Chapter 6
Delineating Site-Specific Management Units
with Proximal Sensors

D.L. Corwin and S.M. Lesch

Abstract Conventional farming manages fields uniformly with no consideration
for spatial variation. This causes reduced productivity, misuse of finite resources
(e.g. water and fertilizers) and detrimental impacts on the environment. Site-specific
management units (SSMUs) have been proposed as a way of resolving the spatial
variation of various factors (i.e. soil, climate, management, pests, etc.) that affect
variation in crop yield. Mobile proximal sensors, such as those used to measure
apparent soil electrical conductivity (EC,), can be used to characterize the spatial
variation of soil properties that affect crop yield. This Chapter provides an overview
of the work by the authors that has led to the delineation of SSMUs based on edaphic
and anthropogenic properties, with particular emphasis given to the geostatistical
techniques needed to direct soil sampling to characterize the spatial variation. The
approach uses geospatial proximal sensor measurements to locate the positions of
soil samples to characterize the variation in soil properties that affect crop yield
within a field. A crop yield response model is developed and maps of SSMUs based
on soil and crop yield information are produced. The methodology for delineating
SSMUs can be used whenever the proximal sensor measurements correlate with
yield. Maps of SSMUSs provide the vital information for variable-rate technology
(e.g. site-specific fertilizer and irrigation water application).
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6.1 Introduction

6.1.1 The Need for Site-Specific Management

Tremendous strides have been made to expand the world’s supply of food. Even
though the world population has doubled over this time period, food production has
risen even faster with per capita food supplies increasing from less than 2000 calo-
ries per day in 1962 to more than 2500 calories in 1995 (World Resources Institute
1998). The rise in global food production has been credited to better seeds, expanded
irrigation, and greater fertilizer and pesticide use, commonly referred to as the Green
Revolution. However, the prospect of feeding a projected additional 3 billion people
over the next 30 years poses more challenges than have been encountered in the past
30 years. In the short term, global resource experts predict that there will be ade-
quate global food supplies, but the distribution of those supplies to malnourished
people will be the primary problem. Longer term, however, the obstacles become
more formidable, though not insurmountable. Although total yields continue to rise
on a global basis, there is a disturbing decline in the growth of yield with some
major crops such as wheat and maize reaching a ‘yield plateau’” (World Resources
Institute 1998).

Sustainable agriculture is viewed as the most viable means of meeting the food
demands of the projected world’s population, barring unexpected technological
breakthroughs. The concept of sustainable agriculture is predicated on a delicate
balance of maximizing crop productivity to keep pace with population growth and
maintaining economic stability while minimizing the use of finite natural resources
(e.g. water, fertilizers and pesticides) and the detrimental environmental impacts
of associated agrichemical pollutants. Arguably, the most promising approach for
attaining sustainable agriculture is precision agriculture or site-specific crop man-
agement.

Site-specific crop management, or more specifically site-specific management
(SSM) attempts to manage the soil, pests and crops based upon spatial variation
within a field (Larson and Robert 1991), whereas conventional farming treats a field
uniformly, ignoring the naturally inherent variability of soil and crop conditions
between and within fields. There is well-documented evidence that spatial varia-
tion within a field is highly significant and amounts to a factor of 3—4 or more for
crops (Birrel et al. 1995; Verhagen et al. 1995) and up to an order of magnitude or
more for soil (Corwin et al. 2003a). Specifically, SSM is the management of agri-
cultural crops at a spatial scale smaller than the whole field that takes account of
local variation to cost effectively balance crop productivity and quality, detrimen-
tal environmental impacts and the use of resources (e.g. water, fertilizer, pesticides,
etc.) by applying them when, where and in the amount needed. Spatial variation in
crops is the result of a complex interaction of biological (e.g. pests, earthworms,
microbes), edaphic (e.g. salinity, organic matter, nutrients, texture), anthropogenic
(e.g. leaching efficiency, soil compaction due to farm equipment), topographic (e.g.
slope, elevation) and climatic (e.g. relative humidity, temperature, rainfall) factors.
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6.1.2 Definition of Site-Specific Management Unit (SSMU)

Site-specific management units (SSMUs) have been proposed as a means of dealing
with the spatial variation of edaphic (i.e. soil related) properties that affect crop
productivity (or quality) to achieve the goals of SSM. A SSMU is simply a mapped
unit within a field that could be based on soil properties, landscape units, past yield,
etc. that is managed to achieve the goals of SSM. To manage within-field varia-
tion site-specifically, geo-referenced areas (or units) that are similar with respect
to a specified characteristic must be identified (van Uffelen et al. 1997). Ideally,
a site-specific management unit (SSMU) will account for the spatial variation of
all factors that affect variation in crop yield, including edaphic, meteorological,
biological, anthropogenic and topographic factors. To achieve this, the delineation
of SSMUs would be extremely complicated because all these must be considered.
One means of simplifying the complexity is to delineate SSMUSs based on a single
factor, such as edaphic properties, and determine the extent of variation in yield
related to this factor.

The extent and conditions under which these spatial patterns are stable should
also be established. Yield maps provide information on the integrated effects of the
physical, chemical, and biological processes under certain weather conditions (van
Uffelen et al. 1997), and the spatial patterns of crop productivity provide a basis
for implementing SSM by indicating where varying crop inputs are needed (Long
1998). However, the inputs required to optimize crop productivity and minimize im-
pacts on the environment can be determined only if the factors that gave rise to the
observed spatial crop patterns are known (Long 1998). Yield maps alone cannot pro-
vide information to distinguish between the various sources of variation and cannot
give clear guidelines for management without information on the effects of varia-
tion in weather, pests and diseases, and soil physical and chemical properties on the
variability of a crop for a particular year (van Uffelen et al. 1997). Each factor that
affects within-field variation in yield needs to be characterized spatially to be able to
manage a crop on a site-specific basis. The spatial characterization of these factors
can be achieved with spatial measurements from a spectrum of proximal sensors.

