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a b s t r a c t

Critical path analysis (CPA) is a method for estimating macroscopic transport coefficients of heteroge-
neous materials that are highly disordered at the micro-scale. Developed originally to model conduction
in semiconductors, numerous researchers have noted that CPA might also have relevance to flow and
transport processes in porous media. However, the results of several numerical investigations of critical
path analysis on pore network models raise questions about the applicability of CPA to porous media.
Among other things, these studies found that (i) in well-connected 3D networks, CPA predictions were
inaccurate and became worse when heterogeneity was increased; and (ii) CPA could not fully explain
the transport properties of 2D networks. To better understand the applicability of CPA to porous media,
we made numerical computations of permeability and electrical conductivity on 2D and 3D networks
with differing pore-size distributions and geometries. A new CPA model for the relationship between
the permeability and electrical conductivity was found to be in good agreement with numerical data,
and to be a significant improvement over a classical CPA model. In sufficiently disordered 3D networks,
the new CPA prediction was within ±20% of the true value, and was nearly optimal in terms of minimizing
the squared prediction errors across differing network configurations. The agreement of CPA predictions
with 2D network computations was similarly good, although 2D networks are in general not well-suited
for evaluating CPA. Numerical transport coefficients derived for regular 3D networks of slit-shaped pores
were found to be in better agreement with experimental data from rock samples than were coefficients
derived for networks of cylindrical pores.

Published by Elsevier Ltd.
1. Introduction

A fundamental problem of subsurface hydrology is the interpre-
tation and prediction of macroscopic properties of porous media
based on the microscopic structure of pores [1,13,16,42]. In the last
few decades, many researchers have employed percolation theory
in the quest for a micro-scale understanding of porous media;
reviews may be found, for example, in Berkowitz and Balberg [6],
Berkowitz and Ewing [7], and Hunt and Ewing [21]. The focus of
this paper is a methodology known as critical path analysis
(CPA), a technique that uses elements of percolation theory to cal-
culate macroscopic transport coefficients of heterogeneous materi-
als [3,20,21].

The basic idea of CPA is that in a strongly heterogeneous med-
ium, most transport occurs along a relatively small number of high
conductance pathways. Transport along these high conductance
pathways is constrained by their least conductive sections, which
act as ‘‘bottlenecks’’ to transport. Thus the size and frequency of
Ltd.
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the bottlenecks determine to a large degree the overall macro-
scopic transport properties.

CPA relies on percolation theory to enumerate the various
quantities needed to derive macroscopic transport coefficients,
such as path separation distance and frequency of bottlenecks.
For example, a characteristic value for the bottleneck conductance
can be determined by considering a related percolation problem.
Specifically, in a heterogeneous medium with a variable local con-
ductance g, the characteristic or critical conductance value, gc, is
defined to be the largest conductance such that the set of conduc-
tances g > gc forms a spanning cluster. This may be expressed as [3]

pc ¼
Z 1

gc

fgðgÞdg ð1Þ

where fg(g) is the probability density function for the local or micro-
scale conductance g, and pc is the percolation threshold for the
system.

CPA was originally developed to analyze conduction in disor-
dered systems such as amorphous semiconductors [3,12]. In these
systems, the local conductances are exponential functions of ran-
dom system parameters which are uniformly distributed, and thus
the local conductances follow a log-uniform distribution such that
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Nomenclature

CPA acronym for critical path analysis
CV coefficient of variation
ECb bulk electrical conductivity
ECw electrical conductivity of saturating fluid
b breadth of slit-shaped pore
g0 proportionality constant in the pore conductance model
d spatial dimension (equals 2 or 3)
fg pore conductance probability density function
fd pore-size probability density function
g pore conductance
gc critical pore conductance
k fluid permeability
k⁄ normalization constant
K hydraulic conductivity
l0 pore length
m exponent in pore conductance model

pc percolation threshold
W parameter in log-uniform conductance model
y CPA conductivity prefactor exponent
a parameter in power law pore-size distribution
b parameter in power law conductance distribution
d characteristic length of pore cross section (termed

‘‘pore-size’’)
dc critical pore-size
dmin lower bound for d
dmax upper bound for d
dg geometric mean pore-size
g fluid viscosity
k conductivity length scale
l mean of lnd
m percolation correlation length exponent
r standard deviation of lnd
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fgðgÞ ¼
1

Wg
ð2Þ

where W� 1 is a parameter specifying the broadness of the distri-
bution and hence the degree of heterogeneity or disorder in the sys-
tem. For sufficiently large W, CPA leads to an estimation of the
macroscopic conductivity, R, that is given by [19]

R ¼ CW�ygc ð3Þ

where C is a system dependent constant and y is termed the prefac-
tor exponent. Numerical calculations of the conductivity of 3D net-
works are in general agreement with the form of Eq. (3) [38,39].

