
Chapter 6 
Delineating Site-Specific Management Units 
with Proximal Sensors 

D.L. Corwin and S.M. Lesch 

Abstract Conventional farming manuges tields uniformly with no consideration 
for spatial variation. This causes reduced productivity, misuse of finite resources 
(e.g. water and fertilizers) and detrimental impacts on the environment. Site-specific 
management units (SSMUs) have been proposed as a way of resolving the spatial 
variation of various factors (i.e. soil, climate, management, pests. etc.) that affect 
variation in crop yield. Mobile proximal sensors. such as those used to measure 
apparent soil electrical conductivity (ECa), can be used to characterize the spatial 
variation of soil properties that affect crop yield. This Chapter provides an overview 
of the work by the authors that has led to the delineation of SSMUs based on edaphic 
and anthropogenic properties. with particular emphasis given to the geostatistical 
techniques needed to direct soil sampling to characterize (he spatial variation. The 
approach uses gcospatial proximal sensor measurements to locate the positions of 
soil samplcs to characterize the variation in soil properties that affect crop yicld 
within a field. A crop yield response model is developed and maps of SSM Us based 
on soil and crop yield information are produced. The methodology for delineating 
SSMUs can be used whenever the proximal sensor measurements correlate with 
yicld. Maps of SSMUs provide the vital information for variable-rate technology 
(e.g. site-specific fertilizer and irrigation water application). 
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6.1 Introduction 

6.1.1 The Needfor Site-Specific Management 

Tremendous strides have been made to expand the world's supply of food. Even 
though the world population has doubied over this time period, food production has 
risen even faster with per capita food supplies increasing from less than 2000 calo­
ries per day in 1962 to more than 2500 calories in 1995 (World Resources Institute 
1998). The rise in global food production has been credited to better seeds, expanded 
irrigation, and greater fertilizer and pesticide use, commonly referred to as the Green 
Revolution. However, the prospect of feeding a projected additional 3 billion people 
over the next 30 years poses more challenges than have been encountered in the past 
30 years. Tn the short term, global resource experts predict that there will be ade­
quate global food supplies, but the distribution of those supplies to malnourished 
people will be the primary problem. Longer term, however. the obstacles become 
more formidable, though not insurmountable. Although total yields continue to rise 
on a global basis, there is a disturbing decline in the growth of yield with some 
major crops such as wheat and maize reaching a 'yield plateau' (World Resources 
Institute 1998). 

Sustainable agriculture is viewed as the most viable means of meeting the food 
demands of the projected world's population, barring unexpected technological 
breakthroughs. The concept of sustainable agriculture is predicated on a delicate 
balance of maximizing crop productivity to keep pace with population growth and 
maintaining economic stability while minimizing the use of finite natural resources 
(e.g. water, fertilizers and pesticides) and the detrimental environmental impacts 
of associated agrichemical pollutants. Arguably, the most promising approach for 
attaining sustainable agriculture is precision agriculture or site-specific crop man­
agement. 

Site-specific crop management, or more specilically site-specific management 
(SSM) attempts to manage the soil, pests and crops based upon spatial variation 
within a f'ield (Larson and Robert 1991), whereas conventional farming treats a fleld 
uniformly, ignoring the naturally inherent variahility of soil and crop conditions 
between and within fields. There is well-documented evidence that spatial varia­
tion within a field is highly significant and amounts to a factor of 3-4 or more for 
crops (Birrel et al. 1995; Verhagen et al. 1995) and up to an order of magnitude or 
more for soil (Corwin et ai. 2003a). Specifically, SSM is the management of agri­
cultural crops at a spatial scale smaller than the whole field that takes account of 
local variation to cost effectively halance crop productivity and quality, detrimen­
tal environmental impacts and the use of resources (e.g. water, fertilizer, pesticides, 
etc.) by applying them when , where and in the amount needed. Spatial variation in 
crops is the result of a complex interaction of biological (e.g. pests, earthworms, 
microhes), edaphic (e.g. salinity, organic matter, nutrients, texture), anthropogenic 
(e.g. leaching efficiency, soil compaction due to farm equipment), topographic (e.g. 
slope, elevation) and climatic (e .g . relative humidity, temperature, rainfall) factors. 
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6.1.2 Definition of Site-Specific Managemellt Unit (SSMU) 

Site-specific management units (SSMUs) have been proposed as a means of dealing 
with the spatial variation of edaphic (i.e. soil related) properties that affect crop 
productivity (or quality) to achieve the goals of SSM. A SSMU is simply a mapped 
unit within a field that could be based on soil properties, landscape units, past yield, 
etc. that is managed to achieve the goals of SSM. To manage within-field varia­
tion site-specifically, geo-referenced areas (or units) that are similar with respect 
to a specified characteristic must be identified (van Ullelen et al. 1997). Ideally, 
a site-specific management unit (SSMU) will account for the spatial variation of 
all factors that affect variation in crop yield, including edaphic , meteorological, 
hiological, anthropogenic and topographic factors. To achieve this, the delineation 
of SSMUs would be extremely complicated because all these must be considered. 
One means of simplifying the complexity is to delineate SSMUs based on a single 
factor, such as edaphic properties, and determine the extent of variation in yield 
related to this factor. 

The extent and conditions under which these spatial patterns are stable should 
also be established. Yield maps provide information on the integrated effects of the 
physical, chemical, and biological processes under certain weather conditions (van 
Uffelen et al. 1997), and the spatial patterns of crop productivity provide a basis 
for implementing SSM by indicating where varying crop inputs are needed (Long 
1998). However, the inputs required to optimize crop productivity and minimize im­
pacts on the environment can be determined only if the factors that gave rise to the 
observed spatial crop patterns are known (Long 1998). Yield maps alone cannot pro­
vide information to distinguish between the various sources of variation and cannot 
give clear guidelines for management without information on the effects of varia­
tion in weather, pests and diseases, and soil physical and chemical properties on the 
variability of a crop for a particular year (van Uffelen et al. l(97). Each factor that 
affects within-field variation in yield needs to be characterized spatially to be able to 
manage a crop on a site-spccilic basis. The spatial characterization of these factors 
can he achieved with spatial measurements from a spectrum of proximal sensors. 

6.1.3 Proximal Sensors 

Ground-based proximal sensors generally include sensors that take measurements 
from within a distance of 2 m from the soil surface. They may take measurements 
of the soil, such as electrical, electromagnetic or radiometric sensors, or of plants, 
such as crop yield or spectral sensors. Adamchuk et al. (2004) reviewed on-the-go 
proximal soil sensors for precision agriculture and Barnes et al. (2003) provided a 
concise review of ground-based sensor techniques as well as remote imagery sensors 
for mapping soil properties. 

