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Th e ability to inventory and map soil salinity at regional scales 
remains a signifi cant challenge to scientists concerned with the 
salinization of agricultural soils throughout the world. Previous 
attempts to use satellite or aerial imagery to assess soil salinity 
have found limited success in part because of the inability of 
methods to isolate the eff ects of soil salinity on vegetative 
growth from other factors. Th is study evaluated the use of 
Moderate Resolution Imaging Spectroradiometer (MODIS) 
imagery in conjunction with directed soil sampling to assess 
and map soil salinity at a regional scale (i.e., 10–105 km2) in 
a parsimonious manner. Correlations with three soil salinity 
ground truth datasets diff ering in scale were made in Kittson 
County within the Red River Valley (RRV) of North Dakota 
and Minnesota, an area where soil salinity assessment is a top 
priority for the Natural Resource Conservation Service (NRCS). 
Multi-year MODIS imagery was used to mitigate the infl uence 
of temporally dynamic factors such as weather, pests, disease, 
and management infl uences. Th e average of the MODIS 
enhanced vegetation index (EVI) for a 7-yr period exhibited 
a strong relationship with soil salinity in all three datasets, 
and outperformed the normalized diff erence vegetation index 
(NDVI). One-third to one-half of the spatial variability in soil 
salinity could be captured by measuring average MODIS EVI 
and whether the land qualifi ed for the Conservation Reserve 
Program (a USDA program that sets aside marginally productive 
land based on conservation principles). Th e approach has the 
practical simplicity to allow broad application in areas where 
limited resources are available for salinity assessment.
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The mapping of soil salinity hazards across broad regional 

scales (10–105 km2) remains a signifi cant challenge to soil 

monitoring despite decades of research. Th e limited success 

achieved by past eff orts can be traced to a combination of two 

factors. First is the high spatial and (in some cases) temporal 

variability of soil salinity, which limits the ability to interpolate 

between ground measurements taken at individual points in space 

and time. Second is the relative lack of skill of noninvasive, rapid 

measurement approaches that could provide more continuous 

spatial and temporal monitoring, such as those off ered by satellite-

based remote sensing instruments. Th ere has been considerable 

success in using noninvasive, ground-based measures of apparent 

soil electrical conductivity (EC
a
) to map salinity across individual 

fi elds, such as through electrical resistivity (ER), electromagnetic 

induction (EM), or time domain refl ectometry (TDR) surveys 

(Corwin and Lesch, 2003), yet these methods are currently too 

time consuming to be applied cost-eff ectively at regional scales.

Th e challenges facing remote sensing of soil salinity are many, 

as discussed in several relevant review papers (e.g., Mougenot et al., 

1993; Ben-Dor, 2002; Metternicht and Zinck, 2003). Most notably, 

although many surface salts can be readily detected in satellite data 

if the soils are suffi  ciently dry, there are few times of the year when 

these salts are present and not obstructed by overlying vegetation, 

particularly in cultivated soils that maintain active crops for much 

of the year and are commonly plowed in the off -season. Moreover, 

subsurface salinity is not always associated with visible surface salts. 

Monitoring of vegetation condition provides a potential alternative, 

as poor vegetation growth can be a proxy for high levels of subsur-

face salinity. Th is approach has indeed proved successful in some 
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cases (Wiegand et al., 1994, 1996; Madrigal et al., 2003), par-

ticularly when salinity values are so excessive that they cause a 

complete absence of vegetation. However, monitoring of salinity 

at more moderate values has proven much more diffi  cult, even 

within small areas in which management is fairly uniform. Across 

the multitude of fi elds that comprise large regions, variations in 

management, pests, disease, climate, and other soil properties can 

have a far greater infl uence on vegetation than salinity, thus limit-

ing the utility of vegetation mapping for salinity assessment.

Yet some promise is off ered by two recent developments. First 

is the observation that using multiple dates of remote sensing data 

can reduce some of the error introduced by dynamic factors other 

than soil salinity, because these tend to fl uctuate more through time 

than salinity. At any single point in time, one can consider crop 

biomass to be infl uenced by both salinity and nonsalinity factors:

Y
t
 = α S

t
 + O

t
 [1]

where Y
t
 represents crop biomass at time t, S

t
 represents soil 

salinity at time t, α is the eff ect of salinity on crop biomass, and 

O
t
 represents the net eff ect of all other factors at time t, such 

as management, climate, and soil properties other than salin-

ity. As mentioned, these other factors will vary spatially and in 

most settings their eff ect will overwhelm the fi rst term related 

to salinity. As a result, crop biomass at any single time will ex-

hibit a relatively low correlation with salinity. As the other factors 

change each year, however, the “noise” from nonsaline factors 

(O
t
) will diminish as one averages biomass across longer time 

periods, and the correlation between Y
t
 and S

t
 should strengthen. 