6.1.3 Proximal Sensors

Ground-based proximal sensors generally include sensors that take measurements
from within a distance of 2 m from the soil surface. They may take measurements
of the soil, such as electrical, electromagnetic or radiometric sensors, or of plants,
such as crop yield or spectral sensors. Adamchuk et al. (2004) reviewed on-the-go
proximal soil sensors for precision agriculture and Barnes et al. (2003) provided a
concise review of ground-based sensor techniques as well as remote imagery sensors
for mapping soil properties.

According to Adamchuk et al. (2004), proximal sensors fall into six main catego-
ries: electrical and electromagnetic, optical and radiometric, mechanical, acoustic,
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Table 6.1 Seclected recent references using proximal soil sensors to map soil properties for
applications in precision agriculture. Modification of tables from Adamchuk et al. (2004)

Category of

proximal sensor Review article Sensor Technical reference
Electrical and EMI  Corwin and Lesch  ER Corwin and Lesch (2003)
(2005a)
EMI Corwin and Lesch
(2005b,¢)
Capacitance Andrade et al. (2001)
Optical Ben-Dor et al. Single wavelength Shonk et al. (1991)
(2009

Multi- or Hyperspectral ~ Maleki et al. (2008),
Mouazen et al. (2007)

Radiometric Huisman et al. GPR Lunt et al. (2005)
(2003)
Microwave Whalley and Bull (1991)
Mechanical Hemmat and Draft Ehrhardt et al. (2001),
Adamchuk Mouazen and Roman
(2008) (2006)
Load cells and Chung et al. (2003),
penetrometers Verschoore et al. (2003)
Acouslic and Microphone Liu et al. (1993)
pneumatic
Air pressure transducer  Clement and Stombaugh
(2000)
Electrochemical ISFET Birrell and Hummel (2001),
Viscarra Rossel and
Walter (2004)
ISE Adamchuk et al. (2005),
Sethuramasamyraja et al.
(2008)

EMI, electromagnetic induction; ER, electrical resistivity; GPR, ground penetrating radar; ISFET,
ion-selective field effect transistor; ISE, ion-selective electrode.
“Review includes remote and proximal sensors.

pneumatic and electrochemical. Several studies have been conducted using proxi-
mal sensors with just a few of the more current ones listed in Table 6.1. The output
from each sensor is typically aftected by more than one agronomic soil property.
Table 6.2 outlines the soil properties influencing each category of proximal sensor.

Electrical and electromagnetic sensors include electrical resistivity (ER), elec-
tromagnetic induction (EMI), time domain reflectometry (TDR) and capacitance
sensors. The most commonly used for field-scale on-the-go measurements are ER
and EMI (Corwin and Lesch 2005a). Electrical resistivity and EMI measure the
electrical conductivity of the bulk soil, which is referred to as the apparent soil
electrical conductivity (EC,). Corwin and Lesch (2005a) have provided a review
of EC, measurements in agriculture. Apparent soil electrical conductivily is af-
fected by a variety of soil properties including salinity, texture, water content,
organic matter, cation exchange capacity (CEC) and bulk density (Corwin and Lesch




Table 6.2 Soil properties that influence proximal sensors. Modified from Adamchuk et al. (2004)

Agronomic soil property

Category of Texture (sand, Depth of topsoil Residual NO; or ~ Other
proximal sensor silt, clay content) OM 0 ECorNa Cporp, orhard pan pH totl N macro-nutrients CEC
Electrical and EMI X X X X X X X X
Optical and X X X X X X
radiometric
Mechanical X X
Acoustc and X X X
pneumatic
Electrochemical X X X X

EMI, electromagnetic induction; OM, soil organic matter; 8, water content; EC, electrical conductivity (salinity); Na, sodium content; Cp, compaction; py, bulk
density; CEC, cation exchange capacity.
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2005a). Capacitance sensors and TDR use the dielectric constant or relative per-
mittivity to infer the volumetric water content. There are commercially available
on-the-go ER (e.g. Veris 3100) and EMI units (e.g. Geonics EM38-MK2).

Optical sensors comprise single wavelength and hyperspectral reflectance
sensors, whereas radiometric sensors include microwave sensors and ground
penetrating radar (GPR). Like electrical and electromagnetic sensors, optical and
radiometric sensors are frequently influenced by a variety of soil properties (see
Table 6.2). However, there is a potential advantage of optical and radiometric mea-
surements in that the response in different parts of the spectral range may be affected
to varying degrees by different soil properties, enabling the separation of effects
(Adamchuk et al. 2004). As indicated by Baumgardner et al. (19853), soil reflectance
is influenced by a variety of properties including parent material, salts, iron oxides,
organic matter, particle size, moisture and mineral composition. Radiometric sen-
sors have been widely used to establish the spatial distribution of soil water content.

Mechanical sensors such as a strain gauge, load cell, or horizontal cone and
wedge penetrometer are used to measure soil mechanical resistance or soil com-
paction, which in turn provides information on soil moisture, texture and bulk
density. Similarly, acoustic and pneumatic sensors have been correlated to soil tex-
ture (Liu et al. 1993) and compaction (Clement and Stombaugh 2000).

Electrochemical sensors use either an ion-selective electrode (ISE) or ion-
selective field effect transistor (ISFET) to provide a direct means of measuring pH
or nutrient content (e.g. K™ or NO3™) to evaluate soil fertility. Electrochemical
sensors have the distinct disadvantage of requiring a significant amount of time for
equilibrium between the sensor and the soil or soil solution.

To a varying extent from one field to the next, crop patterns are affected by
edaphic properties. Bullock and Bullock (2000) indicated that efficient methods for
measuring within-field variation accurately in soil physical and chemical properties
are important for precision agriculture. No single sensor will measure all the soil
properties that affect crop yield variation; therefore, combinations of sensors are
recommended, resulting in a mobile multi-sensor platform. Of all of the proximal
sensors, EMI and ER sensors are arguably the most thoroughly researched and com-
monly used for measuring the edaphic properties that affect crop yield (Corwin and
Lesch 2003, 2005a).

