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The transport of solutes and colloids in porous media is influenced by a variety of physical and
chemical nonequilibrium processes. A combined physical–chemical nonequilibrium (PCNE)
model was therefore used to describe general mass transport. The model partitions the pore
space into “mobile” and “immobile” flow regions with first-order mass transfer between these
two regions (i.e, “physical” nonequilibrium or PNE). Partitioning between the aqueous and
solid phases can either proceed as an equilibrium or a first-order process (i.e, “chemical”
nonequilibrium or CNE) for both themobile and immobile regions. An analytical solution for the
PCNE model is obtained using iterated Laplace transforms. This solution complements earlier
semi-analytical and numerical approaches to model solute transport with the PCNEmodel. The
impact of selected model parameters on solute breakthrough curves is illustrated. As is well
known, nonequilibrium results in earlier solute breakthrough with increased tailing. The PCNE
model allows greater flexibility to describe this trend; for example, a closer resemblance
between solute input and effluent pulse. Expressions for moments and transfer functions are
presented to facilitate the analytical use of the PCNE model. Contours of mean breakthrough
time, variance, and spread of the colloid breakthrough curves as a function of PNE and CNE
parameters demonstrate the utility of a model that accounts for both physical and chemical
nonequilibrium processes. Themodel is applied to describe representative colloid breakthrough
curves in Ottawa sands reported by Bradford et al. (2002). An equilibrium model provided a
good description of breakthrough curves for the bromide tracer but could not adequately
describe the colloid data. A considerably better description was provide by the simple CNE
model but the best description, especially for the larger 3.2-µm colloids, was provided by the
PCNE model.
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1. Introduction

The transport of solutes and colloids in porous media is
subject to a variety of nonequilibrium processes. Physical
nonequilibrium (PNE) will affect transport because of
nonuniformity of the flow field at the pore scale including
preferential and unstable flow (Ritsema et al., 1993; de Rooij,
2000; Wang et al., 2004). The mobile/immobile model has
commonly been used to account for PNE during solute
transport (Coats and Smith, 1964; van Genuchten and
radford).

r B.V.
Wierenga, 1976). In this case, the pore space is partitioned
into two regions. Transport in the “mobile” region of the pore
space is described with the advection–dispersion equation
(ADE) while solute exchange between “mobile” and “immo-
bile” regions occurs by diffusion and is typically described
with a first-order rate equation. The mobile/immobile model
predicts early initial breakthrough as a result of rapid
transport through the “mobile” region, and extended tailing
of the breakthrough curve as a result of slow diffusion
between the “immobile” to the “mobile” region.

Chemical nonequilibrium (CNE) occurs as a result of rate-
limited chemical reactions at an interface (Sparks, 198).
Reduced mass transfer rates of solutes to/from an interface
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are manifested in delayed interactions between solute and
interface and may also be modeled as a PNE process. CNE
models have been used for several decades to elucidate and
quantify solute transport in porous media (Coats and Smith,
1964; Selim and Ma, 1998). CNE models are typically based
on the ADE with linear driving force terms to describe rate-
limited mass transfer and reaction behavior (Powers et al.,
1991). Linear driving force models are quasi-steady state
approximations of Fick's first law of diffusion and assume that
the rate of mass transfer is equal to the product of the
diffusional resistance in and the concentration difference
across the boundary layer. In contrast to PNE models,
CNE models only affect the concentration of solutes and/or
colloids that interact with an interface. The mathematical
solution for both models is essentially the same (Toride et al.,
1993). However, it is desirable to have a model that accounts
for both the conceptually different PNE and CNE processes
because physical and chemical nonequilibrium will affect
transport differently than simple PNE or CNE (cf. Wagenet
and Chen, 1998). The combined physical and chemical
nonequilibrium (PCNE) model provides the flexibility to
independently describe physical and chemical nonequilibri-
um effects.

Brusseau et al. (1989) considered the multiprocess non-
equilibrium transport of solutes subject to rate-limited mass
transfer in the liquid and the sorbent. The model was extended
to include first-order degradation by Brusseau et al. (1992).
Selim et al. (1999) used both a two-site CNEmodel, with either
equilibrium or kinetic sorption, and PNE to describe pesticide
transport in soil. The solute or pesticide concentrations were
obtained numerically. Analytical solutions can typically only be
obtained for linear transport problems for simplified condi-
tions. This limits their applicability to well-defined conditions
such as those in laboratory experiments. However analytical
methods are also useful to verify numerical methods, elucidate
the role of different model parameters, and to approximately
quantify transport such as for longer time or spatial scales.
It should also be noted that detailed numerical simulations
are often not warranted because of a lack of reliable model
parameters. Therefore analytical results for the PCNE model
will still be valuable. Neville et al. (2000) proposed a semi-
analytical approach. After applying a Laplace transform of the
governing equations for the PCNE model, the solute concen-
tration was obtained by numerical inversion. The major
objective of this work is to derive analytical tools for the
PCNEmodel that offer the flexibility to independently quantify
the impact of a “chemical” and “physical” nonequilibrium
process on solute transport.