For example, Lobell et al. (2007) found very weak relationships 

between salinity and yields in individual years in the Colorado 

River Delta Region of Mexico, but much stronger correspon-

dence between salinity and maximum yield over a 6-yr period. 

In Australia, Furby et al. (1995) reported large errors for a clas-

sifi cation of saline soils when using a single year of Landsat imag-

ery, because many areas of poor crop condition were incorrectly 

labeled as saline, but these errors were reduced from 20% to 2% 

by the addition of a second year of Landsat data.

A second encouraging trend is the increasing availability of 

long-term remote sensing records. Landsat archives date back to 

the late 1970s and as of 2008 are being distributed at no cost. For 

regional scales, the MODIS sensor has acquired coarser resolu-

tion (250 m compared to 30 m for Landsat) but more frequent 

(daily compared to every 16 d for Landsat) measurements of 

vegetation condition since late 1999, and is also freely available. 

MODIS data are also radiometrically and geometrically corrected 

before dissemination, which facilitates their use in both research 

and operational monitoring. However, to our knowledge MO-

DIS has not yet been used for regional salinity assessment.

Th e promise off ered by trends in remote sensing analysis and 

data availability justifi es the continued evaluation of multi-year re-

mote sensing for salinity assessments. One substantial challenge, 

however, in evaluating any remote sensing approach is the poten-

tially large mismatch between scales of ground and satellite mea-

surements. For example, soil cores are typically taken at the scale of 

a few square centimeters, while the resolution of a MODIS pixel is 

62,500 m2 (250 by 250 m). Direct comparison of ground measure-

ments with values for a pixel surrounding the sample site can thus 

easily be misleading. Even if the remote sensing is perfectly mea-

suring pixel average salinity it may poorly reproduce local values. 

Th us, one requires some information on the spatial heterogeneity 

of salinity within the scale of individual pixels for a proper evalu-

ation of remote sensing capabilities. Furthermore, the number of 

ground measurements can be too labor and cost intensive to make 

a comparison between imagery and soil salinity practical even at a 

research level, particularly if a grid sampling design is used.

Contemporary soil salinity problems in the United States have 

been primarily associated with the irrigated lands of the arid south-

western United States, such as California’s San Joaquin Valley and 

the lower Colorado River Basin, but the areas of dryland farming 

in the northern Great Plains such as the RRV are also a concern. 

Salinity in the northern Great Plains is primarily associated with 

saline seeps where shallow water tables and undulating topography 

create areas of recharge and associated down-slope areas of saline 

discharge (Brown et al., 1983). Concern over spatial and temporal 

change in soil salinity levels and extent in the RRV has increased 

over the past 15 yr due to a change in weather patterns, which 

has increased precipitation concomitantly raising water tables and 

salinity in the soil profi le. Th e inventorying of soil salinity in the 

RRV is the responsibility of the National Cooperative Soil Survey, 

whose lead agency is the USDA-Natural Resource Conservation 

Service (NRCS). Soil salinity mapping of the RRV is a high priority 

concern of NRCS because information on salinity levels are used to 

determine eligibility for certain conservation programs, help imple-

ment appropriate management practices, and assess the value of 

agricultural land. Th e ability of NRCS to map soil salinity at the 

fi eld scale is thus essential to meet their responsibility. Although 

many local NRCS staff  suspect salinity is increasing in the RRV, 

understanding trends and quantifying the problem is diffi  cult.

Th e goal of the current study is to test the utility of MODIS 

for mapping soil salinity in the RRV. A series of ground surveys 

were conducted in central and western Kittson County, Min-

nesota, to assess salinity at scales commensurate with MODIS 

data. Single and multi-year measures of vegetation condition 

from MODIS were then tested for their ability to map soil sa-

linity. Although greater accuracy could potentially be obtained 

with higher resolution data, for instance using Landsat data as 

in Australia’s “Land Monitor” program (Furby et al., 2010), we 

restrict the current analysis to MODIS measurements, in part 

because it represents an approach that could be easily scaled to 

larger regions without signifi cant labor or cost requirements.