6.1.4 Objective

This chapter aims to provide the general knowledge and understanding to delineate
SSMUs based on edaphic and anthropogenic factors influencing crop yield that have
been identified and spatially defined using geo-referenced proximal sensor data.
Because the measurement of EC, is one of the most widely used and well-
understood soil measurements (Corwin and Lesch 2003, 2005a), it has been singled
out in this chapter to represent ground-based proximal sensors. However, the
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methodology that is described in this chapter for delineating SSMUs can be applied
to any of the sensors. In addition, this chapter illustrates the use of spatial and geo-
statistical analysis to calibrate and interpret geo-referenced proximal sensor data.

6.2 Directed Sampling with a Proximal Sensor

6.2.1 Complexity of Proximal Sensor Measurements
and the Role of Geostatistics

Numerous studies have related proximal sensors to crop yield (or quality) in a
precision agriculture context. A short list of some recent proximal sensor studies as-
sociated directly with SSM includes Adamchuk et al. (2007), Yan et al. (2007a, b),
Corwin et al. (2008), Vitharana et al. (2008), Morari et al. (2009), as well as those
listed in Table 6.1.

Corwin and Lesch (2003) warned of the complexity of proximal sensor mea-
surements, specifically spatial measurements of EC,, and provided guidance for the
application of EC, to precision agriculture. However, even now some of the most re-
cent proximal sensor studies demonstrate a lack of understanding of the complexity
of proximal sensor measurements. For example, the work by Yan et al. (2007a, b)
relates yield to EC, rather than to the edaphic properties affecting the EC, measure-
ment that concomitantly influence crop yield (or crop quality). By basing SSMUs
directly on EC,, rather than on the properties affecting its measurement at a field
site, SSMUs can be defined erroneously, in particular where more than one soil
property dominates the EC, measurement and affects crop yield or quality. In ad-
dition, basing SSMUs on EC, rather than on the properties that affect it does not
enable associated management recommendations because increases or decreases in
EC, involve changes in all the properties affecting it at a particular site.

Because proximal sensors are typically affected by more than one agronomic
property (i.e. soil- or plant-related properties), spatial measurements with proximal
sensors are best used to develop a sampling plan to characterize the spatial dis-
tribution of those properties that affect the sensor and that, in turn, influence crop
yield (or quality). The proximal sensor directed sampling approach aims to identify
sample locations that reflect the range and variability of agronomic properties that
affect the sensor measurement. Apparent soil electrical conductivity is not the prop-
erty that affects crop yield (or quality); rather it is the edaphic properties influencing
EC, (i.e. salinity, water content, texture, organic matter, bulk density) that directly
affect crop yield (or quality). Nevertheless, information from the proximal sensor
can be used to direct soil (or plant) sampling. Spatial statistics plays a crucial role in
establishing the sampling locations from geo-referenced proximal sensor data from
which soil (or plant) properties that directly affect yield are determined. It is these
latter data that enable the delineation of SSMUs with their associated management
recommendations to maximize yield (or quality).
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6.2.2 Practical Consideration of Differences in Support

Differences in support are important when using proximal sensors to direct soil
(or plant) sampling for site-specific management. First there is a difference in sup-
port between the proximal sensor (few m? or less) and yield (generally tens of m?)
measurements, and between the soil (or plant) sample volume (0.075 m?) and the
proximal sensor’s volume of measurement (e.g. Geonics EM38 measures roughly
1-1.5 m?). In many respects differences in support are strongly influenced by prac-
tical considerations of resources (i.¢. time, labor and cost). As a rule-of-thumb, a
minimum number of samples needs to be taken at each scale to enable a comparison
of local (a few metres) and field-scale variation (tens to hundreds of metres). For ex-
ample, where local-scale variation is significantly less than field-scale variation sam-
pling directed by a proximal sensor will be viable, but as the scale of local variation
approaches the observed field-scale variation, the approach becomes less tenable. In
other words, the proximal sensor can resolve local variation because of its support
and intensity of measurement, whereas the yield monitor can resolve only the larger
scale variation that occurs within fields. For the soil and plant samples, regardless
of support, the variation that they resolve will depend on the intensity of sampling,
which cannot be as intensive as the sensor because of practical considerations.

6.3 Delineation of SSMUSs with a Proximal Sensor

6.3.1 Geostatistical Mixed Linear Model

In a typical field survey where proximal sensor readings such as EC, are recorded,
the sensor data are often used to help predict a specific, unobserved soil property.
For instance, assume a dense grid of proximal sensor data has been acquired across
a field and soil samples have been taken at some locations so that the data from
both sources can be used to estimate a model that can predict the detailed spatial
pattern of the soil property measured by or correlated with the proximal sensor
measurement. Assume that the relationship between the soil property measurement
and sensor data can be approximated adequately using the following geostatistical
mixed linear model (Haskard et al. 2007):

y = XB + n(s) + &(s). (6.1)

where y represents an (n X 1) vector of observed soil property data, s is the cor-
responding vector of paired (sx,sy) survey location coordinates, X represents an
(n x p) fixed data matrix that includes observed functions of sensor readings and
possibly also the coordinates, B is a (p x 1) vector of unknown parameter estimates,
n(s) represents a zero mean, second-order stationary spatial Gaussian error process
and e(s) is a vector of jointly independent normal (0, 6;7) random variables. Typical
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stationary spatial structures for 7(s) are well documented in the spatial statistical
and geostatistical literature; examples in two dimensions include the isotropic and
anisotropic exponential and spherical covariance structures, as well as the Matérn
class of covariance functions (Cressie 1993; Wackernagel 1998; Schabenberger and
Gotway 2005; Webster and Oliver 2007). Note also that the second e(s) error com-
ponent is usually referred to as the ‘nugget’ effect in geostatistics (Webster and
Oliver 2007).

Equation 6.1 represents a versatile spatial linear prediction model that can incor-
porate various types of modelling assumptions. The deterministic component of the
model (Xf) can be defined to include trend surface parameters and or additional
collocated soil-property measurements, in addition to various hypothesized tar-
get property and sensor relationships. As noted above, the stochastic error terms
((s) + e(s)) can be parameterized to match the geostatistical covariance functions
commonly used in kriging. Indeed, Eq. 0.1 is identical to universal kriging when
(XB) contains only trend surface parameters, and kriging with external drift when
(XPB) contains only sensor readings. In addition, both ordinary kriging and regres-
sion kriging models can also be derived as special cases of Eq. 6.1 (Schabenberger
and Gotway 2005; Haskard et al. 2007).