According to Adamchuk et al. (2004), proximal sensors fall into six main catego­
ries: electrical and electromagnetic, optical and radiometric, mechanical, acoustic, 
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Table 6.1 Selected recent references using proximal soil sensors to map soil properties for 
applications in prccision agriculturc. Modification of tables from Adamchuk et al. (2004) 
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Category of 
proximal sensor Review article Sensor Technical rderence 

Electrical and EMf Corwin and Lesch 
(2oo5a) 

ER 

EMI 

Corwin and Leseh (200.1) 

Corwin and Leseh 

Optical 

Radiometric 

Mechanical 

Acoustic and 
pnc.umatic 

Eleetrochcmical 

Ben-Dor et al. 
(2009)" 

Huisman ct al. 
(2003) 

Hemlllat and 
Adamchuk 
(200S) 

Capacitance 
Single wavelength 

Multi- or Hyperspcetral 

GPR 

Microwave 

Draft 

Load cells and 
penetrometers 

Microphone 

Air pressurc transducer 

fSFET 

ISE 

(2005b.e) 

Andrade et al. (200 I) 

Shonk ct al. ( 19Y I) 

Malcki et a1. (2008). 
Mouazen et al. (2007) 

Lunt ct al. (200S) 

Wlwlley and Bull (1991) 

Ehrhardt et al. (200 I). 
Mouazen and Roman 
(2006) 

Chung et al. (20OJ). 
Verschoore et al. (20m) 

Liu et al. (1993) 

Clement and Stombaugh 
(lOOO) 

Birrell and Hummel (2001 l. 
Viscarra Rossel and 
Walter (2004) 

Adamchuk et al. (2005). 
Sethuramasamyraja et al. 
(200S) 

EMf. electromagnetic induction; ER. electrical resistivity ; GPR. ground penetrating radar; ISI-'ET. 

ion-selective lield effect transistor; ISE. ion-selective electrode. 

"Review includes remote and proximal sen~ors. 


pneumatic and electrochemical. Several studies have been conducted using proxi­
mal sensors with just a few of the more current ones listed in Table 6.1. The output 
from each sensor is typically affected by more than one agronomic soil property. 
Table 6.2 outlines the soil properties influencing each category of proximal senSOL 

Electrical and electromagnetic sensors include electrical resistivity (ER), elec­
tromagnetic induction (EM!) , time domain retlectometry (TOR) and capacitance 
sensors. The most commonly used for field-scale on-the-go measurements are ER 
and EM! (Corwin and Lesch 2005a). Electrical resistivity and EM! measure the 
electrical conductivity of the bulk soil, which is referred to as the apparent soil 
electrical conductivity (ECa). Corwin and Lesch (2005a) have provided a review 
of EC" measurements in agriculture . Apparent soil electrical conductivity is af­
fected by a variety of soil properties including salinity, texture. water content, 
organic matler, cation exchange capacity (CEC) and bulk densilY (Corwin and Lesch 
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~Table 6.2 Soil properties that influence proximal sensors. Modified from Adamchuk et al. (2004) 
:s::Agronomic soil property § 
0; 
rJ~Catcgoryof Texture (sand, 	 Depth of IOpsoi I Residual NO, or Other '"' 

proximal sensor sill. clay content) OM e EC or Na CE or Pb or hard pan pH total N macro-nutrients CEC 	 :3 
(1) 

;::
Electrical and EMI X X X X X X X 	 X c 
Optical and X X X X X X ~. 

radiomctric 	
z 

::: 
Mechanical X X 	 ::T 

Acoustic and X X X 	 ;' 
:;::pneumatic 

Electrochemical X X X X [ 
(1)EMI , electromagnetic induction; OM, soil organic mailer; 8. w:.Jter content; EC, declrical conductivity (salinity); Na, sodium content; Cp, compaction; Pb. hulk VJ 

~density ; CEC, calion exchange capacity. 
~ 

~ 
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2005a). Capacitance sensors and TDR use the dielectric constant or rclative per­
mittivity to infer the volumetric water content. There are commercially available 
on-the-go ER (e.g. Veris 3100) and EM! units (e.g . Oeonics EM38-MK2). 

Optical sensors comprise single wavelength and hyperspectral reflectance 
sensors, whcreas radiometric sensors include microwave sensors and ground 
pcnetrating radar (OPR). Like electrical and electromagnetic sensors, optical and 
radiometric sensors are frequently influenced by a variety of soil properties (see 
Table 6.2). However, there is a potential advantage of optical and radiometric mea­
surements in that the response in L1ifferent parts of the spectral range may be affected 
to varying degrees by different soil properties , enabling the separation of effects 
(Adamchuk et al. 2004). As indicated by Baumgardncr et al. (1985), soil reflectance 
is influenced by a variety of properties including parent material, salts, iron oxides, 
organic matter, particle size, moisture and mineral composition. RaLiiometric sen­
sors have been widely used to establi sh the spatial distribution of soil water content. 

Mechanical sensors such as a strain gauge, load cell , or horizontal cone and 
wedge pcnetrometer are used to measure soil mechanical resistance or soil com­
paction, which in turn provides information on soil moisture , texture and bulk 
density. Similarly, acoustic and pneumatic scnsors have been correlated to soil tex­
ture (Liu et al. 1993) and compaction (Clement and Stombaugh 2000). 

Electrochemical sensors use either an ion-selective electrode (ISE) or ion­
selective field effect transistor (ISFET) to provide a direct means of measuring pH 
or nutrient content (e.g . K+ or NO) - ) to evaluate soil fertility. Electrochemical 
sensors have the distinct disadvantage of requiring a significant amount of time for 
equilibrium between the sensor and the soil or soil solution. 

To a varying extent from one field to the next, crop patterns are affected by 
edaphic properties. Bullock and Bullock (2000) indicated that efficient methods for 
measuring within-field variation accurately in soil physical and chemical properties 
are important for precision agriculture. No single sensor will measure all the soil 
properties that affect crop yield variation; therefore , combinations of sensors are 
recommended, resulting in a mobile multi-sensor platform. Of all of the proximal 
sensors, EMf and ER sensors are arguably the most thoroughly researched and com­
monly used for measuring the edaphic properties that affect crop yield (Corwin and 
Lesch 2003, 2005a). 

6.1.4 Objective 

This chapter aims to provide the general knowledge and understanding to delineate 
SSMUs based on edaphic and anthropogenic factors intluencing crop yield that have 
been identified and spatially defined using geo-refercnced proximal sensor data. 
Because the measurement of ECu is one of thc most widely used and well­
understood soil measurements (Corwin and Lesch 2003, 2005a), it has been singled 
out in this chapter to represent ground-based proximal sensors. However, the 
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methodology that is described in this chapter for delineating SSMUs can be applied 
to any of the sensors. In addition, this chapter illustrates the use of spatial and geo­
statistical analysis to calibrate and interpret geo-referenced proximal sensor data. 