The form of Eq. (3) implies that the average separation between
high conductance pathways is a distance k that goes like k �Wy

[39]. Thus the distance between pathways increases with increas-
ing heterogeneity (increasing W). The prefactor exponent y is pre-
sumed to be a universal exponent such that its value depends only
on the spatial dimension of the system. One hypothesis [31] is that
the exponent is given by y = (d � 2)m, where d is the spatial dimen-
sion and m is the correlation length exponent from percolation the-
ory (the latter known to be m = 0.88 for d = 3 and m = 4/3 for d = 2
[41]). With that formulation, y = 0.88 for 3D systems and y = 0 for
2D systems. Numerical simulations are generally in agreement
with y = 0 for 2D systems, but have found that y < 0.88 for 3D sys-
tems [28,30,39,43]. For example, Skaggs [39] estimated y � 0.74
based on simulations of a 3D system with the local conductances
following the log-uniform distribution specified by Eq. (2).

Hunt [20,21] has noted that differences may exist between the
nature of the disorder found in semiconductors (e.g. Eq. (2)) and
that typically found in porous media, such that the success of
CPA in semiconductor physics does not necessarily imply that
CPA is applicable to either fluid flow or electrical conduction in
porous media. Nevertheless, the literature contains several appar-
ently successful applications to porous media. Perhaps the best
known result was that obtained by Katz and Thompson [26,27].
In porous media, the critical conductance can be expressed in
terms of a critical characteristic pore diameter, dc. Using such a
relationship, Katz and Thompson [26] derived the following result
for saturated porous media,

k
ECb=ECw

¼ cKTd
2
c ð4Þ

where k is the fluid permeability, dc is the critical pore diameter, ECb

is the bulk electrical conductivity, ECw is the electrical conductivity
of the saturating fluid, and cKT � 1/226 is a numerical constant. Eq.
(4) has no free parameters if dc can be measured. Katz and Thomp-
son [26,27] determined dc on rock samples using mercury intrusion
measurements. Very good agreement was obtained between Eq. (4)
and measurements made on a variety of rock samples.

More recently, Hunt et al. [20–24] have applied critical path
analysis using continuum percolation and a fractal pore distribu-
tion model to derive expressions for the hydraulic conductivity
and water retention functions of unsaturated soils. In these mod-
els, the critical length scale (pore size) is related to the bubbling
pressure. Hunt and Gee [22–24] had success comparing their mod-
els against various experimental data. In these studies, bubbling
pressures and critical volume fractions were not measured di-
rectly; instead, an empirical result from a diffusion study by Mold-
rup et al. [35] was adopted to estimate these quantities.

As noted by David [15] and Bernabé [8], the experimental results of
Agrawal et al. [2] can also be considered consistent with the CPA con-
ception of transport processes. In that work [2], molten Wood’s metal
was injected into rock samples of known permeability and then ‘‘fro-
zen’’, thereby effectively removing the pores penetrated by the metal
from the active pore space. Agrawal et al. [2] observed that permeabil-
ity was reduced by as much as a factor of 4 when the saturation of the
Wood’s metal was only about 10% and presumably confined to only the
‘‘critical’’ percolating path. Thus the critical pathway accounted for
about 75% of the original rock permeability. Additional experimental
evidence is provided by Lukasiewicz and Reed [34], who found that
the permeability of porous alumina compacts with porosities rang-
ing from 32 to 50% was controlled by a mean radius length that was
related to Katz and Thompson’s critical radius [37].

On the other hand, several numerical tests of CPA on network
models of porous media have produced mixed results which raise
some questions about the interpretation of the experimental re-
sults. Bernabé [8] found that macroscopic properties of 2D net-
works were strongly related to dc, but cautioned that CPA was
probably not valid for the simulated conditions and did not likely
provide the explanation for the significance of dc. Among the rea-
sons for this caution was the observation that only about 20% of
the flow occurred on the critical path in networks that where
highly connected (high coordination number).