In the most general case, (XB) may contain multiple fixed effects and the residual
errors are assumed to be spatially autocorrelated. Assume that the corresponding
residual errors follow a Gaussian (e.g. multivariate normal) distribution defined as

n(s) ~ G(0,02C(H)),

e(s) ~ (}(0,031).

covin(s).e(s)} =0 (6.2)
=

var{n(s) + e(s )} = (ISZC(H) +0%nl = X,

R

where X is assumed to be positive definite and C(6) represents the correlation func-
tion of a second-order stationary error process (for example, C(6) could represent an
isotropic exponential correlation function with range parameter 6). When the covari-
ance structure is known up to a proportionality constant in the geostatistical mixed
linear model (i.e. & = 2V, where V is assumed to be known a priori), B of Eq. 6.1
can be estimated by generalized least squares (Rao and Toutenburg 1995). How-
ever, the specific ¥ hyper-parameter values are rarely known a priori. In practice, g
and the variance structure X are jointly estimated from the sample data, typically
by maximum likelihood (ML) or residual maximum likelihood (REML.) estima-
tion (Littell et al. 1996; Lark et al. 2006). The ML or REML % hyper-parameter
estimates are then returned to the model to compute the fixed effect parameter esti-
mates, B, and model predictions.

Conditional on a known covariance structure, standard mixed linear modelling
theory (Cressie 1993) can be used to show that the best linear unbiased estimator
for B is

B =X"zIxy X"z ly, (6.3)
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with a corresponding variance of
var(B) = (X"='x)~ L (6.4)

Likewise, one can show that the best linear unbiased prediction for y. (where y.
represents the remaining (non-sampled) survey locations can be expressed as

¥: = (X:B+ Z,. 2 (y—X). (6.5)

where X. represents the design matrix associated with y, and X ,. represents the
model-based covariance matrix between y. and the observed sample data y. In ad-
dition, the corresponding variance estimate associated with this prediction vector is

var(y. — §;) = X, — Zy:z_l

vz

4 (X~ BB X (EE 2R X -] 65

where X represents the model-based variance matrix of y. (Cressie 1993). Once
again, these predictions and variance estimates are identical to those obtained from
universal kriging and or kriging with external drift models (when the design matrix
is specified appropriately to give such models).

6.3.2 Soil Sampling Strategies Based on Geo-Referenced
Proximal Sensor Data

A minimum number of sites for soil (or plants) must be sampled to calibrate the geo-
statistical mixed linear model following the proximal sensor survey. In general, the
most common strategies currently used can be classified as either probability-based
(design-based) or prediction-based (model-based) sampling approaches. A brief de-
scription of each of these approaches is given below.

Probability sampling includes techniques such as simple random, stratified ran-
dom and cluster sampling. Thompson (1992) provides a review of these. Probability
sampling has a well developed underlying theory (Thompson 1992; Brus and de
Gruijter 1993), but it was not designed specifically for estimating models. Indeed.
most probability sampling strategies explicitly avoid incorporating any parametric
modelling assumptions; they rely instead on the principles of randomization that are
built into the design for drawing statistical inference.

Prediction-based sampling strategies, which are adopted in geostatistics and
time-series analysis, are focused explicitly towards model estimation. The under-
lying theory behind this approach for finite population sampling and inference is
discussed in detail in Valliant et al. (2000). More generally, response surface and
optimal experimental design theory are closely related areas of statistical research in
which sampling designs are studied specifically from the viewpoint of model estima-
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tion (Myers and Montgomery 2002). Techniques from these two subject areas have
been applied to the optimal collection of spatial data by Miiller (2001), the specifica-
tion of optimal designs for variogram estimation by Miiller and Zimmerman (1999),
the estimation of spatially referenced regression models by Lesch et al. (1995) and
Lesch (2005), and the estimation of geostatistical linear models by Zhu and Stein
(2006) and Brus and Heuvelink (2007). Conceptually similar types of non-random
sampling designs for variogram estimation have been introduced by Russo (1984)
and Warrick and Myers (1987).

Sampling on a grid has been used for many years in soil science; however, it
is not strictly randomized even when a random starting point is used. As a conse-
quence there is no direct way of estimating the standard errors of the mean from a
design-based viewpoint. Grid sampling has generally been favored in model-based
sampling designs and has also been commonly used in precision agriculture because
it is easy to implement and results in an even distribution of sample sites. Grid sam-
pling is often used when kriging is to be used for analysis and mapping because it
is an effective way to minimize the average interpolation error (Burgess et al. 1981;
Burgess and Webster 1984).

Theoretically, any of the above sampling approaches can be used to estimate
a spatial or geostatistical model, although each approach has various strengths and
weaknesses. Lesch (2005) compares and contrasts probability- and prediction-based
sampling strategies in more detail, and highlights some of the strengths of the
prediction-based sampling approach.

The prediction-based sampling approach discussed by Lesch (2005) was de-
signed specifically for use with ground-based EC, sensor readings. A minimum
number of samples for calibration is selected based on the observed magnitudes
and spatial locations of the EC, data. These sites are chosen in an iterative, non-
random way to (i) optimize the estimation of a regression model (i.e. minimize
the mean square prediction errors produced by the calibration function) and (ii)
maximize simultaneously the average separation between adjacent sampling lo-
cations to reduce the possibility of spatially correlated residual errors. Intuitively,
this sampling approach represents a hybrid of a response surface sampling tech-
nique (Myers and Montgomery 2002) with a space-filling algorithm (Miiller 2001).
Lesch (2005) demonstrated that such a sampling approach can substantially out-
perform probability-based sampling with respect to several important model-based
prediction criteria, particularly optimal estimation of the fixed-effect part of a spatial
(or geostatistical) linear model. Response surface sampling design software, known
as ESAP, has been developed specifically for use with EC, measurements and
other proximal sensors (Lesch et al. 2000). See http://www.ars.usda.gov/services/
software/software.htm for this open access software.