6.2 Directed Sampling with a Proximal Sensor 

6.2.1 	 Complexity of Proximal Sensor Measuremellts 
and the Role ofGeostatistics 

Numerous studies have related proximal sensors to crop yield (or quality) in a 
precision agriculture context. A short list of some recent proximal sensor studies as­
sociated directly with SSM includes Adamchuk et al. (2007), Yan et al. (2007a, b), 
Corwin et al. (2008), Vitharana et al. (2008), Morari et al. (2009), as well as those 
listed in Table 6.1. 

Corwin and Lesch (2003) warned of the complexity of proximal sensor mea­
surements, specifically spatial measurements of EC", and provided guidance for the 
application of EC" to precision agriculture. However, even now some of the most re­
cent proximal sensor studies demonstrate a lack of understanding of the complexity 
of proximal sensor measurements. For example, thc work by Yan et al. (2007a, b) 
relates yield to EC" rather than to the edaphic properties affecting the ECa measure­
ment that concomitantly inOuence crop yield (or crop quality). By basing SSMUs 
directly on ECa, rather than on the properties affecting its measurement at a field 
site, SSMUs can be defined erroneously, in particular where more than one soil 
property dominates the EC" measurement and affects crop yield or quality. In ad­
dition, basing SSMUs on ECa rather than on the properties that affect it does not 
enable associated management recommendations because increases or decreases in 
EC" involve changes in all the properties affecting it at a particular site. 

Because proximal sensors are typically affected by more than one agronomic 
property (i.e. soil- or plant-related properties), spatial measurements with proximal 
sensors are best used to develop a sampling plan to characterize the spatial dis­
tribution of those properties that affect the sensor and that, in turn, influence crop 
yield (or quality). The proximal sensor directed sampling approach aims to identify 
sample locations that reflect the range and variability of agronomic properties that 
affect the sensor measurement. Apparent soil electrical conductivity is not the prop­
erty that affects crop yield (or quality); rather it is the edaphic properties intlueneing 
ECa (i .e. salinity, water content, texture, organic matter, bulk density) that directly 
affect crop yield (or quality). Nevertheless, information from the proximal sensor 
can be used to direct soil (or plant) sampling. Spatial statistics plays a crucial role in 
establishing the sampling locations from geo-referenced proximal sensor data from 
which soil (or plant) properties that directly affect yicld are determined. It is these 
latter data that enable the delineation of SSM Us with their associated management 
recommendations to maximize yield (or quality) . 
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6.2.2 Practical Consideration ofDifferences in Support 

Diffcrences in support are important when using proximal sensors to direct soil 
(or plant) sampling for site-specific management. First there is a differcnce in sup­
port between the proximal sensor (fcw m2 or less) and yield (generally tens of m 2 ) 

mcasurements, and between the soil (or plant) sample volume (0.075 m3 ) and the 
proximal sensor's volume of measurement (e.g. Geonics EM38 measures roughly 
1- 1.5 m 3 ). In many respects differences in support arc strongly intluencecl by prac­
tical considerations of resources (i.e . time, labor and cost). As a rule-of-thumb, a 
minimum number of samples needs to be taken at each scale to enable a comparison 
of local (a few metres) and Ileld-scale variation (tens to hundreds of metres). For ex­
ample, where local-scale variation is significantly less than field-scale variation sam­
pling directed by a proximal sensor will be viable, but as the scale of local variation 
approaches the observed field-scale variation, the approach becomes less tenable. In 
other words, the proximal sensor can resol ve local variation because of its support 
and intensity of measurement, whereas the yield monitor can resolve only the larger 
scale variation that occurs within fields. For the soil and plant samples, regardless 
of support, the variation that they resolve will depend on the intensity of sampling, 
which cannot be as intensive as the sensor because of practical considerations. 

6.3 Delineation of SSMUs with a Proximal Sensor 

6.3.1 Geostatistical Mixed Linear Model 

In a typical field survey where proximal sensor readings such as ECa are recorded, 
the sensor data are oftcn used to help predict a specific, unobserved soil property. 
For instance, assume a dense grid of proximal sensor data has been acquired across 
a field and soil samples have been taken at some locations so that the data from 
both sources can be used to estimate a model that can predict the detailed spatial 
pattern of the soil property measured by or correlated with the proximal sensor 
measurement. Assume that the relationship between the soil property measurement 
and sensor data can be approximated adequately using the following geostatistical 
mixed linear model (Haskard ct al. 2007): 

y = Xf) + 'ieS) + 8(S). (6.1 ) 

where y represents an (11 x I) vector of observed soil property data, S is the cor­
responding vector of paired (sx . Sy) survey location coordinates, X represents an 
(1/ x p) fixed data matrix that includes observed functions of sensor readings and 
possibly also the coordinates, ~ is a (p x I) vector of unknown parameter estimates, 
7](s) represents a zero mean, second-order stationary spatial Gaussian error process 
and €(s) is a vector of jointly independcnt normal (0, 0;) random vari ables . Typical 
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stationary spatial structures for 7](s) are well documented in the spatial statistical 

and geostatistical literature; examples in two dimensions include the isotropic and 
anisotropic exponential and spherical covariance structures, as well as the Matern 
class of covariance functions (Cressie 1993; Wackernagel 1998; Schabenberger and 
Gotway 2005; Webster and Oliver 2(07). Note also that the second E (s) error com­
ponent is usually referred to as the 'nugget' effect in geostatistics (Webster and 
Oliver 2007). 

Equation 6.1 represents a versatile spatial linear prediction model that can incor­
porate various types of modelling assumptions. The deterministic component of the 
model (XB) can be defined to include trend surface parameters and or additional 
collocated soil-property measurements, in addition to various hypothesized tar­

get property and sensor relationships. As noted above, the stochastic error terrn>~ 

(I)(s) + E(S» can be parameterized to match the geostatistical covariance functions 
commonly used in kriging. Indeed, Eq. 6.1 is identical to universal kriging when 
(XB) contains only trend surface paramelers, and kriging with external drift when 
(XB) contains only sensor readings. In addition, bOlh ordinary kriging and regres­
sion kriging models can also be derived as special cases of Eq. 6.1 (Sehabenberger 
and Gotway 2005; Haskard el al. 2007). 

In the most general case, (XB) may contain multiple fixed effecls and the residual 
errors are assumed to be spatially autocorrelated. Assume that the corresponding 
residual errors follow a Gaussian (e.g. multivariate nonnal) distribution defined as 

7/(S) ~ G(O. o';C(tJ)). 