Bernabé and Bruderer [9] investigated the effect of the variance
of the pore-size distribution on 2D network transport properties.
For various pore-size distribution models, they found that when
pore-size variance (heterogeneity) was large, certain network
transport coefficients were proportional to the square of the
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critical radius, as predicted by Katz and Thompson [26]. Again,
however, these authors noted that the observed flow pathways,
although ‘‘localized’’, were not restricted to the ‘‘critical path’’,
and concluded that ‘‘the predominant role played by the critical
[pore diameter] cannot be explained by CPA’’ [9].

Friedman and Seaton [18] performed 3D network simulations
investigating the effects of pore-size distribution and lattice coor-
dination number. These authors found ‘‘reasonable’’ agreement be-
tween the data and CPA predictions, noting that the agreement
was good whenever network connectivity (coordination number)
was low, but that the agreement became significantly worse when
connectivity increased. Also, an examination of the data presented
in Fig. 5 of Friedman and Seaton [18] indicates that the relative
prediction error increased (seemingly towards an asymptotic va-
lue) when the broadness of the pore-size distribution increased,
an unexpected result given that CPA is normally expected to be
most applicable when there is strong disorder, i.e. a broad pore-
size distribution.

Taken collectively, these simulation studies raise some ques-
tions about the applicability of CPA to porous media and the proper
interpretation of the experimental results noted above. To what
degree is the CPA conceptualization of localized transport realized
in porous media? Is the apparent significance of dc due to the argu-
ment made by CPA, or is it instead because of the coincidental cor-
relation of dc with other significant length scales? Resolving these
questions about the CPA approach is important because if CPA
lacks a strong physical basis there is little practical advantage to
be gained over conventional empirical constitutive models.

The objective of the present work was to clarify the perfor-
mance of CPA when applied to network models of porous media.
2. Theory and methods

2.1. Pore network model

Consider a network of liquid-saturated pores arranged on a reg-
ular lattice with fixed pore length l0. The conductance, g, of a pore
is given by

g ¼ g0d
m ð5Þ

where d is a characteristic length of the pore cross-section and g0

and m are constants that depend on pore geometry and on the nat-
ure of the transport, i.e. viscous flow or electrical current. Thus g
may refer to either hydraulic or electrical conductance. Examples
of the length d are the pore diameter in the case of cylindrical pores
and the pore width in the case of slit-shaped pores. For convenience
I will refer to d as the ‘‘pore-size’’ when the discussion is not specific
to a particular geometry. As is standard in critical path analyses, g is
assumed to be uncorrelated in space. This assumption may not be
overly restrictive even though many porous media exhibit at least
short range spatial correlations in pore properties; Liang et al.
[33], working with 3D stochastic pore models derived from image
analysis, found that after taking into account changes in the perco-
lation threshold brought about by correlation, Eq. (4), which has the
same form as the results derived herein, was ‘‘remarkably’’ accurate
when applied to porous media with spatially correlated pore con-
ductances. See Hunt and Idriss [25] for further discussion of perco-
lation-based treatments of the conductivity of spatially correlated
media.

Following Friedman and Seaton [18], I consider two particular
examples for the pore geometry: cylindrical pores and slit-shaped
pores, the latter having a width d that is much narrower than its
breadth b (b is constant in the network). Letting g be the dynamic
fluid viscosity and p = 3.14. . ., the constants in Eq. (5) for these two
geometries are [5,18]:
Cylindrical pores

m ¼ 2; g0 ¼ pECw=ð4l0Þ ðelectrical conductanceÞ ð6Þ
m ¼ 4; g0 ¼ p=ð128gl0Þ ðhydraulic conductanceÞ ð7Þ

Slit-shaped pores

m ¼ 1; g0 ¼ ECwb=l0 ðelectrical conductanceÞ ð8Þ
m ¼ 3; g0 ¼ b=ð12gl0Þ ðhydraulic conductanceÞ ð9Þ

2.2. Pore-size and conductance distributions

Two probability density functions for the pore-size d are
considered.

2.2.1. Power law distribution
Several past investigations of porous media have found that the

pore-size density function, fd, can be modeled as a truncated power
law distribution [4,17,21]. A generic model of this type is given by

fdðdÞ ¼ Add
�a�1 ð10Þ

where dmin 6 d 6 dmax, a is the distribution shape parameter, and
Ad ¼ a=ðd�a

min � d�a
maxÞ is the normalization constant (a – 0). The pore

conductance distribution for such a porous medium can be derived
from Eqs. (5) and (10):

fgðgÞ ¼ Agg�b�1 ð11Þ

where b = a/m and Ag ¼ Ad=ðmg�b
0 Þ. For b ? 0, this conductance dis-

tribution approaches fg � g�1, the logarithmically broad conductance
distribution for which CPA was originally developed (cf. Eq. (2)).