There are two main advantages of the response surface approach. First, the
number of samples required for estimating a calibration function can be reduced
substantially in comparison to more traditional design-based sampling. Response
surface designs are commonly used to minimize the estimation variance of lin-
ear statistical models in the non-spatial setting. Second, this approach lends itself
naturally to the analysis of proximal sensor data. Indeed, many types of ground-,
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airborne- and satellite-based remotely sensed data are often collected specifically
because one expects them to correlate strongly with some property of interest (e.g.
crop stress, soil type, soil salinity, etc.). Nevertheless, the exact parameter estimates
associated with the calibration model may still need to be determined by some type
of site-specific sampling design. The response surface approach explicitly optimizes
this site selection process.

6.3.3 Applications of Geostatistical Mixed Linear Models
to Proximal Sensor Directed Surveys

Geostatistical mixed linear models can be used effectively to delineate SSMUSs using
one of two approaches. In the first (and more common) approach, the model is used
directly to map one or more specific soil (or plant) properties. Such an approach is
useful when the SSMU can be defined effectively by only a few properties, and each
of these properties correlates reasonably well with the sensor readings. Some well-
known examples of application include the mapping of field-scale soil salinity and
or soil lexture patterns, typically for leaching or reclamation of the soil using EC,
measurements. Corwin and Lesch (2005b, ¢) and Lesch (2005) discuss the survey
protocols associated with this approach in detail, together with various case studies.

When a geostatistical mixed linear model is used to produce detailed maps of
just one or two primary soil (or plant) properties by direct prediction using proximal
sensor data, the delineation of SSMUES is straightforward. For a single property, the
resulting map defines the SSMU boundaries. Likewise, if two or three properties are
considered, a GIS overlay (or similar operation) of the predicted values can usually
be used to define and determine the SSMUs. Note that the ‘optimal’ boundaries
and or size of the units are nearly always application specific and subject to the
operational constraints of the associated farming management praclices.

I[n the second approach, proximal sensor data are again used to direct soil (or
plant) sampling. Soil (or plant tissue) from the selected sampling locations is then
analysed for several secondary soil chemical and physical properties (or plant prop-
erties), and it is these measurements that are used Tor prediction in the geostatistical
model. This approach was originally suggested by Corwin and Lesch (2003); it is
well suited for determining the primary SSMUs influencing a crop response func-
tion. Note that in this case the proximal sensor data are not used directly in the
geostatistical model as explicit predictor variables. Rather, the model relates the
collocated soil chemical and physical properties (or plant properties) to the crop re-
sponse levels, which enables us to relate the SSMUS better to these individual prop-
erties. It is the secondary soil properties that affect EC, (i.e. salinity, water content,
etc.) that are used as the predictor variables, rather than the sensor data themselves.

If the geostatistical model is used to estimate a crop response equation, which
in turn is a function of measured soil chemical and physical properties, the de-
lineation of the SSMUs can become more complex. Crop response equations can
often include many different soil chemical and physical property effects, and these
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individual effects may not all be spatially well defined or easily predicted from the
sensor data. In addition, the overlaying of many soil properties tends to produce
overly complex mosaic maps that are not easily interpreted or delineated into con-
tiguous SSMUs (see Chapter 8). In such a situation, considerable subjective intuition
may be needed to define a useful set of SSMUE .

6.4 Case Study Using Apparent Soil Electrical Conductivity
(EC,) — San Joaquin Valley, CA

The objective of this case study is (i) to use an intensive EC, survey to direct soil
sampling and to identify edaphic properties that affect cotton yield and (ii) to use
this spatial information to make recommendations for SSM of cotton by delineat-
ing SSMUs based solely on the edaphic and anthropogenic properties that affect
cotton yield. This paper draws from previous more detailed work conducted and
published by Corwin and colleagues (Corwin and Lesch 2003, 2005b; Corwin and
Lesch 2003).

6.4.1 Materials and Methods

6.4.1.1 Study Site

The study site is a 32.4 ha field in the Broadview Water District on the west side
of the San Joaquin Valley in central California. The soil at the site is a Panoche
silty clay (thermic Xerorthents), which is slightly alkaline with good surface and
subsurface drainage. The subsoil is thick, friable, calcareous, and casily penetrated
by roots and water. In the arid southwestern USA the primary soil properties influ-
encing crop yield are salinity, soil texture and structure, plant-available water, trace
elements (particularly B), and ion toxicity from Nat and CI™ (Tanji 1996).

6.4.1.2 EC,-Directed Soil Sampling Protocols for Site-Specific Management

General survey protocols for EC,-directed soil sampling developed by Corwin
and Lesch (2005b, c¢) were followed to characterize soil spatial variation. The
basic elements of a field-scale EC, survey applied specifically to precision agri-
culture include: (1) site description and EC, survey design, (ii) geo-referenced EC,
data collection, (iii) soil sampling strategies based on geo-referenced EC, data,
(iv) soil sample collection, (v) physical and chemical analysis of pertinent soil prop-
erties, (vi) statistical and spatial analysis, (vii) geographic information system (GIS)
database development and (viii) approaches for delineating SSMUs. The basic steps
within each component are outlined in Table 6.3 and discussed in detail in Corwin
and Lesch (2005b).
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Table 6.3 Outline of steps for an EC, field survey for precision agriculture applications. (Modified
from Corwin and Lesch 2005b)

1

I

6.

Site description and EC, survey design

(a) Record site metadata

(b) Define project’s or survey's objective
(¢) Establish site boundaries

(d) Select GPS coordinate system

(e) Establish EC, measurement intensity

. EC, data collection with mobile GPS-based equipment

(a) Geo-reference site boundaries and significant physical geographic features with GPS
(b) Measure geo-referenced EC, data at the pre-determined spatial intensity and record
associated metadata

. Soil sampling strategies based on geo-relerenced EC, data

(a) Statistically analyse EC, data using an appropriate statistical sampling design to
establish the soil sample site locations
(b) Establish sampling depth, sample depth increments and number of cores per site

. Soil core sampling at specified sites designated hy the sample design

(a) Obtain measurements of soil temperature through the profile at selected sites

(b) At randomly selected locations obtain duplicate soil cores within a 1-m distance of one
another to establish local-scale variation of soil properties

(c) Record soil core observations (e.g. mottling, horizonation, textural discontinuities, etc.)