E(S) ~ CI(O. 0';1). 


eov (I)(s). E(S)} = 0 (6.2) 


=} 

var{7/(s) + E(S)} = o}C(tJ) + 0 
2 111 = L. 

where L is assumed to be positive definite and C(II) represents the correlation func­
tion of a second-order stationary error process (for example, C( II) could represent an 
isotropic exponential correlation function with range parameter (J). When the covari­
ance structure is known up to a proportionality constant in the geostatistical mixed 
linear model (i.e. L = r 2 V, where V is assumed to be known a priori), Bof Eq. 6.1 
can be estimated by generalized least squares (Rao and Toutenburg 1995). How­
ever, the specific L hyper-parameter values are rarely known a priori. In practice, B 
and the variance structure :E are jointly estimated from the sample data, typically 
by maximum likelihood (ML) or residual maximum likelihood (REML) estima­
tion (Littell et al. 1996; Lark et al. 2006). The ML or REML L hyper-parameter 
estimates are then returned to the model to compute the fixed effect parameter esti­
mates, B, and model predictions. 

Conditional on a known covariance structure, standard mixed linear modelling 
theory (Cressie )993) can be used to show that the best linear unbiased estimator 

for f3 is 

(6.3) 
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with a corresponding variance of 

(6.4) 

Likewise, one can show that the best linear unbiased prediction for Y: (where Y: 
represents the remaining (non-sampled) survey locations can be expressed as 

(6.5) 

where X: represents the design matrix associated with Yz and 2: y : represents the 
model -based covariance matrix between y.. and the observed sample data y. In ad­
dition, the corresponding variance estimate associated with this prediction vector is 

var(yz-yz) = I: z _ I: yz I:-II:~z 

+ [X: -	 I: yz I: - 1X] (XTI:-1Xr1 [Xz- I: yzI: - 1Xf , (6.6) 

where 2:: represents the model-based variance matrix of y:: (Crcssie 1993). Once 
again, these predictions and variance estimates are identical to those obtained from 
universal kriging and or kriging with external drift models (when the design matrix 
is specihed appropriately to give such models). 

6.3.2 	 Soil Sampling Strategies Based on Geo-Referenced 
Proximal Sensor Data 

A minimum number of sites for soil (or plants) must be sampled to calibrate the geo­
statistical mixed linear model following the proximal sensor survey. In general, the 
most common strategies currently used can be classihed as either probability-based 
(design-based) or prediction-based (model-based) sampling approaches. A brief de­
sc ription of each of these approaches is given below. 

Probability sampling includes techniques such as simple random, stratified ran­
dom and cluster sampling. Thompson (1992) provides a review of these. Probability 
sampling has a well developed underlying theory (Thompson 1992; Brus and de 
Gruijter 1993), but it was not designed specifically for estimating models. Indeed , 
most probability sampling strategies explicitly avoid incorporating any parametric 
modelling assumptions; they rely instead on the principles of randomization that are 
built into the design for drawing statistical inference. 

Prediction-based sampling strategies, which are adopted in geostaristics and 
time-series analysis, are focused explicitly towards model estimation. The under­
lying theory behind this approach for finite population sampling and inference is 
discussed in detail in Valliant et a!. (2000) . More generally, response surface and 
optimal experimental design theory are closely related areas of statistical research in 
which sampling designs are studied specifically from the viewpoint of model estima­
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tion (Myers and Montgomery 2002). Techniques from these two subject areas have 
been applied to the optimal collection of spatial data by MUlier (200 I), the specifica­
tion of optimal designs for variogram estimation by MUlier and Zimmerman ( 1999), 
the estimation of spatially referenced regression models by Lesch et al. (1995) and 
Lesch (2005), and the estimation of geostatistical linear models by Zhu and Stein 
(2006) and Brus and Heuvelink (2007). Conceptually similar types of non-random 
sampling designs for variogram estimation have been introduced by Russo (1984) 
and Warrick and Myers (1987). 

Sampling on a grid has been used for many years in soil science; however, it 
is not strictly randomized even when a random starting point is used. As a conse­
quence there is no direct way of estimating the standard errors of the mean from a 
design-based viewpoint. Grid sampling has generally been favored in model-based 
sampling designs and has also been commonly used in precision agriculturc because 
it is easy to implement and results in an even distribution of sample sites. Grid sam­
pling is often used when kriging is to be used for :malysis and mapping because it 
is an effective way to minimize the average interpolation error (Burgess et al. 1981; 
Burgess and Webster 1984). 

Theoretically, any of the above sampling approaches can be used to estimate 
a spatial or geostatistical model, although each approach has various strengths and 
weaknesses. Lesch (2005) compares and contrasts probability- and prediction-based 
sampling strategies in more detail, and highlights some of the strengths of the 
prediction-based sampling approach. 

The prediction-based sampling approach discussed by Lesch (200S) was de­
signed specifically for use with ground-based ECa sensor readings. A minimum 
number of samples for calibration is selected based on the observed magnitudes 
and spatial locations of the ECa data . These sites are chosen in an iterative, non­
random way to (i) optimize the estimation of a regression model (i.e. minimize 
the mean square prediction errors produced by the calibration function) and (ii) 
maximize simultaneously the average separation between adjacent sampling lo­
cations to reduce the possibility of spatially correlated residual errors. Intuitively, 
this sampling approach represents a hybrid of a response surface sampling tech­
nique (Myers and Montgomery 2002) with a space-tilling algorithm (MUller2001). 
Lesch (2005) demonstrated that such a sampling approach can substantially out­
perform probability-based sampling with respect to several important model-based 
prediction criteria, particularly optimal estimation of the fixed-effect part of a spatial 
(or geostatistical) linear model. Response surface sampling design software , known 
as ESAP, has been developed specifically for use with ECa measurements and 
other proximal sensors (Lesch et al. 2000). See hltp://www.ars.usda .gov/services/ 
software/software.htm for this open access soft\-vare. 

There are two main advantages of the response surface approach. First, the 
number of samples required for estimating a calibration function can be reduced 
substantially in comparison to more traditional design-based sampling. Response 
surface designs are commonly used to minimize the estimat.ion variance of lin­
ear statistical models in the non-spatial setting. Second, this approach lends itself 
naturally to the analysis of proximal sensor data. Indeed, many types of ground-, 
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airborne- and satellite-based remotely sensed data are often collected specifically 
because one expects them to correlate strongly with some property of interest (e.g. 
crop stress. soil type, soil sal.inity, etc.). Nevertheless, the exact parameter estimates 
associated with the calibration model may still need to be determined by some type 
of site-specific sampling design. The response suIi'ace approach explicitly optimizes 
this site select.ion process. 