2.2.2. Lognormal distribution
Another commonly used pore-size density function is the log-

normal distribution [18,29]. Letting l and r be, respectively, the
mean and standard deviation of lnd, the lognormal distribution is

fdðdÞ ¼
1ffiffiffiffiffiffiffi

2p
p

rd
exp � ln d� lffiffiffi

2
p

r

� �2
" #

ð12Þ

which may be abbreviated LN(l,r). From Eqs. (5) and (12), the cor-
responding conductance distribution is

fgðgÞ ¼ LNðmlþ ln g0;mrÞ ð13Þ
2.3. Critical path analysis

2.3.1. Generalized conductivity
Different versions of CPA exist. All versions consider that trans-

port is restricted by bottleneck conductances with some character-
istic or critical value, but different conductivity calculations are
possible depending on assumptions made about the frequency of
the bottlenecks and how their separation varies with the degree
of system heterogeneity. I use a formulation proposed by Tyč and
Halperin [19,43] that is a generalization of Eq. (3),

R ¼ Cgc½gcfgðgcÞ�
y ð14Þ

In the context of the present work, R is a generic conductivity that
may represent either the hydraulic conductivity, K, or the bulk elec-
trical conductivity, ECb. Eq. (14) is an estimation that is expected to
be applicable when fg is broad, which Tyč and Halperin [19,43] sug-
gest occurs when gcfg(gc)� 1 and gfg(g) is slowly varying in a large
neighborhood about gc. The latter condition is satisfied, for example,
if in the vicinity of g = gc, fg(g) is roughly fg(g) � g�1, such that gfg(g)
is approximately constant in that neighborhood (cf. Eq. (2)).

Substitution of a model pore conductance distribution (Eq. (11)
or (13)) into Eq. (14) leads to an expression for the generalized
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conductivity in terms of pore conductances. Subsequently, Eq. (5)
can be substituted to obtain an expression for the generalized con-
ductivity in terms of pore sizes. The following results are obtained
for the two model distributions:

Power law distribution
R ¼ Cg0Ay
dm�ydm�ay

c ð15Þ

Lognormal distribution

R ¼ Cg0ð2pÞ�y=2ðrmÞ�ydm
c exp �y

ln dc � lffiffiffi
2
p

r

� �2
" #

ð16Þ
2.3.2. Hydraulic and electrical properties
The relationship between hydraulic and electrical properties is

of both theoretical and practical interest (e.g. [36,40,44]). In the
current work, formulating the ratio of the hydraulic and electrical
conductivities of the same pore network also has the practical
advantage of eliminating many system dependent constants. Tak-
ing mH, mE, g0;H, and g0;E to be particular values of the constants
in Eq. (5), the following expression is obtained for both the power
law (Eq. (15)) and lognormal (Eq. (16)) distributions:

K
ECb
¼

R mH; g0;H

� �
R mE; g0;E

� � ¼ g0;H

g0;E

mH

mE

� ��y

dmH�mE
c ð17Þ

Thus applying the CPA model for the ratio of the hydraulic and elec-
trical conductivities (Eq. (17)) does not require detailed knowledge
of the underlying pore distribution, only the value of the critical
pore size. On the other hand, the pore geometry is potentially sig-
nificant. Defining k � K 	 g to be the fluid permeability, dg to be
the geometric mean pore-size, ECw to be the electrical conductivity
of the saturating fluid, and k⁄ to be a pore geometry-dependent scal-
ing factor, Eq. (17) may be expressed in non-dimensional form as:

Cylindrical pores
k=k


ECb=ECw
¼ 2�yðdc=dgÞ2; k
 � d2

g=32 ð18Þ

Slit-shaped pores

k=k


ECb=ECw
¼ 3�yðdc=dgÞ2; k
 � d2

g=12 ð19Þ

Eqs. (18) and (19) may be compared with an expression ob-
tained by Friedman and Seaton [18] using an alternative classical
CPA model. According to the classical model, k/ECb is found by con-
sidering the ratio of the critical hydraulic and electrical conduc-
tances. Using the notation and conventions of the present paper,
their result may be written as

k=k


ECb=ECw
¼ ðdc=dgÞ2 ð20Þ

with k⁄ defined as in Eqs. (18) and (19) for cylindrical and slit-
shaped pores, respectively.