Materials and Methods
Site Description

Th e RRV, designated as Major Land Resource Area (MLRA) 

56, stretches over about 17,000 km2 from northeastern South 

Dakota through northwestern Minnesota and eastern North 

Dakota into southern Manitoba, ending at the southern end of 

Lake Winnipeg (Fig. 1). Th e area in the United States is princi-

pally located in Minnesota (57%) and North Dakota (43%), but 

a small portion (0.3%) extends into South Dakota. Th is MLRA 

mostly consists of a nearly level glacial lake plain that is bordered 
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by outwash plains, beach areas, and deltas. Th e elevation of the 

Red River falls about 70 m from its headwaters at the southern 

end (943 msl) to its mouth in the northern end, for an average 

slope of about one-half foot per mile. Th e Red River drains the 

valley, but has a poorly defi ned fl oodplain due to the fl atness of 

the terrain. Streams entering the RRV are slow fl owing and me-

andering, except where they have been channelized.

Th e original vegetation of the RRV was primarily tall blue-

stem prairie (Andropogon gerardii Vitm.), with cottonwood 

(Populus deltoides), willow (Salix spp.) and elm (Ulmus spp.) 

trees along streams and a savannah prairie forest mix on the 

eastern fringe. Nearly all this area is now in dryland farms, with 

spring wheat (Triticum aestivum L.), soybean [Glycine max 

(L.) Merr.], potato (Solanum turberosum L.), sugar beet (Beta 
vulgaris L.), and corn among the important crops. In Kittson 

County, Minnesota, the focus of the current study, harvested 

area for 2000 to 2006 averaged roughly 58,000 ha for spring 

wheat, 23,000 ha for soybean, 12,000 ha for sugar beet, and 

7000 ha for alfalfa (Medicago sativa L.) (National Agriculture 

Statistics Service, 2008). Th e soil resources for Kittson County 

are described by Barron (1979)

Th e soils in the RRV represent some of the more saline soils 

in the United States, with the negative economic impact of sa-

linity conservatively estimated at $50 million annually. An ex-

tensive evaluation of the salinity in the northern RRV (primar-

ily Grand Forks County, North Dakota) was conducted by the 

USDA-ARS in 1960s (Benz et al., 1976). However, due to the 

cost and time associated with traditional ground surveys, soil 

salinity has not been consistently mapped within this area and 

an inventory of salinity for this MLRA is considered incom-

plete and out of date. Since 1993, in response to wetter weather 

patterns, areas of salt-aff ected soils are believed to have grown 

considerably in the region. Seasonal high water table, capillary 

rise, and geomorphic position are responsible for salinity in-

creases in the rooting zone in many areas (Skarie et al., 1986).

MODIS Measurements
We used two common measures of vegetation condition 

routinely computed with MODIS data, the NDVI and EVI 

(Huete et al., 1999):

NDVI = (ρ
NIR

 – ρ
RED

)/(ρ
NIR

 + ρ
RED

) [2]

EVI = G (ρ
NIR

 – ρ
RED

)/ (ρ
NIR

 + C
1
ρ

RED 
– C

2
ρ

BLUE 
+ L) [3]

where ρ
NIR

, ρ
RED

, and ρ
BLUE

 are MODIS measured refl ectance in 

near-infrared, red, and blue wavelengths, respectively, and G = 2.5, 

C
1
 = 6, C

2
 = 7.5, and L = 1. Th e NDVI is a well-established and 

widely used measure of vegetation but is prone to contamination 

by variations in soil or aerosol refl ectance and saturation at high 

levels of plant biomass. Th e EVI was recently designed to over-

come some of these shortcomings, and thus provides a potentially 

more robust measure of vegetation activity (Huete et al., 2002).

Both NDVI and EVI were extracted from the MODIS 

product MOD13Q1 (Version 4), which provides 16-d com-

posite values for both at 250 m resolution. Th e compositing 

procedure depends on the number of cloud-free days in the 

16-d period, but generally seeks the maximum value for a na-

dir view angle over the period (MODIS, 2003). Th e algorithm 

also fl ags any values considered contaminated with clouds, and 

these were omitted for all subsequent analysis.

To measure vegetation condition during the main grow-

ing season, we averaged the vegetation indices for the six 16-d 

composites beginning on 10 June for 2000 to 2006. Th at is, for 

each of seven summers we computed the average NDVI and 

EVI for all values spanning the period 10 June–13 September. 