6.3.3 	 Applications ofGeostatistical Alixed Linear Models 
to Proximal Sensor Directed Surveys 

Geostatistical mixed linear models can be used effectively to delineate SSMUs using 
one of two approaches. In the first (and more common) approach, the model is used 
directly to map one or more specific soil (or plant) properties. Such an approach is 
useful when the SSMU Can be defined effectively by only a few properties, and each 
of these properties correlates reasonably well with the sensor readings. Some well­
known examples of application include the mapping of field-scale soil salinity and 
or soil texture patterns, typically for leaching or reclamation of the soil using ECa 

measurements. Corwin and Lesch (2005b, c) and Lesch (2005) discuss the survey 
protocols associated with this approach in detail, together with various case studies. 

When a geostatistical mixed linear model is used to produce detailed maps of 
just one or two primary soil (or plant) properties by direct prediction using proximal 
sensor data, the delineation of SSM Us is straightforward. For a single property, the 
resulting map defines the SSMU boundaries. Likewise, if two or three properties are 
considered, a GIS overlay (or similar operation) of the predicred values can usually 
be used to define and determine the SSMUs. Note that the ' optimal' boundaries 
and or size of the units are nearly always application specific and subject to the 
operational constraints of the associated farming management practices. 

In the second approach, proximal sensor data are again used to direct soil (or 
plant) sampling. Soil (or plant tissue) from the selected sampling locations is then 
analysed for several secondary soil chemical and physical properties (or plant prop­
erties), and it is these measurements that are used ror prediction in the geostatistical 
model. This approach was originally suggested by Corwin and Lesch (2003); it is 
well suited for determining the primary SSMUs intluencing a crop response func­
tion. Note that in this case thc proximal sensor data are not used directly in the 
geostati stical model as explicit predictor variables. Rather, the model relates the 
collocated soil chemical and physical properties (or plant properties) to the crop re­
sponse levels, which enables us to relate the SSMUs better to these individual prop­
erties. It is the secondary soil properties that affect ECa (i.e. salinity, water content, 
etc.) that are used as the predictor variables, rather than the sensor data themselves. 

If the geostatistical model is used to estimate a crop response equation, which 
in turn is a function of measured soil chemical and physical properties, the de­
lineation of the SSMUs can become more complex. Crop response equations can 
often include many different soil chemical and physical property effects, and these 
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individual effects may not all be spatially well defined or easily predicted from the 
sensor data. In addition, the overlaying of many soil properties tends to produce 
overly complex mosaic maps that are not easily interpreted or delineated into con­
tiguous SSMUs (see Chapter 8). In such a situation, considcrable subjective intuition 
may be needed to define a useful set of SSMUs. 

6.4 	 Case Study Using Apparent Soil Electrical Conductivity 
(ECa ) - San Joaquin Valley, CA 

The objectivc of this case study is (i) to use an inlensive EC" survey to direct soil 
sampling anu to iuentify euaphic properties that affect cotton yield and (ii) to use 
this spatial information to make recommendations for SSM of cotton by delineat­
ing SSMUs based solely on the edaphic and anthropogenic properties that affect 
cotton yield. This paper draws from previo us more detailed work conuucted and 
published by Corwin and colleagues (Corwin and Lesch 2003, 2005b; Corwin and 
Lesch 2003) . 

6.4.1 Materials and Methods 

6.4.1.1 Study Site 

The study site is a 32.4 ha ficld in the Broadvicw Watcr District on the west side 
of the San Joaquin Valley in central California. The soil at the site is a Panache 
silty clay (thermic Xerorthents) , which is slightly alkaline with good surface and 
subsurface urainage. The subsoil is thick, friable, calcareous, unu casily pene trated 
by roots anu water. In the ariu southwestern USA the primary soil properties influ­
encing crop yield are salinity, soil texture and structure, plant-available water, trace 
elements (particularly B), and ion toxicity from Na+ and CI - (Tanji 1996). 

6.4.1.2 ECa-Directed Soil Sampling Protocols for Site-Specific Management 

General survey protocols for EC,,-directed soil sampling developed by Corwin 
and Lesch (2005b, c) were followed to characterize soil spatial variation. The 
basic elements of a field-scale EC, survey applied specifically to precision agri­
culture include: (i) site description and EC" survey design. (ii) geo-referenccd EC" 
data collection, (iii) soil sampling strategies based on geo-referenced ECa data, 
(iv) soil sample collection , (v) physical and chemical analysis of pertinent soil prop­
erties. (vi) statistical and spatial analysis, (vii) geographic information system (GIS) 
database development and (viii) approaches for delineating SSM Us. The basic steps 
within each component are outlined in Table 6.3 and discussed in detail in Corwin 
and Lesch (2005b). 
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Table 6.3 Outline of steps for an EC" field survey for precision agriculture applications. (Modified 
from Corwin and Lesch 2005b) 

I . 	 Site description and Ec.. survey design 

(a) 	 Record site metadata 
(b) 	 Define project 's or survey's objective 
(c) 	 Estahlish site houndaries 
(d) 	 Select GPS coordinate system 
(e) 	 Es tablish EC" measurement intensity 

2. 	 Ee, data collection with mobile GPS-based equipmcnt 

(a) 	 Geo-reference site boulldaries and significant physical geographic features with GPS 
(h) 	 Measure geo-rcferenced EC" data at the pre-determined spatial intensity and record 

associated metadata 

J. 	 Soi I sampling strategies based on gco- ret'ercnced EC" data 

(a) 	 Statistically analyse ECa data using an appropriate statistical sampling design to 

estahlish the soil sample sitc locations 


(b) 	 Estahlish sampling depth. sample depth increments and number of cores per site 

4. 	 Soil core sampling at specified sites designated by the sample design 

(a) 	 Ohtain measurements of soil temperature through the profile at selected sites 
(b) 	 At randomly selectcd locations ohtain duplicate soil cores within a I-m distance of one 

another to estuhlish local-scale variation of soi l propcrties 
(c) 	 Record soil core ohservations (e.g. mottling. horizonation. textural discontinuities. etc.) 