Laboratory analyses of appropriate soil physical and chemical properties defined by project
objectives

Statistical and spatial analyses to determine the soil properties that affect EC, and crop yield
(provided EC, correlates with crop yield):

(a) Perform a basic statistical analysis of physical and chemical data by depth increment and
by composite depths

(b) Determine the correlation between EC, and physico-chemical soil properties by depth
increment and by composite depths

(¢) Determine the correlation between crop yield and physical/chemical soil properties by
depth and by composite depths to determine depth of concern (i.e. depth with
consistently highest correlation, whether positive or negative, ol soil properties to yield)
and the soil properties that have a significant effect on crop yield (or crop quality)

(d) Conduct an exploratory graphical analysis to determine the relationship between the
significant physical and chemical properties and crop yield (or crop quality)

(e) Formulate a spatial lincar regression (SLR) model that relales soil properties
(independent vanables) to crop yield or crop quality (dependent variable)

() Adjust this model for spatial autocorrelation, if necessary, using residual maximum
likelthood (REML) or some other technique

(g) Conduct a sensitivity analysis Lo establish dominant soil property affecting yield or
quality

GIS database development and graphic display of spatial distribution of soil properties
Approaches for delineating site-specific management units
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For the protocols to be applicable to SSM, EC, must be correlated to crop yield
(or quality), which would indicate that EC, is measuring some edaphic property (or
properties) that affect crop yield (or quality). The correlation coetficient (r) for yield
and EC, was r = 0.51 (p < 0.01).

6.4.1.3 Yield Monitoring and EC, Survey

Spatial variation of cotton yield was measured at the study site in August 1999
using a four-row cotton picker equipped with a yield sensor and global positioning
system (GPS). The yield sensors measured average seed cotton yield. All subsequent
references to cotton yield are with respect to seed cotton yield. A total of 7706 cotton
yield readings were recorded (Fig. 6.1a). Each yield observation represented an area
of approximately 42 m?. From August 1999 to March 2000 the field was fallow.

On March 2000 an intensive EC, survey was conducted using mobile fixed-
array clectrical resistivity equipment developed by Rhoades and  colleagues
(Rhoades 1992: Carter et al. 1993) that measured EC, at 9-m intervals (4000
EC, readings). The fixed-array electrodes were spaced to measure EC, to a depth of
1.5 m using a Wenner array ¢lectrode configuration with an inter-electrode spacing
of 1.5 m. A map of the EC, measurements is shown in Fig. 6.1b.

a Cotton yield b EC, survey and soil core sites

B

N
A
------ Canal
Dpsial Core sites
L Yield (Mg ha™) (dS m™)
PRl 1-3 0-1.5
“l
Sl - 3-45 15-2
R- 45-55 2-25
iSRS m 55-6.25 25-3
i- 6.25 - 6.75 3-35
Wem 675-11.25 by 35-5
100 0 100 200 300 Meters

Fig. 6.1 Maps of: (a) couon yield and (b) EC, measurements including 60 soil sampling sites
(Moditied from Corwin and Lesch (2003) with permission)
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6.4.1.4 Sample Site Selection, Soil Sampling and Seil Analyses

Data from the EC, survey were used to direct the sclection of 60 sample sites. The
statistics software ESAP-95 version 2.01 (Lesch et al. 2000) was used to deter-
mine the sample sites from the EC, survey data. The software uses a model-based
response-surface sampling strategy. The selected sites reflect the observed signal
variation in EC, while simultaneously maximizing the spatial uniformity of the
sampling design across the study area. Figure 6.1b shows the spatial EC, survey
data and the locations of the 60 soil sampling sites. Soil samples were taken at
0.3-m increments to a depth of 1.8 m and were analysed for the physical and chem-
ical properties thought to influence cotion yield. They included gravimetric water
content (8, ), bulk density (py), pH, B, NO3-N, CI7, electrical conductivity of the
saturation extract (EC,), leaching fraction (LF), % clay and saturation percentage
{SP). The laboratory analyses followed the methods cutlined in Agronomy Mono-
graph No. 9 (Page et al. 1982).

The cotton yield data were not collocated with the EC, or soil data; therefore,
cotton yield was predicted at the 60 soil sampling sites by ordinary kriging. The ex-
perimental variogram computed by the usual method of momeants on the yield data
was fitted by an isotropic cxponential function with a large nugget effect (Fig. 6.2).
The considerable variation in yield over distances less than the sample spacing was
most likely due to large measurement errors caused by the yield-monitoring dynam-
ics (sce Chapter4). Nonlinear least-squares estimation was used to derive the three
variogram model parameter estimates (and standard errors): nugget (cg) = 0.76
(0.02), partial sill (¢) = 1.08 {0.02) and distance parameter of the exponential func-
tion {r) = 109.3 (6.0) (approximate range, 3r = 327.9m). The mean estimated

20F

Variance

0.0 + . >
0 100 200 300 400

Lag Distance (m)

Fig. 6.2 Variogram of cotton yield. The points are the experimental variogram computed on all
7706 yield data and the solid line is the fitted exponential variogram model (see Section 1.3.2)
{Taken from Corwin and Lesch (2003) with permission)
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yield for the 60 sample sites was 5.95Mgha ™!, and individual estimates ranged
from 3.40 to 7.41 Mgha™'. The associated kriging standard errors were from 0.93
t00.96 Mg ha!.

6.4.1.5 Statistical and Spatial Analyses

The statistical analyses done using SAS software (SAS Institute 1999) were:
(i) correlation analysis between EC, and interpolated cotton yield using data from
the 60 sites, (ii) exploratory statistical analysis to identify the significant soil
properties that affect cotton yield and (iii) development of a crop yield response
model using REML estimation techniques. Exploratory statistical analysis was done
to determine the soil properties that have a significant effect on cotton yield and to
establish the general form of the cotton yield response model. This required two
stages of analysis: (i) a correlation analysis in conjunction with scatter plots of yield
versus potentially significant soil properties and (ii) a preliminary multiple linear
regression (MLR) analysis.