In rare pixels with one or two missing values during a summer, 

the average was computed for the four or fi ve remaining values.

Field Measurements
To evaluate the value of MODIS for EC mapping, three dif-

ferent fi eld datasets were used, each representing a diff erent sam-

pling design and thus a diff erent tradeoff  between the accuracy of 

individual samples and the total sample size. Th e fi rst dataset was 

Fig. 1.  (a) The Red River Valley study region. (b) Average MODIS EVI in summer (10 June–13 September) for 2000 to 2006 in Kittson County (outlined 
by white line). White dots show location of 313 sites that comprise the EC

pred,1:1
 dataset. MODIS EVI refers to Moderate Resolution Imaging 

Spectroradiometer enhanced vegetation index.
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acquired during a fi eld campaign in May 2006 aimed at map-

ping salinity distributions in fi ne and very fi ne textured soils (i.e., 

across approximately 85% of the county area) specifi cally using 

EVI readings. In this fi rst study, the 7-yr averaged EVI data for 

the Kittson County area was used as a stratifi cation variable dur-

ing the fi eld selection process. More specifi cally, all of the NRCS 

classifi ed fi ne textured fi elds across the county were stratifi ed 

into 20 ordered EVI classes and then one fi eld from each class 

was randomly selected for EM surveying and soil sampling. Th e 

selected fi elds were intensively surveyed using a mobilized Ge-

onics EM38 sensor (mounted on a nonmetallic sled and pulled 

through each fi eld using an all terrain vehicle). Th e EM38 signal 

information was then analyzed using the ESAP software package 

(Lesch et al., 2000; Lesch, 2005) and six locations were selected 

in each fi eld for soil sampling using a spatial response surface 

site selection algorithm (Lesch, 2005). In 19 of the 20 fi elds, six 

soil cores were then extracted from these sampling locations and 

electrical conductivity of the saturation extract (EC
e
) was mea-

sured in the laboratory for 0 to 1.5 m (0–5 ft) depth at 0.3-m 

(1-ft) intervals. (In one fi eld, only four locations were sampled.) 

Th us, these readings represent the most accurate measures of EC
a
 

but cover a total of only 118 individual points from 20 fi elds.

Th e second and third datasets were derived from a multi-

year NRCS soil salinity survey (spanning the spring seasons of 

2004–2006) that measured EM for 410 transects throughout 

fi ne textured soils (% clay > 50%) of Kittson County. Most 

transects typically consisted of fi ve survey positions, spaced ap-

proximately 15 m apart. Soil samples were collected at either 

one or two survey positions in each transect from three to four 

sampling depths; for example from 0 to 15, 15 to 30, 30 to 60, 

and 60 to 90 cm depths. Four depths were acquired in 2004, but 

beginning in 2005 the 0 to 15 and 15 to 30 cm intervals were 

combined into a single 0 to 30 cm depth sample (and samples 

were generally collected at only one survey position in 2005 and 

2006). A total of 313 soil samples and 1474 individual EM read-

ings were collected in this analysis across fi ne textured fi elds.

Due to both time and fi nancial constraints, the soil samples 

were not analyzed directly for the traditional measure of salinity 

(EC
e
) or the closely related EC of a saturated soil paste (EC

p
). 

Instead, the temperature normalized EC of 1:1 soil/water extract 

(EC
(1:1)

) were measured. Laboratory tests of 47 soil cores taken 

from 15 fi elds surveyed during this study revealed that nearly all 

of the analyzed soil samples exhibited saturation percentages (SP) 

within the range of 85 to 115%, and most fell within the range of 

90 to 110%. EC
(1:1)

 were therefore treated as equivalent to EC
p
, 

and were then converted to EC
e
 using the equations of Rhoades 

et al. (1999). Predictions of EC
e
 were then compared to measured 

values of EC
e
 for the subset of 47 soils using a simple linear re-

gression analysis. Th e fi tted model produced intercept and slope 

estimates that were not statistically diff erent from 0 and 1, respec-

tively (F = 1.19, p = 0.341) and the predictions agreed very well 

with the measured values (R2 = 0.989, Root MSE = 0.13 dS/m). 
Based on these results, the full set of depth specifi c EC

(1:1)
 mea-

surements were subsequently converted into EC
e
 readings using 

the Rhoades equation and then 0 to 0.9 m bulk average EC
e
 val-

ues were calculated at each of the 313 sampling locations. Th ese 

313 calculated EC
e
 values represent our second salinity data set.