5. 	 Lahoratory analyses of appropriate soil physical and chemical properties detlned by project 
objcc tives 

6. 	 Statistical and spatial analyses to dctermine the soil properties that affect ECa and crop yield 
(provided EC" corrclates with crop yield); 

(a) 	 Perform a hasic s tatistical analysis of physical and chcmical data hy depth increment and 
by composite depths 

(h) 	 Determine the cMrdation between ECo and physico-chemical soil properties by depth 
incremcnt and by composite depths 

(c) 	 Determine the correlation bctwcen crop yield and physicallchemical soil properties by 
depth and by composi te depths to determine depth or concern (i.e. depth with 
consistently highest correlation. whether positive or negative. or soi l propertics to yield) 
and the soil propert'ies that have a significant effect on crop yield (or crop quality) 

(d) 	 Conduct an CxplonJlOry graphical analysis to determine the relationship hctween the 
significant physical and chemical propenies and crop yield (or crop quality) 

(e) 	 Formulate a spatial linear regression (SLR) model that relates soil properties 

(indepcndent variables) to crop yield or crop quality (dependent variahle) 


(1) 	 Adjust this model for spatial autocorrelation. if necessary. using residual maximum 
likelihood (REML) or some other tcchnique 

(g) 	 Conduct a sensitivity analysis to establish dominant soil property affccting yield or 
quality 

7'. 	 GIS database developmcnt and graphic display of spatial distrihution of soil properties 
H. 	 Approaches for delineating site-specific management units 
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~cd 
For the rrotocols lU be arplicahic to SSM, EC" must he correlated to nor yield 

(or quality), which would tndicalc that EC" is measuring some edaphic rroperty (or 
rrurerties) Lhat affect crop yield (or quality). The correlation cllefiicient (r) for yteld 

anuEC" was r = O.SI ( p < 0.(1). 

6.4.1.3 Yield Monitoring and EC Survey 

Sratial variation of u)[ton yield was measured at the study s ite in August IY9Y 
using a four-row colton picker equipped with a yield sensor and glohal ros itioning 
system (GPS) . The yield sensors measured average seed colton yield. All suhsequent 

rderences to colton yield are with resrect tu seeu collon yield. A total of7706 cullon 

yield readings were recorded (Fig. 6. Ia). Each yield ohservation rerresenlcd an area 

of arrroximaLely 42 m 2 . From August IYY9 to March 2()()() the field was fallow. 

On March 2000 an tntenslve FC" survey was conducted USlIlg mohile fixeu ­

array electrical resistivity equipment develured hy Rhuaues and culicagues 
(Rhoaues 19')2: Carter el al. 199:1) that measureu EC" at 9 -m intervals (4000 

EC" readings). The fixeu -array eicctrodes were sp;:tced tu me,lsure Ee, tll a depth of 
1.5 mus ing ;:t We nner array electroue configuration with an inter-electroue spacing 

o f 1.5 m. A map of the EC" meas urements is shown III Fig. 6.1 h. 

a Cotton yield b ECa survey and soil core sites 

! 
! 
1 . 
. 
L --------- - --

----- Canal 
Core sites 

Yield (Mg lIa- 1) ECa (dS m- 1) 

o - 1.5
• 1 - 3 1.5 - 23 - 4.5 

2 - 2.5• 4.5 - 5.5 
• 2.5 - 3• 5.5 - 6.25 
• 3 - 3.5• 6.25 - 6.75 

_ _ _ _ _______ • 3.5 - 5• 6.75-11.25 
100 o 100 200 300 Meters 

FiJ;(.6.1 Maps or: (a, coUon yield and (h ) Fe.. measurements inc luding 00 so il sampling siles 
(Mllelil ied fmm '(\fw in anel Ll:sch (2(Xn ) wilh pe rmiss io n ) 

http:6.75-11.25
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6.4.1.4 Sample Site Selection, Soil Sampling and Soil Analyses 

Data from the ECa survey were used to direct the selection of 60 sample sites. The 
statistics software ESAP-95 version 2.01 (Lesch et al. 2000) was used to deter­
mine the sample sites from the ECl! survey data. The software uses a model-based 
response-surface sampling strategy. The selected sites reflect the observed signal 
variation in while simultaneously maximizing the spatial uniformity of the 
sampling design across the study area. Figure 6.1 b shows the spatial ECa survey 
data and the locations of the 60 soil sampling sites. Soil samples were taken at 
0.3-m increments to a depth of 1.8 m and were analysed for the physical and chem­
ical properties thought to influence cotton yield. They included gravimetric water 
content COg). bulk density CPb), pH, B, N03 -N, CI-, electrical conductivity of the 
saturation extract (ECe ), leaching fraction (LF), % clay and saturation percentage 
(SP). The laboratory analyses followed the methods outlined in Agronomy Mono­
graph No.9 (Page et al. 1982). 

The cotton yield data were not collocated with the ECa or soil data; therefore, 
cotton yield was predicted at the 60 soil sampling sites by ordinary kriging. The ex­
perimental variogram computed by the usual method of moments on the yield data 
was fitted by an isotropic exponential function with a large nugget effect (Fig. 6.2). 
The considerable variation in yield over distances less than the sample spacing was 
most likely due to large measurement errors caused by the yield-monitoring dynam­
ics (sec Chapter4). Nonlinear least-squares estimation was used to derive the three 
variogram model parameter estimates (and standard errors): nugget (co) = 0.76 
(0.02), partial sill (c) = 1.08 (0.02) and distance parameter of the exponential func­
tion (r) 109.3 (6.0) (approximate range, 3r = 327.9m). The mean estimated 

(J.) 
C.) 

1ii 

2.0 

.~ 10> . 

0.0 L..-___.......___----'­___---'___----l 

o 100 200 300 400 

Lag Distance (m) 

Fig. 6.2 Variogram of cotton yield. The points are the experimental variogram computed on all 
7706 yield data and the solid line is the fitted exponential variogram model (see Section 1.3.2) 
(Taken from Corwin and Lesch (2003) with permission) 
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yield for the 60 sample sites was 5.95 Mg ha- I, and individual estimates ranged 
from 3.40 to 7.41 Mg ha- I 

. The associated kriging standard errors were from 0.93 
to 0.96 Mg ha- I

. 

6.4.1.5 Statistical and Spatial Analyses 

The slatistical analyses done using SAS software (SAS Institute 1999) were: 
(i) correlation analysis between EC" and interpolated cotton yield using data from 
Ihe 60 sites, (ii) exploratory statistical analysis to identify the significant soil 
properties that affect cotton yield and (iii) development of a crop yield response 

model using REML estimation techniques. Exploratory statistical analysis was done 
to determine the soil properties that have a significant effect on cotton yield and to 
establish the general form of the cotton yield response model. This required two 
stages of analysis: (i) a correlation analysis in conjunction with scatter plots of yield 
versus potentially significant soil properties and (ii) a preliminary multiple linear 
regression (MLR) analysis. 

The commercial GIS software ArcYiew 3.3 (ESRI 2002) was used to compile, 
manipulate, organize and display all spatial data. The final delineation of SSM Us 
was done using the GIS, after exploratory statistical analyses and estimating a crop 
yield response model adjusted for spatial autocorrelation. A sensitivity analysis of 
Ihe adjusted crop yield response model was used to identify the most significant 
property influencing crop yield. This ana.lysis calculated how much the predicted 
yield decreased when the value for each soil property was shifted up (or down) by I 
siandard deviation from its mean (Corwin and Lesch 20(3). 