The commercial GIS software ArcView 3.3 (ESRI 2002) was used to compile,
manipulate, organize and display all spatial data. The final delineation of SSMUs
was done using the GIS, after exploratory statistical analyses and estimating a crop
yield response model adjusted for spatial autocorrelation. A sensitivity analysis of
the adjusted crop yield response model was used to identify the most significant
property influencing crop yield. This analysis calculated how much the predicted
yield decreased when the value for each soil property was shitted up (or down) by 1
standard deviation from its mean (Corwin and Lesch 2003).

6.4.2 Results and Discussion

6.4.2.1 Correlation Between Crop Yield and EC,

The correlation between EC, and yield at the 60 soil sampling sites was 0.51
{r coefficient of correlation). The moderate correlation between yield and EC,
suggests that some soil property(ies) affect both EC, and cotton yield making an
EC,-directed soil sampling strategy potentially viable at this site. The visual simi-
larity in the spatial distributions of EC, and cotton yield in Fig. 6.1 confirms their
close relationship.

6.4.2.2 Exploratory Statistical Analysis
Both preliminary MLR and correlation analysis showed that the 0—1.5 m soil depth

resulted in the strongest correlations between yield and soil properties and best fit
of the MLR to the data for the various depths considered (i.e. 0-0.3, 0-0.6, 0-0.9,
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Table 6.4 Simple correlation coefficients between EC, and soil propertics
and between cofton yield and soil properties. Modified from Corwin and
Lesch (2003)

Soil property® Fixed-array EC," Cotton yield ©
0, 0.79 0.2
EC, 0.87 0.53
B 0.88 0.50
pH 0.33 —0.01
% clay 0.76 0.36
O —0.38 —0.29
NO;-N 0.22 —0.03
e 0.61 0.25
LF —0.50 —0.49
SP 0.77 0.38

*Properties averaged over 0—1.5 m.

PPearson correlation coefficients based on 60 observations.

“Pearson correlation coefficients based on 59 observations.

0, gravimetric water content; EC,, clectrical conductivity of the saturation
extract (dS m™'); LF, leaching fraction; SP, saturation percentage.

0-1.2 and 0-1.5 m); 0—1.5m was considered to correspond to the active root zone.
The correlation analysis indicated that the following soil properties are those most
significantly related to cotton yield: EC,, LF, pH, % clay, 6, and py. Table 6.4 shows
that the correlation coefficients between EC, and 0,, EC., B, % clay, py,, C1™, LF
and SP are significant at the 0.01 level. The strongest correlations are between EC,
and 6, EC,, B, % clay and SP. Note that B is not measured directly by EC,. The
strong correlation between B and EC, is an artifact due to its close correspondence
to salinity (i.e. EC,) as a consequence of leaching. The strong correlation between
EC, and both % clay and SP is expected because it reflects the effect of texture on the
EC,. In this particular field, EC, is strongly correlated with salinity, 8, and texture.
Table 6.4 also gives the correlation between cotton yield and the soil properties; the
strongest correlation is with salinity (EC,).

A scatter plot of EC, and yield indicates a quadratic relationship where yield
increases and then decreases (Fig. 6.3a). The scatter plot of LF and yield shows a
negative, curvilinear relationship (Fig. 6.3b). Yield shows a minimal response to LF
below 0.4 and it declines rapidly for LF > 0.4. Clay percentage, 6, and p, appear
to be linearly related to yield to various degrees (Figs. 6.3c, f, respectively). Al-
though there is clearly no correlation between yield and pH (r = —0.01, Table 6.4;
Fig. 6.3d); pH became significant in the presence of the other variables, which be-
came apparent in both the preliminary MLR analysis and final yield response model.

Based on the exploratory statistical analysis, an empirical cotton yield response
model was specified as:

Y = B+ B1 (ECo) + B2 (ECo)* + B (LF)?
+ B4 (pH) + Bs (% clay) + Bs (0s) + B7 (pv) + €. (6.7)
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Fig. 6.3 Scatter plots of soil properties and cotton yield: (a) electrical conductivity of the satu-
ration extract (ECe, dSm "), (b) leaching fraction, (¢) percentage clay, (d) pH. (e) gravimetric
water content (gg~") and (f) bulk density (g cm ™) (Taken from Corwin and Lesch (2003) with
permission)

In this model, the relationships between cotton yield (¥) and pH, % clay, 6, and
pp are assumed to be linear; the relationship between yield and EC, is assumed to
be quadratic: the relationship between yield and LF is assumed to be curvilinear;
Bo, B1, B2, ..., B7 are the regression model parameters and & represents the random
error component.

6.4.2.3 Crop Yield Response Model Development

The initial estimation of Eq. 6.7 by ordinary least squares resulted in the following
simplified crop yield response model:

Y = 20.90 + 0.38 (EC.) — 0.02 (EC.)* — 3.15 (LF)®> — 2.22 (pH) + 9.27 (6,) + &.
(6.8)

In this initial analysis, the parameter estimates for % clay and py, were not significant
in the f-tests and were dropped from the regression model (all other parameters
were significant near or below the 0.05 level). The R? value for Eq.6.8 was 0.61
indicating that 61% of the estimated spatial variation in yield could be described
successfully by this model. However, a variogram of the residuals from the fitted
function (Fig. 6.4) indicates that the errors are clearly spatially correlated, implying
that Eq. 6.8 should be refitted using REML to adjust for spatial autocorrelation.
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Fig. 6.4 Variograms estimated on the residuals from the ordinary least-squares yield regression
model (Eg. 6.8) by residual maximum likelihood (REML) (dashed line) and method of moments
(MoM). The symbols are the experimental variogram estimated by MoM for the 59 calibration
locations and the solid line is the fitted model (Modified from Corwin and Lesch (2003) with
permission)

After re-fitting Eq. 6.8 using an isotropic exponential covariance structure without
a nugget effect, the following crop yield response model estimated by REML was
obtained:

Y = 19.28 + 0.22 (EC.) — 0.02 (EC,)* — 4.42 (LF)* — 1.99 (pH) + 6.93 (6,) + &.
(6.9)

The dashed line in Fig. 6.4 represents the variogram model estimated by REML
(sill = 0.39, distance parameter = 66.2 m (working range = 198.6 m)). Note that
the sill variance is larger than for the method-of-moments variogram of the residuals
because the residuals from the trend are biased and the variogram is underesti-
mated (Rao and Toutenburg 1995). The bias increases with increasing lag distance
(Cressie 1993); this occurs in Fig. 6.4 to the distance at which the asymptotic sill of
the exponential function is reached.