Finally, predicted EC
e
 values were also estimated at all of 

the 1474 EM transect locations using a regression model fi t to 

the 118 sites from the fi rst data set. Th is regression model con-

verted the temperature corrected EM38 transect survey read-

ings into predicted salinity values via the following equation:

ln(EC
e
)

0–1.5m
 = –8.471 + 2.968[ln(EM

V
)] – 1.225[ln(EM

H
)] [4]

Th e vertical (EMV) and horizontal (EMH) signal readings used 

in Eq. [4] were fi rst temperature corrected to 25°C using the cu-

bic polynomial temperature correction equation given in Rhoades 

et al. (1999). Th e natural log salinity predictions (ln(EC
e
)

0–1.5m
) 

represent the 0 to 1.5 m bulk average values. As stated above, 

Eq. [4] was derived from a statistical analysis of the fi rst data set 

(R2 = 0.67); hence these soil salinity estimates (predictions) in our 

third data set are subject to a greater degree of uncertainty.

In short, the three datasets consisted of measured EC from 

saturated extracts, predicted EC from 1:1 solution extracts, and 

predicted EC from EM readings. We refer to these three datas-

ets throughout the remainder of this paper as EC
meas

, EC
pred,1:1

, 

and EC
pred,EM,

 with corresponding sample sizes of 118, 313, and 

1474, respectively. As discussed above, the EC
meas

 and EC
pred,EM

 

data represent 0 to 1.5 m bulk average values, while the EC
pred,1:1

 

represent data acquired from the 0 to 0.9 m sampling depth.

Recall that MODIS measurements refl ect the average char-

acteristics of a 250 by 250 m pixel, and thus comparison with 

fi eld measurements at individual points requires some assump-

tion about how the two scales relate. One common approach is 

to simply assume homogeneity within each pixel, and thereby 

directly compare the fi eld and satellite data. Here we compare 

that approach with one that uses spatial interpolation to esti-

mate recalculated fi eld data on a 250 by 250 m block support. 

Specifi cally, for EC
pred,1:1

 and EC
pred,EM,

 an ordinary kriging 

model was used with an isotopic exponential spatial variogram 

fi t to the data. Th e resulting variograms were then used to gen-

erate 16 point kriging estimates of log salinity values on a 4 

by 4 grid (spanning 250 by 250 m) at every MODIS location 

associated with a soil sample site. Th ese 16 point estimates were 

then averaged at each site to produce the MODIS co-located 

250 by 250 m block-kriging log salinity predictions.

For EC
meas

, an ordinary kriging approach could not be 

used due to the clustered nature of the sampling design and 

substantial between-fi eld variation present in the data. A spa-

tial analysis of variance (spatial ANOVA) model was instead 

used to adjust for these fi eld-specifi c log-salinity eff ects. A no-

nugget, isotopic exponential covariance model was found to 

adequately describe the empirical spatial covariance structure 

of the ANOVA model residuals (from the 118 sampling loca-

tions associated with the 20 fi elds), and this fi tted model was 

then used to generate log salinity predictions on a 4 by 4 grid 

at every MODIS location. Th ese 16 point estimates were again 

averaged at each site to produce the MODIS co-located 250 by 

250 m block-kriging predictions.

Th e fi nal parameter estimates for the both the kriging and 

spatial ANOVA models were then estimated using restricted 

maximum likelihood (REML). All of the modeling analy-
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ses discussed above were performed using SAS (MIXED and 

KRIGE2D procedures).

Correlation and Regression Analyses
Values of NDVI and EVI were extracted for each pixel contain-

ing a fi eld estimate of EC. Given the skewed distribution of raw 

EC values (see Results and Discussion), we follow the common 

approach of focusing correlation and regression analyses on the 

natural logarithm of EC, ln(EC), which exhibits a more Gauss-

ian distribution. Pearson correlation coeffi  cients were computed 

between ln(EC) and summer averages of each EVI in each year, as 

well as the average summer EVI over the 7-yr period.