6.4.2 Results and Discussion 

6.4.2.1 Correlation Between Crop Yield and Ee, 

The correlation between EC, and yield at the 60 soil sampling sites was 0.51 
(r coefficient of correlation) . The moderate correlation between yield and ECa 

suggests that some soil property(ies) affect both EC" and cotton yield making an 
EC,,-directed soil sampling strategy potentially viable at this site. The visual simi­
larity in the spatial distributions of EC" and cotton yield in Fig. 6. I confirms their 
close relationship. 

6.4.2.2 Exploratory StatisticaJ Analysis 

Both preliminary MLR and correlation analysis showed that the 0-1.5 m soil depth 
resultcd in the strongest correlations between yield and soil properties and best fit 
of the MLR to the data for the various depths considered (i.e. 0-0.3, 0-0.6,0-0.9, 
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Table 6.4 Simple correlation coeniciellls between Ec., and soil properties 
and between colton yield and soil properties. Modilied from Corwin and 
Le~ch (2003) 

Soi I property" Fixed-array EC.," Colton yield C 

(jg 0.79 0.42 
ECc 0.87 0.53 
B 0.88 0.50 
pH 0.33 -o.()! 

% clay 0.76 0.36 

Ph -0.38 -0.29 
NO,-N 0.22 -O.OJ 
CI - 0.61 0.25 
LF -0.50 -0.49 

SP 0.77 O.3X 

"Properties averdged over 0-1.5 Ill. 

bpearson correlation coefficients based on 60 observations. 

' Pearson correlation coefficients based on 59 observations. 

(lg. gravimetric water content; ECe , electrical com.luctivity of the saturation 

extract (dS Ill-I ); LF, leaching fraction; SP, saturation percentage. 


0-1.2 and 0- 1.5 m); 0-1.5 m was considered to correspond to the active roOt zone . 
The correlation analysis indicated that the following soil properties are those most 
significantly relatcd to cotton yield : ECe, LF, pH, % clay, e and Ph. Table 6.4 showsg 

that the correlation coefficients between Ec. and eg , ECc , B, % clay, Ph , CI - , LF 
and SP are significant at the 0.0 I level. The strongest correlations are between ECa 

and eg , ECc , B, 9(; clay and SP. Note that B is not measured directly by Ec.. The 
strong correlation between Band EC" is an artifact due to its close correspondence 
to salinity (i.e. ECJ as a consequence of leaching. The strong correlation between 
EC" and both 9'0 clay and SP is expected because it retlecrs the effect of texturc on the 
Ec.. In this particular field , EC" is strongly correlated with salinity, eg and texture. 
Table 6.4 also gives the correlation between cotton yield and the soil properties; the 
strongest correlation is with salinity (ECc ). 

A scarLer plot of ECc and yield indicates a quadratic relationship where yield 
increases and then decreases (Fig.6.3a). The scatter plot of LF and yield shows a 
negative, curvilinear relationship (Fig. 6.3b). Yield shows a minimal response to LF 
below 0.4 and it declines rapidly for LF > 0.4. Clay percentage, 8g and Ph uppear 
to be linearly related to yield to various degrees (Figs.6.3c, f, respectively). Al­
though there is clearly no correlation between yield and pH (r = -o.n I, Table 6.4; 
Fig. 6 .3d); pH became significant in Ihe presence of the other variables, which be­
came apparent in both the preliminary MLR analysis and final yield response model. 

Based on the exploratory statistical analysis, an empirical cotton yield response 
model was specified as: 

Y = fJo + III (ECc ) + fJ2(ECj + fJJ (LF)2 

+ fJ4 (pH) + fJ5 (% clay) + fJ6 (8g ) + fJ7(Pb) + s. (6.7) 

http:Figs.6.3c
http:Fig.6.3a
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Fig. 6.3 Scatter plots or soil properties anu cotton yielu: (a) electrical conductivity of the sa tu­
ration extract (ECc, ciS m- l

), (h) leaching fraction, (c) percentage clay, (d) pH. (e) grav imetriC 
water content (g g- I ) anu (I) hulk uensi ty (gcllJ- J ) (Taken from Corwin anu Lesch (2003) with 
perm iss ion) 

In this model, the relationships between cotton yield (Y) aod pH, % clay, 6g, and 
Ph are assumed to be linear; the relationship between yield and ECc is assumed to 
be quadratic; the re lationship between yield and LF is assumed to be curvilinear; 
(3(), {l" th, ..., f37 arc the regression model parameters and f represen ts the random 
error component. 

6.4.2.3 Crop Yield Response Model Development 

The initial estimation of Eq. 6.7 by ordinary least squares resulted in the following 
simplified crop yield response model: 

Y = 20. 90 + 0.38 (ECc ) - 0.02 (ECJ2 
- 3.15 (LF)2 - 2.22 (pH) + 9.27 (6g ) + f. 

(6.8) 

In this initial analysis, the paramete r estimates for % clay and Ph were not significant 
in the I-tests and were dropped from the regression model (all other parameters 
were significant near or be low the 0 .05 level). The R2 value for Eq. 6.8 was 0.61 

indicating that 61 % of the estimated spatial variation in yield could be descri bed 
successfully by this model. However, a variogram of the res iduals from the titted 
fun ction (Fig. 6.4) indicates that the errors are clearly spatially correlated, implying 
that Eq.6.8 should be retitled using REML to adjust for spatial autocorrelation . 
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Fig. 6.4 Variograms estimated on the residuals from the ordinary least-squares yield regression 
model (Eq . 6.8) by res idual maximum likelihood (REML) (d({Ihed line) and method of moments 
(MoM). The symhols are the cxperimcntal variogram estimated hy MoM for the 59 calibration 
locations and the so lid line is the tilled model (Modified from Corwin and Lesch (2001) with 
permission) 

After re-fitting Eq. 6.8 using an isotropic exponential covariance structure without 
a nugget effect, the following crop yield response model estimated by REML was 
obtained: 

Y = 19.28 + n.22 (EC) - 0.02 (ECc)2 - 4.42 (LF)2 - 1.99 (pH) + 6.93 (9g ) + 6'. 

(6.9) 

The dashed line in Fig. 6.4 represents the variogram model estimated by REML 
(sill = 0.39, distance parameter = 66.2111 (working range = 198.6 m)). Note that 
the sill variance is larger than for the method-of-moments variogram of the residuals 
because the res iduals from the trend are biased and the variogram is underesti­
mated (Rao and Toutenburg 1(95). The bias increases with increasing lag distance 
(Cressie 1(93); this occurs in Fig. 6.4 to the distance at which the asymptotic sill of 
the exponential function is reached. 