Figure 6.5 shows the observed versus predicted cotton yield estimates for Eq. 6.9.
Figure 6.5 suggests that the estimated regression relationship is reasonably success-
ful at reproducing the predicted yield estimates. A sensitivity analysis showed that
LF was the single most significant factor affecting cotton yield; the degree of pre-
dicted yield sensitivity to a one standard deviation change in the EC., LF, pH and
B, resulted in % yield reductions of 4.6%, 9.6%, 5.8% and 5.1%, respectively. The
point of maximum yield with respect to salinity was calculated by setting the first
partial derivative of Eq. 6.9 to zero with respect to EC.. We note in passing that the
value of 7.17dSm™! obtained is quite similar to the salinity threshold for cotton
(7.7dSm™) reported by Maas and Hoffman (1977).
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Fig. 6.5 Observed versus predicted estimates of cotton yield using Eq. 6.9. Dotted line is a 1:1
relatonship (Taken from Corwin and Lesch (2003) with permission)

6.4.2.4 Site-Specific Management Units

Figure 6.6a—d shows the ordinary kriged maps of the four significant soil properties
(0—1.5m) that affect cotton yield: (a) soil salinity (EC., dS m~1), (b) leaching frac-
tion (LF), (¢) gravimetric water content (6,. kg kg_‘) and (d) soil pH. Ideally, if
cach of these four soil properties can be suitably adjusted, then in theory an optimal
cotton yield could be achieved across the entire field. Based on Eq. 6.9, scatter plots
of cotton yield against soil properties (Fig. 6.2) and the corresponding soil property
maps (Fi1g 6.6), management recommendations were made that prescribed spatially
what could be done to increase cotton yield in those areas with less than the opti-
mal yield. Four recommendations can be made to improve cotton productivity at the
study site: (i) reduce the LF in highly leached areas (i.e. areas where LF > 0.5), (11)
reduce salinity by increased leaching in arcas where the average root zone (0O-1.5m)
salinity i1s > 7.17dSm™!, (iii) increase the plant-available water in coarse-textured
arcas by more frequent irrigation and (1v) reduce the pH where it 1s >7.9. The ratio-
nale for each recommendation is discussed in Corwin and Lesch (2003).

Corwin and Lesch (2005a) subsequently delineated the SSMUSs shown in Fig. 6.7
that indicate those areas that are pertinent to the above recommendations. All four
recommendations can be accomplished by improving water application timing and
distribution with vartable-rate irrigation technology and by the precise application
of soil amendments. Strongly leached zones were delineated where the LF needed to
be reduced o < 0.5: markedly saline arcas were defined where the salinity needed
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Fig. 6.6 Kriged maps of the four most significant soil properties (0-1.5 m) that affect cotton yield:
(a) electrical conductivity of the saturation extract (EC., dS m~ '), (b) leaching fraction (LF),
(¢) gravimetric water content (H,. kgkg ') and (d) pH (Taken from Corwin and Lesch (2003)
with permission)

Management Recommendations
for Site-Specific Management
Units

(® EC,-directed soil samplie locations

.] - Leaching fraction: reduce LF to < 0.4
; - Salinity: reduce EC, to < 7.17 dS/m

- Coarse texture requires more frequent
irrigation

| pH:reducepHto<79

Fig. 6.7 Site-specific management units (SSMUs) for a 32.4-ha cotton ficld in the Broadview
Water District of central California’s San Joaquin Valley. Recommendations associated with the
SSMUs are for: (a) leaching fraction, (b) salinity. (¢) texture and (d) pH (Taken from Corwin and
Lesch 2005a)
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to be reduced below the salinity threshold for cotton, which was established from
Eq.6.9 tobe EC, = 7.17dSm™" for this field; areas of coarse texture were defined
that needed more frequent irrigation and areas were identified where the pH needed
to be reduced below a pH 8 with a soil amendment such as OM. Although this
work has delineated within-field units where associated site-specific management
recommendations would optimize the yield, it still falls short of integrating meteo-
rological, economic and environmental impacts on within-field crop yield variation.

6.5 Conclusion

Since all proximal sensors can be, and generally are, influenced by more than one
property that can affect plant yield (or quality), the most appropriate use of geo-
referenced proximal sensor data is to direct soil (or plant) sampling to determine
the spatial distribution of properties affecting crop yield (or quality). Directed soil
(or plant) sampling with proximal sensor data provides a means of establishing the
properties that have most effect in crop yield (or quality) and of mapping the distri-
bution of these properties. In addition, it provides sufficient information to develop
a crop yield (or quality) response model that relates yield to edaphic or other prop-
erties affecting yield. The spatial distribution of the properties that have most effect
on yield (or quality) together with a crop yield (or quality) response model pro-
vide sufficient information to delineate SSMUs with associated recommendations
to increase yield (or improve quality).

Even though EC,-directed soil sampling provides a viable means of identitying
some soil properties that affect within-field variation of yield, it is only one piece of
a complicated puzzle of interacting factors that result in the observed within-field
variation in crops. Crop yield is affected by complex interactions of meteorologi-
cal, biological, anthropogenic, topographic and edaphic factors. Furthermore, SSM
requires more than just a myopic look at crop productivity. It must balance sus-
tainability, profitability, crop productivity and quality, optimization of inputs and
minimization of environmental impacts.

Mobile platforms containing multiple proximal sensors are currently being de-
veloped and tested to provide the full complement of spatial data needed to identify
and spatially characterize not only edaphic but anthropogenic, topographic, meteo-
rological and biological properties that influence plant growth. These platforms will
provide multiple layers of spatial information enabling the delineation of SSMUs
well beyond the capability of single proximal sensor platforms.
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