In addition to the simple correlation analysis, we considered 

multiple regression models that contained an additional predictor 

variable ancillary to EVI. In particular, although we hypothesized 

that salinity would be an important factor infl uencing average 

vegetation condition over multiple years, and thus that the latter 

represents a useful proxy for the former, we recognized that aver-

age EVI’s were also likely to be aff ected by the type of vegetation 

cover. Most notably, although most of the study region is planted 

with spring wheat or other annual crops, a signifi cant fraction 

is enrolled in the Conservation Reserve Program (CRP). Lands 

enrolled in CRP are typically covered in a mix of perennial grasses 

and/or natural brush vegetation that may exhibit much diff er-

ent biomass and/or sensitivity to soil salinity than the commonly 

sown crops. Fortunately, data on the locations of CRP fi elds were 

available from the NRCS state GIS database. We therefore tested 

regression models that included both EVI and an indicator vari-

able (IN_CRP) that had a value of 1 if the site was enrolled in 

CRP and a value of 0 otherwise (i.e., a “dummy” variable).

Results and Discussion
Th e ground-based estimates of EC are summarized for the 

three datasets in Table 1. All datasets contained a substantial frac-

tion of points above 4 dS m–1, refl ecting the ubiquity of salinity 

problems in this region. Th e salinity distributions were all posi-

tively skewed, with a few high salinity values causing the mean 

value to be greater than the median. Th e EC estimates for a 250 

by 250 m block support exhibited similar means but smaller 

variance than the point support, as expected since spatial averag-

ing will tend to smooth extreme values. Th e correlations between 

point and block support exceeded 0.9 in all three datasets.

Comparison of the point ln(EC) estimates with co-located 

MODIS EVI and NDVI measurements revealed several in-

teresting features (Fig. 2). First, EVI nearly always provided a 

larger absolute correlation than NDVI. Th is fi nding supports 

the notion that EVI represents a more robust measure of veg-

etation condition than NDVI, the latter being more sensitive 

to variations in soil and atmospheric conditions (Huete et al., 

2002). Second, the correlations exhibit substantial variation 

depending on the year under consideration. Years such as 2003 

exhibited relatively strong correlations while almost no rela-

tionship was evident in 2005. Th us, any eff ort to map salinity 

using remote measurements in a single year faces a signifi cant 

risk of producing poor results. Th ird, and most importantly, 

the average of EVI over the 7 yr exhibited a relatively strong re-

Fig. 2.  Correlation between point estimates of ln(EC
e
) and MODIS measurements of EVI and NDVI for (a) EC

meas
, (b) EC

pred,1:1
, and (c) EC

pred,EM
 datasets. 

Horizontal line indicates the correlation of EC
e
 with EVI (dark) or NDVI (light) averaged over all years. EC

e
 = electrical conductivity of the 

saturation extract (dS m–1); EC
meas

 = dataset of size 118; EC
pred,1:1

 = dataset of size 313; EC
pred,EM

 = dataset of size 1474; MODIS = Moderate 
Resolution Imaging Spectroradiometer; EVI = enhanced vegetation index; and NDVI = normalized diff erence vegetation index.

Table 1. Summary statistics of salinity for three fi eld-based datasets used in this study.

Dataset Support Mean EC
e
†

Standard 
deviation Median Minimum Maximum

Correlation between Point 
and Block Support (ln data)

dS m–1

EC
meas

Point 4.4 4.3 2.3 0.5 19.9 0.92

Block 4.0 3.8 2.3 0.6 12.5

EC
pred,1:1

Point 3.6 3.5 2.3 0.1 17.4 0.95

Block 3.1 2.5 2.2 0.3 10.8

EC
pred,EM

Point 4.3 3.7 2.9 0.4 22.3 0.90

Block 3.9 2.7 2.8 0.7 14.7

† EC
e
 = electrical conductivity of the saturation extract (dS m–1); EC

meas
 = dataset of size 118; EC

pred,1:1
 = dataset of size 313; EC

pred,EM
 = dataset of size 1474.
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lationship with ln(EC) in all three datasets. Th e absolute value 

of the correlation was close to or, in the case of EC
pred,EM

, great-

er than that observed in the best single year. Th e hypothesis 

that averaging across years will tend to emphasize landscape 

features that are relatively stable in time (such as soil salinity), 

while averaging across more variable conditions that infl uence 

vegetation growth such as management and climate, thus ap-

pears supported by the data. If this hypothesis were not true, 

then one would expect to see the correlation between ln(EC) 

and average EVI to be roughly the average of the correlations 

found in each individual year, which was clearly not the case.