The CPA conductivity exponent y is presumed to be universal,
such that its value depends only on the dimension of the system.
For 2D systems, the exponent is generally accepted to be y � 0. In
this case, no difference exists between the classical result (Eq.
(20)) and that obtained in this work (Eqs. (18) and (19)). For 3D sys-
tems, however, estimates for y are in the range 0.6–0.88 [39], and
thus the new predictions differ from the classical result by a numer-
ical factor of 2�y in the case of cylindrical pores and 3�y in the case of
slit-shaped pores. In this work, 3D CPA predictions are made with
y = 0.74, the value estimated by Skaggs [39] based on analyses of sys-
tems with a log-uniform conductance distribution (Eq. (2)).
2.4. Monte Carlo simulations

To assess the accuracy of the CPA models presented in the previ-
ous section, numerical simulations were performed to determine
the actual permeability and electrical conductivity of various pore
network models. For each simulation, a network with uncorrelated
random pore-sizes (d) was generated according to one of the two
probability density models considered above (Eqs. (10) and (12)).
Individual pore conductances were then set based on Eq. (5), with
the parameter values for g0 and m being determined by the pore
geometry used in the network and whether the computation was
for electrical or hydraulic conductivity (Eqs. (6)–(9)). A fixed poten-
tial was maintained on two opposite sides of the network such that a
unit potential drop existed across the network. On the remaining
faces, no-flow boundary conditions were maintained. Enforcing
mass (or charge) conservation at each node leads to a system of
equations that was solved for the nodal potentials using the conju-
gate gradient method with a block incomplete factorization [39].
The conductivity was then determined based on the computed flow
in the network. Computations for the permeability and electrical
conductivity were done for each network realization and their ratio
calculated. One hundred realizations of each network configuration
were generated, and the arithmetic mean result for each configura-
tion is reported below, which was not significantly different from
the geometric mean, harmonic mean, and median values.

Three lattices were used for the pore network: the 2D square
bond lattice (pc = 0.5), the 2D triangular bond lattice (pc = 0.347),
and the 3D simple cubic bond lattice (pc = 0.2488). The values of
r considered for the lognormal distribution ranged from 0.1 to
1.3, which equates to a coefficient-of-variation (CV) that ranged
from 0.1 to 2.1. The computed ratios of the hydraulic and electrical
conductivities were not dependent on the value of l. For the power
law distribution, the values of a ranged from �0.9 to 0.9. Also, two
bounds were considered: dmax/dmin equal to either 102 or 104. How-
ever, when dmax/dmin = 104, some larger a values produced net-
works with a very high degree of heterogeneity and the flow
field could not be resolved numerically; those parameter combina-
tions were discarded. The parameter combinations that were eval-
uated successfully for the power law distribution had CVs ranging
from 0.6 to 2.3. Formulas for calculating CV, dg, and dc for the two
distributions are given in the Appendix.

Skaggs [39] investigated the effects of boundary conditions and
system size L on the computed mean conductivity of 3D networks
(where where L is the number of nodes along one edge of the net-
work). The mean network conductivity was shown to decrease
towards an asymptotic value as the system size L was increased.
The rate of approach to the asymptotic value depended on the
boundary conditions (periodic vs. no flow) and the degree of net-
work inhomogeneity. For highly disordered 3D networks with no-
flow boundary conditions, Skaggs [39] found that L � 18 was typi-
cally sufficient to produce the asymptotic conductivity value (that
is, further increasing L did not change the computed mean value),
and ultimately used L = 32 to avoid finite-size effects. A similar anal-
ysis was done for the networks in the current paper and it was deter-
mined that 3D networks with L = 32 and 2D networks with L = 128
produced the asymptotic mean conductivity value; those are the
system sizes used to compute the results reported below. It was ver-
ified that results were unchanged when L = 64 (3D) and L = 256 (2D).

3. Results

3.1. 3D networks

Fig. 1 compares the CPA predictions for 3D networks of cylindri-
cal and slit-shaped pores (Eqs. (18) and (19), respectively) with the
numerical data computed on cubic lattices with lognormal and



Fig. 1. Comparison of CPA predictions with numerical data computed for 3D cubic
networks with cylindrical (Cyl) or slit-shaped (Slit) pores, and lognormally (LN) or
power-law (PL) distributed pore-sizes.

Fig. 2. Relative errors for the predictions shown in Fig. 1, plotted as a function of the
coefficient-of-variation (CV) of the pore-size distribution.

Fig. 3. Comparison of CPA predictions with numerical data computed for 2D square
and triangular networks with cylindrical (Cyl) or slit-shaped (Slit) pores, and
lognormally (LN) or power-law (PL) distributed pore-sizes.
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power-law pore-size distributions. Also shown is the prediction of
the classical CPA model, Eq. (20).

