independent residual

error assumption, one must also verify that the model

residuals satisfy the usual standard Gaussian error

assumption and that the hypothesized model is correctly

specified. Fortunately, most well known residual anal-

ysis techniques used in an ordinary regression analysis

are just as useful when applied to a spatially referenced

linear model. These include assessing the assumption of

residual Normality using quantile-quantile plots and the

Shapiro-Wilk test (Shapiro and Wilk, 1965), detecting

outliers and/or high leverage points using plots of

internally or externally studentized residuals, and

detecting model specification bias using residual versus

prediction plots, partial regression leverage plots, and

added variable plots (Myers, 1986).

Prediction validation tests for the ordinary linear
model. Suppose that a plausible linear model has been

specified that describes some type of soil property /

survey data relationship. Suppose also that a Moran or

likelihood ratio test has been used to verify that the

residual errors are spatially uncorrelated and that the

other usual residual assumptions hold. Hence, our

spatially referenced linear model can be expressed in

matrix notation as y~Xbze(s), where e(s)*N(0, t2In)

and y and X are defined as in Eq. (A-2).

In most surveys, the ultimate goal will be to use the

fitted equation for prediction purposes, but assume first

that we wish to assess the ‘‘validity’’ of our fitted linear

model. There are three types of statistical tests that can

be readily employed to assess the validity of the spatially

referenced linear model. These can all be expressed as F-

tests (and/or t-tests), and are based on the idea of data

partitioning. Thus, assume that we can partition the

n~n1zn2 sample sites into a primary calibration set

and a secondary validation set. Given this data partition

of sample sites, assume further that we wish to fit the

model using the primary calibration data and then test

its prediction adequacy using the secondary validation

data.

First, with respect to the pooled (calibration +
validation) data set, note that the pooled y vector and X

matrix can be partitioned as:

y~
y1

y2

� 

and X~

X1 0

0 X2

� 

, ðA-11Þ

where the subscripts index the calibration and validation

data sub-sets and the dimension of the partitioned

design matrix is (n1zn2)|2p. Given this partition, a

‘‘composite model’’ F-test can be performed by fitting

the partitioned equation:

y~X1b1zX2b2ze(s), ðA-12Þ

and then testing if b1~b2 (Cook and Weisburg, 1999).

This is one of the better known, standard model

validation testing techniques suggested in the statistical

literature; additional details can be found in most

regression textbooks (Weisburg, 1985; Myers, 1986;

Cook and Weisburg, 1999).

Two other useful model validation tests are the

‘‘joint-prediction’’ F-test and ‘‘mean-prediction’’ t-test.
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The joint-prediction F-test can be performed by first
estimating the linear regression model using just the

calibration data, next calculating the joint set of

prediction errors across the validation sites as:

r2~y2{X2b̂b1, ðA-13Þ

and then by computing the statistic:

F1~r T
2 V{1 r2=s 2

1 where V~(IzX2(X T
1 X1){1X T

2 ):

ðA-14Þ

This test statistic, originally suggested by Lieberman

(1961), essentially defines the joint (simultaneous) predic-

tion region for multiple predictions from a single

regression model. Given the EU residual assumption and
under the null hypothesis (i.e., that the fitted calibration

model is correct), F1 follows a central F(n2, n1{p)

distribution where n2 and n1{p represent the number of

validation sites and the (calibration) model degrees of

freedom, respectively, and s2
1 represents the estimated

calibration model mean square error (MSE) estimate

(Lieberman, 1961; Rao and Toutenburg, 1999). In a

similar manner, the mean-prediction t-test can be per-

formed by first calculating the average prediction error as:

r~qTr2 where qT~ 1=n2, ::: 1=n2½ �, ðA-15Þ

and then computing the statistic:

t1~r=(s1

ffiffiffi
h
p

) where h~ (1=n2)z(qTX2(X T
1 X1){1X T

2 q)
� �

:

ðA-16Þ

Note that t1 follows a central t distribution (with n1{p

degrees of freedom) under the null hypothesis, where s1

represents the square root of the calibration model MSE

estimate (Rao and Toutenburg, 1999).

Intuitively, the composite model F-test represents

a test for non-equivalent parameter estimates across the

partitioned calibration and prediction (validation) sam-

ple sites. In contrast, the joint-prediction F-test

assesses the ability of the regression model (fit using

the calibration data only) to make unbiased predictions

at all new validation sites, and simultaneously tests if

these predictions are within the specified tolerance

(precision) of the model. The mean-prediction t-test

follows from the joint-prediction F-test, and hence

assesses the ability of the regression model to make an

unbiased prediction of the average value across the new

n2 validation sites.
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