Th us, it appears that EVI is a more reliable indicator of salin-

ity than NDVI, and that averaging over multiple years provides 

a more robust measure than most individual years. Even average 

EVI, however, was able to explain only roughly 25% of the vari-

ance in point estimates of ln(EC
e
). Comparison of results using 

point and block estimates of ln(EC
e
) (Fig. 3) suggest that part 

of the unexplained variance in point measurements arises from 

the scale diff erences between MODIS pixels and individual soil 

samples. Th at is, the correlations for all three datasets improved 

when using estimates of pixel average ln(EC
e
) rather than the 

original point support fi eld data. We therefore focus the discus-

sion of regression results using ln(EC
e
) at block support.

Predictions of ln(EC
e
) using only average EVI resulted in R2 

of 0.21 to 0.37, depending on the dataset (Table 2). Adding a 

second predictor variable that identifi ed whether or not the fi eld 

was in CRP, signifi cantly improved the model performance in 

all cases, raising the R2 to 0.34 to 0.53. An interaction term for 

EVI × CRP was also evaluated but did not signifi cantly improve 

any of the models. Th us, roughly one-third to one-half of the 

Table 2.  Summary of regression models using diff erent predictor variables for three diff erent datasets. In all cases, the response variable was 
ln(EC

e
) at block (250 by 250 m) support. Enhanced vegetation index (EVI) corresponds to average summer EVI for 2000 to 2006, and IN_CRP 

indicates whether or not the site was enrolled in the Conservation Reserve Program.†

Dataset

EC
meas

 (n = 118) EC
pred,1:1

 (n = 313) EC
pred,EM

 (n = 1474)

Predictor variables Model R2 RMSE Model R2 RMSE Model R2 RMSE

Constant 0.00 0.90 0.00 0.72 0.00 0.65

Constant + EVI 0.26 0.77 0.21 0.64 0.37 0.52

Constant + IN_CRP 0.40 0.70 0.21 0.64 0.16 0.60

Constant + EVI + IN_CRP 0.53 0.61 0.34 0.58 0.41 0.50

†  EC
e
 = electrical conductivity of the saturation extract (dS m–1); EC

meas
 = dataset of size 118; EC

pred,1:1
 = dataset of size 313; EC

pred,EM
 = dataset of size 1474. 

RMSE = root mean square error.

Fig. 3.  Scatter plots of 2000 to 2006 average summer EVI from MODIS vs. ground estimates of EC
e
 at point (top) and block (bottom) support 

for EC
meas

, (a,d), EC
pred,1:1

 (b,e), and EC
pred,EM

 (c,f) datasets. Numbers in lower left of panel give linear correlation coeffi  cient. EC
e
 = electrical 

conductivity of the saturation extract (dS m–1); EC
meas

 = dataset of size 118; EC
pred,1:1

 = dataset of size 313; EC
pred,EM

 = dataset of size 1474; 
MODIS = Moderate Resolution Imaging Spectroradiometer; and EVI = enhanced vegetation index.
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spatial variation in ln(EC
e
) can be captured by measuring aver-

age MODIS EVI and whether the fi eld is in CRP.

Conclusions
Th e results indicate that average summer vegetation condi-

tion, as measured by MODIS vegetation indices, provides a 

useful indicator of soil salinity levels in part of the RRV. When 

combined with information on whether lands are in CRP, 

multi-year averages of EVI were able to explain one-third to 

one-half of fi eld-measured variations in salinity across Kittson 

County. We fi nd that multi-year averages of EVI performed 

signifi cantly better than most individual years, supporting the 

hypothesis that factors aff ecting vegetation other than salinity 

tend to exhibit more variable spatial patterns from year to year. 

Th e evidence also suggests that in comparison with NDVI, 

EVI is a more reliable measure of vegetation condition, and 

thus salinity, in this region.

Th is is the fi rst study to our knowledge to use MODIS 

for assessment of soil salinity. Future work is needed to test 

whether this approach works well in parts of the RRV outside 

of Kittson County, as well as in other regions. Additional vari-

ables will also likely be considered in future work to improve 

the yield predictions, with information on surface hydrology 

and depth to groundwater two potentially useful variables. 

Cropping history patterns, derived either from remote sens-

ing or ground surveys, fi ne scale elevation data, and soil type 

classifi cations may also prove useful. Finally, incorporation of 

fi ner resolution measures of vegetation, such as the 30 × 30 m 

resolution Landsat data employed by Furby et al. (2010), could 

improve results, although the improvement would have to be 

weighed against the substantially greater processing times and 

operational costs associated with fi ner resolution data.
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