It is clear in Fig. 1 that the CPA model derived in the present
work, Eqs. (18) and (19), is in better agreement with the numerical
data than the classical CPA model. As predicted by Eqs. (18) and
(19), the Monte Carlo data for cylindrical and slit-shaped pores di-
verge at larger values of the dimensionless critical pore size dc/dg.
The new CPA model underestimates the data on average, whereas
the classic CPA model overestimates the data. The error for the
classic CPA was more severe for large values of dc/dg.

Fig. 2 presents the relative errors (difference between the pre-
diction and the numerically computed value, divided by the
numerically computed value) for the predictions shown in Fig. 1.
Errors with respect to the individual data points in Fig. 1 are plot-
ted as a function of the coefficient-of-variation (CV) of the pore-
size distribution used in that simulation, which serves as a mea-
sure of the heterogeneity or disorder in the pore network. Fig. 2
shows that the accuracy of the new CPA model was better when
heterogeneity was high. For relatively homogeneous pore distribu-
tions (CV = 0.1), the relative error was approximately �50% for the
network with slit-shaped pores and �33% for the network with
cylindrical pores. When heterogeneity was larger (CV > 0.75), pre-
dictions with the new CPA model were within ±20% of the data.
The one exception was the network with lognormally distributed
slit-shaped pores, where that level of accuracy was obtained only
for CV > 1.

The results for the new CPA predictions are in contrast to those
obtained with the classical CPA model (Fig. 2). The classical model
overestimated the dimensionless conductivity ratio by an amount
that became larger as pore heterogeneity was increased, with the
error ranging from 12% in the most homogenous network to more
than 100% in networks with higher heterogeneity. A similar trend
in relative errors for the classical model can be observed by analyz-
ing the CPA and numerical results presented in Fig. 5 of Friedman
and Seaton [18].

3.2. 2D networks

Results for the square and triangular networks are presented in
Fig. 3. Assuming y = 0, the classical CPA result and the CPA model
derived herein are equivalent in 2D systems. Fig. 3 shows that
the CPA prediction follows very well the general trend of the data
obtained on 2D systems.

Fig. 4 gives the relative errors for the predictions shown in
Fig. 3. The prediction error is within ±20% over the whole range
of pore heterogeneity considered, expect in the case of slit-shaped
pores on the triangular lattice with a power-law distribution,
where that level of accuracy was obtained only at higher heteroge-
neity (CV > 1). Noteworthy in Fig. 4 is the fact that the error was
zero for all cases with lognormally distributed pore-sizes on the
square lattice. Overall, the errors were smaller for the square lat-
tice than for the triangular lattice, a finding consistent with Fried-
man and Seaton’s [18] observation that in 3D networks errors are
smaller in networks with lower coordination numbers.

4. Discussion

A 2D network configured as a regular square bond lattice is a
special case. Due to the self-dual properties of the square lattice,
it can be shown that whenever the distribution of ln g is symmet-
ric, the conductivity of the network is exactly equal to the geomet-
ric mean conductance [11]. And since pc = 0.5 in the square lattice,
it is also the case that gc is equal to the geometric mean conduc-



Fig. 4. Relative errors for the predictions shown in Fig. 3, plotted as a function of the
coefficient-of-variation (CV) of the pore-size distribution.
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tance when the distribution of ln g is symmetric. Thus for both log-
uniform and lognormal distributions, the conductivity of the
square lattice is equal to gc regardless of width of the distribution,
a result confirmed by our numerical computations (zero error for
square lattices and lognormal distributions in Fig. 4). With y = 0,
the CPA prediction agrees perfectly with this exact result.

The fact that the square lattice is a special case is not always
recognized. Some previous numerical studies (e.g. [8,9]) used
square lattices and log-symmetric distributions to assess the rele-
vance of dc. As expected, those investigators found that dc was
strongly related to the conductivity, although they apparently
were not aware of the exact result for the conductivity. It is not
possible to draw general conclusions about the applicability of
CPA and other transport theories from such simulations. The
importance of dc in this case is due to the particular properties of
the lattice and the pore distribution, and exists regardless of
whether flow is localized.