Figure 6.5 shows the observed versus predicted cotton yield estimates for Eq . 6.9. 
Figure 6.5 suggests that the estimated regression relationship is reasonably success­
ful at reproducing the predicted yield estimates. A sensitivity analysis showed that 
LF was the single most significant factor affecting cotton yie ld; the degree of pre­
dicted yield sensitivity to a one sta ndard deviation change in the ECc , LF. pH and 
0g resulted in % yield reductions of 4 .6%, 9 .6%, 5.8°;;) and 5.1 %. respectively. The 
point of maximum yield wilh respect to salinity was calculated by setting the first 
partial derivative of Eq. 6.9 to zero with respect to ECc . We note in passing that the 
value of 7.17 dS m- I obtained is quite similar to the salinity threshold for cotton 
(7.7 dS m- I

) reported by Maas and Hoffman (1977). 
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6.4.2.4 Site-Specific Management Units 

Figun: ooa.-D shows the ordinary kriged maps of the four significant soil propertit:s 

(0-1501) thai arfect t:otton yidd: (a) soil salinity (ECe . dS 01 - 1 
). (h) leaching rrac ­

tion (IF). (c) gravirnt:tric watt:r cOntt:nt (fll; ' kg kg - I) and (d) soil pH. Idt:ally, if 

each or thest: rour soil propt:rties ean he suitahly Jdjusted, then in tht:ory an optimal 

cotto n yidd t:ould be aehieVl:d anoss the entire field. Bast:d on Eq. o.l), scatter plots 

of colton yield against soil propt:rties (Fig. 0.2) and the corresponding soil property 
maps (Fig 6.6), management recommendalions were made that presnihed spatially 

what could be clo ne to increase eolton yielcl in those areas with less than the opti ­

Illal yidcl. Four rt:cornmendations can he made to improvt: colton productivity a t the 

swdy site: (i) reduct: the IF in highly leached Jreas (i.e. art:as wht:rt: LF > 05). (ii) 

reduce salinity hy increased It:aehing in an:as where the average root wne (0-1.5 01) 

salinity is > 7. 17 dS Ill - I, (iii) increast: Ihe planl-availabk water in coarst:- textured 

areas hy mure rrt:quent irrigation and (iv) reduce the pH where it is > 7.9. The ratio­

nale fur eaeh n.:ell nlll1endation is discussed in Cllrwin amI Lesch (2n03). 
Corwin and Lesch (2ll05a) suhsequently deline:Ht:d the SSMUs shown in Fig. n.7 

that indicate those areas that are pertinent to tht: ahove recommendations. ;\11 fuur 

reeommendations can he accomplished hy irnpruving waler application timing and 

di s trihution with variahk-rate irrigatIOn techrwlogy and by the pru:ise applicatioll 

llf soil amendments. Strongly Inched LOnes were delineuted where the Lf- needed tll 

he redueed to ~ 0.5: markedly saline areas were deli ned where the salinity m:eded 

. 



I b() D.L. Corwin and S.M . Lesch 

a 

C 

3-4 
4-5 
5-8 
8-11 
11-15 

0.18-0.23 
0.23-0.27 
0.27-0.3 
0.3-0.32 
0.32-0.34 
0.34-0.37 

b 

d 

N 

A 
0-1.5m 

0-02 
02-03 
0.3-0.4 

0.4-05 
0 .5-0.6 
0 .6-08 

7.2-7.5 
7.5-7.6 
7.6-7.7 
7.7-7.8 
7.8-7.9 
7.9-8.2 

200 0 200 400 Meters 
I"!"E~=~~~=;;;;;;j 

Fig.6.6 Kri ged maps o f the four most sig nifi ca nt so i I properties (t ~- I . ') m ) that affect cotton y ie ld: 

(a) elec trical clJnducti vi ly o f the saluralio n extract (EC, . dS Ill - I). (h ) leaching fraclion (LF). 
(e) grav imetric waler conlenl ( ij~ , kg kg- I) and (d ) rl-I (Taken from Corwi n and Lesch (2()03) 
lVith pe rmission) 

Management Recommendations 
for Site-Specific Management 

Units 

+ 
N 

o ECa-directed soil sample locations 

Leaching fraction: reduce LF to < 0.4 

Salinity: reduce ECa to < 7.17 dS/m 

Coarse texture requires more frequent 
irrigation 

pH : reduce pH to < 7.9 

Fig. 6,7 Sile-spcc if'ic management units (SSM s) for a 32.4 -ha COW)!l field in th e:: Bruad " ic" 

Water Dislne l o f Cl:mral California', San Joaquin Valky. Recommendati o ns associ ated with the 
SSMU, arc fo r: (a ) leaching fraction. (b) sali nilY. (e) lex ture and (d ) pH (Taken from Corwin a nd 
l.esch 2(X)')a) 
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to be reduced below the salinity threshold for cotton , which was established from 
Eq . 6.9 to be ECc = 7.17 dS m- I for this field; areas of coarse texture were delined 
that needed more frequent irrigation and areas were identilied where the pH needed 
to be reduced below a pH 8 with a soil amendment such as OM. Although this 
work has delineated within-field units where associated site-specific management 
recommendations would optimize the yield. it still falls short of integrating meteo­
rological, economic and environmental impacts on within-field crop yield variation. 

6.5 Conclusion 

Since all proximal sensors can be, and generally are, intluenced by morc than one 
property that can affect plant yield (or quality), the most appropriate use of geo­
referenced proximal sensor data is to direct soil (or plant) sampling to determine 
the spatial distribution of properties affecting crop yield (or quality). Directed soil 
(or plant) sampling with proximal senSor data provides a means of establishing the 
properties that have most effect in crop yield (or quality) and of mapping the distri­
bution of these properties. In addition, it provides sufficient information to develop 
a crop yield (or quality) response model that relates yield to edaphic or other prop­
elties affecting yield . The spatial distribution of the properties that have most effect 
on yield (or quality) together with a crop yield (or quality) response model pro­
vidc sufficient information to delineate SSMUs with associated recommendations 
to increase yield (or improve quality). 

Even though Ee,-directed soil sampling provides a viable means of identifying 
some soil properties that affect within-held variation of yield, it is only one piece of 
a complicated puzzle of interacting factors that result in the observed within-Held 
variation in crops. Crop yield is affected by complex interactions of meteorologi­
cal, biological, anthropogenic, topographic and edaphic factors. Furthermore, SSM 
requires more than just a myopic look at crop productivity. It must balance sus­
tainability, prolitability. crop productivity and quality, optimization of inputs and 
minimization of environmental impacts. 

Mobile platforms containing multiple proximal sensors are currently being de­
veloped and tested to provide the full complement of spatial data needed to identify 
and spatially characterize not only edaphic but anthropogenic, topographic. meteo­
rological and biological properties that influence plant growth . These platforms will 
provide multiple layers of spatial information enabling the delineation of SSMUs 
well beyond the capability of single proximal sensor platforms. 
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