Investigating CPA mechanisms and predictions using 2D net-
works other than the square network is also problematic. In the
CPA conception of transport in heterogeneous materials, the active
transport pathways are typically envisioned as a macrostructure
that exists on top of the underlying network. One model for the
macrostructure is the ‘‘links-nodes-blobs’’ picture (e.g. [41]), such
that transport occurs on connected chains of resistors that are
called links. The macrostructure is comprised of an irregular net-
work of such links. If the links are separated on average by a dis-
tance k, and if the links have on average a conductance G, then
the conductivity of the macrostructure is expected to be

R ¼ k2�dG ð21Þ

where d (=2,3) is the spatial dimension. For d = 2, the conductivity
in Eq. (21) does not depend directly with the path separation dis-
tance k (indirectly, G will be affected by k). Thus, 2D simulations
alone are not appropriate for investigating CPA predictions about
transport path separation or localization, and conclusions from such
investigations should be weighted accordingly (e.g. [8–10,14,15]).

To understand the differences between the 3D CPA models (Eqs.
(18) and (19) vs. Eq. (20)), recall that as heterogeneity in a network
increases, the distance between transport pathways increases. For
a given pore arrangement, the hydraulic conductance distribution
will be broader (more heterogeneous) than the electrical conduc-
tance distribution owing the larger value of the exponent m in
hydraulic conduction (Eqs. (5)–(9)). Consequently the separation
of hydraulic pathways will be greater than that of electrical path-
ways. Similarly, for a given pore-size distribution, the cylindrical
network produces a broader conductance distribution than the
slit-shaped network due to the higher values of the exponents m.
As was noted by Friedman and Seaton [18], Eq. (20) does not ac-
count for such differences in electrical and hydraulic conduction
and in pore geometry. The leading terms in Eqs. (18) and (19) ac-
count for the differing path separations. Thus Eq. (20) becomes less
accurate when heterogeneity is increased, whereas Eqs. (18) and
(19) become more accurate.

Although Figs. 1 and 2 demonstrate that Eqs. (18) and (19) are
an improvement over Eq. (20), that improvement comes at the ex-
pense of requiring knowledge of the local pore geometry (cylindri-
cal or slit-shaped). An alternative comparison is obtained if instead
of the two Eqs. (18) and (19), we use a single predictive equation
that has the form of Eqs. (18) and (19), but with a leading numer-
ical factor that is intermediate to those in Eqs. (18) and (19),

k=k


ECb=ECw
¼ 2:5�yðrc=rgÞ2 ð22Þ

The accuracy of Eq. (22) was evaluated in terms of the relative pre-
diction error, as done in Figs. 1 and 2. It was found that predictions
with Eq. (22) were within ±25% of the numerical data when
CV > 0.75, not dramatically different from the ±20% level of accuracy
obtained with Eqs. (18) and (19), and still significantly better than
the classical Eq. (20).

Thus far, all comparisons of pore network data and predictions
have been based on data scaled by the pore geometry-dependent
factor k⁄ and the geometric mean pore-size. While useful for model
testing, one is more generally interested in predictive equations in
the form of Eq. (4),

k
ECb=ECw

¼ cd2
c ð23Þ

where c is a numerical constant. Putting Eqs. (18) and (19) in the
form of Eq. (23), we obtain c � cCY = 2�y/32 � 1/53 for cylindrical
pores and c � cSL = 3�y/12 � 1/27 for slit-shaped pores. It is interest-
ing to consider how Eq. (23) with these constant values compares
with an arbitrary model of the form cdp

c , where c and p are opti-
mized to minimize the squared deviations from the numerical data.
Fig. 5 presents Eq. (23) along with the results of the fitting for cylin-
drical and slit-shaped pores. The results in Fig. 5 indicate that for
networks having pore-size distributions with CV > 0.75, the con-
stants obtained in the CPA model are nearly optimal in terms of
minimizing the squared prediction error across the range of consid-
ered network configurations.

With respect to applications to real porous media, it was noted
above that Katz and Thompson [26,27] (hereafter KT) used CPA to
derive the value c � cKT � 1/226. KT estimated that this value was
accurate to within a factor of 2 based on an evaluation of perme-
ability, electrical conductivity, and mercury intrusion data for var-
ious rock samples having permeabilities that spanned
approximately 6 decades. However, some details of KT’s theoretical
derivation have been criticized [5,32], leaving open the question of
a satisfactory theoretical calculation that produces a numerical
constant which agrees with the KT data. KT’s calculation was for
a network of cylindrical pores in which the diameters were equal
to their lengths. Banavar and Johnson [5] and Le Doussal [32] did
CPA calculations for the same network and found c to be approxi-
mately 1/130 and 1/85, respectively, the former being within the
confidence bounds of KT’s data. Still, these calculations may also
be questioned, as it has been noted that a network of cylindrical
pores with lengths equal to the diameters may not be physically
realizable or otherwise realistic (e.g. [18,21]). A common



Fig. 5. Comparison of the CPA model with the equation cdp
c , where c and p have

been optimized to minimize the squared deviations from the data. Numerical data
are form 3D cubic networks with cylindrical (Cyl) or slit-shaped (Slit) pores, and
lognormally (LN) or power-law (PL) distributed pore-sizes.
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alternative is a network in which the pores have a fixed, uniform
length, such as the networks considered in the current study. For
such a network of cylindrical pores, Banavar and Johnson [5] and
Le Doussal [32] obtained 1/87 and 1/59, respectively, which are
comparable with the value obtained here, cCY = 1/53 (the difference
between cCY and the value from [32] is due only to differing values
of y being used in the calculations). These values are 2.6–4.3 times
larger than cKT and outside the confidence bounds given for the KT
data. Le Doussal [32] has shown that adding additional disorder or
randomness to networks of cylindrical pores, such as in the pore
length, may lead to coefficients in better agreement with the
experimental data.

Not previously considered is a comparison of the KT data with
calculations for a regular network of slit-shaped pores. This com-
parison requires a modification of the KT data because KT’s mea-
surement of dc was based on the Washburn equation for
cylindrical pores. Reconsidering the KT data in terms of slit-shaped
pores leads to a constant that is 4 times larger, c � 1/57. The value
estimated in the present work, cSL = 1/27, is about a factor of 2 lar-
ger than this value, and at the edge of the confidence bounds for
the KT data. Thus, coefficients calculated for a regular network of
slit-shaped pores are in better agreement with experimental data
than those calculated for a regular network of cylindrical pores.
5. Summary and conclusions

Several past applications of critical path analysis (CPA) to pore
network models have produced results that appeared to be in con-
tradiction to long-standing notions about CPA, or otherwise raised
questions about the applicability of CPA to porous media. To clarify
the performance of CPA on pore network models, numerical com-
putations of the permeability and electrical conductivity of 2D and
3D pore networks were compared with CPA predictions. A new CPA
model for the relationship between the permeability and electrical
conductivity was found to be in good agreement with the numer-
ical data, and to be a significant improvement over a classical CPA
model. In sufficiently disordered 3D networks, the new CPA model
was within ±20% of the true value, and was nearly optimal in terms
of minimizing the squared prediction errors across differing net-
work configurations. The agreement of CPA predictions with 2D
network computations was similarly good, although it was ob-
served that 2D networks are in general not well-suited for evaluat-
ing CPA. Numerical transport coefficients derived for 3D networks
of slit-shaped pores were found to be in better agreement with
experimental data from rock samples than was coefficients derived
for networks of cylindrical pores.

Appendix

The formulas in this appendix were used to calculate the coef-
ficient-of-variation (CV) for the pore-size distributions, the geo-
metric mean pore-size (dg), and the critical pore-size (dc). The
latter is defined by

pc ¼
Z 1

dc

fdðdÞdd ðA1Þ

where fd is the pore-size probability density function and pc is the
percolation threshold for the network. The percolation thresholds
for the lattices used in this work are pc = 0.5 for the square lattice,
pc = 0.347 for the triangular lattice, and pc = 0.2488 for the cubic lat-
tice [41].

For the power law distribution (Eq. (10)), the following formu-
las apply (a – 0,1,2):

CV ¼ S=M ðA2Þ

M ¼
a dmind

a
max � da

mindmax
� �
ða� 1Þ da

max � da
min

� � ðA3Þ

S2¼d2
mind2a

maxþd2a
mind2

max�ða�1Þ2ðda
mindaþ2

maxþdaþ2
min da

maxÞþ2aða�2Þdaþ1
min daþ1

max

a�1ða�1Þ2ða�2Þðda
max�da

minÞ
2

ðA4Þ

dc ¼ pcd
�a
min þ ð1� pcÞd�a

max

� ��1=a ðA5Þ
dg ¼ expð1=aÞdc

mind
1�c
max ðA6Þ

where c � da
max=ðd

a
max � da

minÞ.
For the lognormal distribution (Eq. (12)), we have

CV ¼ ½expðr2Þ � 1�1=2 ðA7Þ

dc ¼ exp 21=2rerfc�1ð2pcÞ þ l
h i

ðA8Þ

dg ¼ exp½l� ðA9Þ

where erfc�1(�) is the inverse complementary error function.
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