Solute transport models such as the CNE model have
frequently been used to describe the movement of colloids in
porous media since the attachment and detachment of
colloids on the solid phase is not an equilibrium process.
However, colloids are subject to additional nonequilibrium
due to differences in flow and pore geometry that is typically
described with a PNE model (Leij and Toride, 1998).
Simulations of the flow field between the solid grains of a
porous medium clearly show eddy zones that are hydrody-
namically isolated from the bulk fluid flow (Torkzaban et al.,
2008). Any transfer of colloids into and from these regions
will be diffusion controlled. Colloid transport and retention
in porous media with such “immobile” zones are more com-
plicated than for “conventional” solutes such as inorganic
electrolytes. Colloids that are weakly associated with solid-
water and/or air-water interfaces can be funneled by
hydrodynamic forces to immobile regions under unfavorable
attachment conditions (Johnson et al., 2007; Torkzaban et al.,
2008). Colloid retention is inversely related to pore-water
velocity (Bradford and Torkzaban, 2008; Torkzaban et al.,
2008) and is also affected by the pore-size distribution, the
colloid size, and the water content (Bradford et al., 2006,
2007; Torkzaban et al., 2008). Applied and resisting torque
balance calculations indicate that the volume of the pore
space where colloid retention may occur will decrease with
increasing fluid velocity and decreasing adhesive forces
(Torkzaban et al., 2007). The PCNEmodel appears particularly
suited to describe colloid transport to permit (different) rate
equations for colloid attachment and detachment (CNE) with
the magnitude of the difference depending on the flow
regime (PNE). A secondary objective of this work is to apply
the new solution of the PCNE model to describe colloid
breakthrough curves reported by Bradford et al. (2002).

2. Theoretical

2.1. Problem formulation

The two governing equations for transport of a solute in
a porous medium (soil) with mobile and immobile regions of
soil water are defined as:

θm
∂Cm

∂t + θim
∂Cim

∂t + ρb
∂S
∂t = θmDm

∂2Cm

∂z2
−θmvm

∂Cm

∂z ð1Þ

θim
∂Cim

∂t + ρb
∂Sim
∂t = αðCm−CimÞ ð2Þ

where θ is the volumetric water content, the subscriptsm and
im refer to the mobile and immobile region, C is solute con-
centration in the aqueous phase [M/L3], S is the solid phase
concentration of solute from either the mobile or immobile
region per mass of dry soil [M/M], ρb is the dry soil bulk
density [M/L3], D is the dispersion coefficient [L2/T], v is the
pore-water velocity [L/T], α is a PNE coefficient for mass
transfer between mobile and immobile region [1/T], z is
depth [L], and t is time [T]. When colloids are considered the
aqueous and solid phase concentrations are typically given in
terms of number, rather than the mass.

The aqueous phase consists of mobile and immobile re-
gions. The solid phase of the soil is either in contact with the
mobile or immobile aqueous region, solutes may sorb onto or
desorb from the solid phase. Without considering the actual
mechanism for solute sorption, the following equalities hold:

θm + θim = θ ; θmvm = θv ; θmDm = θD ; Sm + Sim = S:

ð3a;b; c;dÞ

The CNE component is introduced by further distinguishing
between equilibrium (type 1) and kinetic (type 2) retention:

Sm = Sm;1 + Sm;2 ; Sim = Sim;1 + Sim;2: ð4a;bÞ
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Fig. 1 illustrates the different concentration types thatmay
occur. The relationship between concentrations may be
quantified with transfer functions H as discussed later on.
Notice that nonequilibrium retention is depicted different in
Fig. 1 than the corresponding nonequilibrium exchange for
solutes by Brusseau et al. (1989). These authors, among
others, consider intrasorbent diffusion rather than rate-
limited sorption as the reason for nonequilibrium transport.
However, the mathematical problem for nonequilibrium
solute sorption will be the same for either kinetic exchange,
intrasorbent diffusion, or both these processes because Cm
and Sm1 are linearly dependent. Solute sorption on type-1
sites is an equilibrium process described by:

Sm;1 = Km;1Cm ; Sim;1 = Kim;1Cim ð5a;bÞ

with K as a “distribution” constant expressed as volume of
aqueous phase (either the “mobile” or “immobile” region) per
mass of dry soil [L3/M]. Sorption on type-2 sites is governed
by a first-order rate equation:

∂Sm;2

∂t = βmðKm;2Cm−Sm;2Þ ;
∂Sim;2

∂t = βimðKim;2Cim−Sim;2Þ:
ð6a;bÞ

The sorption rate is proportional to the difference in
(eventual) equilibrium and actual solid phase concentration
with β as the proportionality constant [1/T]. These coeffi-
cients are likely to be different for retention from the mobile
and immobile regions. For both regions a ratio of “equilibri-
um” to “total” sites may be defined. At equilibrium these
follow from the solid phase concentrations or the distribution
coefficients according to:

fm =
Sm;1

Sm
=

Km;1

Km
; fim =

Sim;1

Sim
=

Kim;1

Kim
: ð7a;bÞ
Fig. 1. Schematic of different concentration types for ph
The equilibrium concentrations are shown on the left-
hand side of Fig. 1. The total concentration, which is given as
mass per volume of bulk soil, is defined as:

CT = θmCm + θimCim + ρbðSm + SimÞ: ð8Þ

At equilibrium, the total concentration is given by:

CT = θRCm withR = 1 + ρbK = θandK = Km + Kim ð9Þ

where R is a retardation factor (cf. Table 1).
The system of mathematical equations that needs to be

solved is as follows:

θm
∂Cm

∂t + θim
∂Cim

∂t + ρb fmKm
∂Cm

∂t +
∂Sm;2

∂t + fimKim
∂Cim

∂t +
∂Sim;2

∂t

 !

= θmDm
∂2Cm

∂z2
−θmvm

∂Cm

∂z ð10aÞ

θim
∂Cim

∂t + ρb
∂Sim
∂t = αðCm−CimÞ ð10bÞ

∂Sm;2

∂t = βm½ð1−fmÞKmCm−Sm;2� ;
∂Sim;2

∂t = βim½ð1−fimÞKimCim−Sim;2�:
ð10c;dÞ

The problem will be rewritten with Cm as a dependent
variable because the other concentration types as well
as influent and effluent concentrations are most easily
expressed in terms of Cm. The selected mathematical condi-
tions involve a zero initial condition and a time-dependent
input Co(t):

Cmðz;0Þ = 0 ð11Þ

Cmð0; tÞ = CoðtÞ ; Cmð∞; tÞ = 0: ð12a;bÞ
ysical–chemical nonequilibrium transport model.



Table 1
Parameters for PNE, CNE, and PCNE models.

Model Auxiliary parameters
PNE am = α

θmRm
aim = α

θimRim

CNE bm = βR2
R1

PCNE am = α
θmRm;1

bm = βmRm;2
Rm;1

aim = α
θimRim;1

bim = βimRim;2
Rim;1

Retardation factors
PNE Rm=1+ρbKm /θm Rim=1+ρbKim /θim
CNE R1=1+ρbfK /θ R2=ρb(1− f)K /θ
PCNE Rm,1=1+ρbfmKm /θm Rim,1=1+ρbfimKim /θim

Rm,2=ρb(1− fm)Km /θm Rim,2=ρb(1− fim)Kim /θim
Rm=1+ρbKm /θm Rim=1+ρbKim /θim

All R=1+ρbK /θ

Fig. 2. Normalized concentration as a function of time according to the PCNE
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model for a 10-cm long soil column with to=60 min, q=θmvm=0.25 cm/
min, Dm=0.05 cm2/min, ρb=1.325 g/cm3, θ=0.5, α=0.01 min−1, βm=
βim=0.1 min−1, fm= fim=0.5, Km=0.4 cm3g−1, and Kim=0.6 cm3g−1 for
three values of θm /θ.

Fig. 3. Breakthrough curves according to the PCNE model for a 10-cm long
soil column with to=60 min, vm=0.5 cm/min, Dm=0.05 cm2/min,
ρb=1.325 g/cm3, θm=θim=0.25 with θ=0.5, α=0.01 min−1, βm=βim=
0.01 min−1, Km=0.4 cm3g−1, and Kim=0.6 cm3g−1 for fm= fim equal to
either 0.1, 0.5, or 0.9.
2.2. Solution of the PCNE

The solution of the mobile concentration for the physical–
chemical nonequilibrium (PCNE) model is outlined in Appen-
dix A. Themobile concentration for an arbitrary input Co(t) is:

Cmðz; tÞ = ∫
t

0

Coðt−τÞfhðz;τ;0Þ + ∫
τ

0

hðz;τ;ηÞ½ f ðτ;η;η;0Þ
+ gmðτ;η;0Þ + ∫

η

0

gimðη;σ;0Þf ðτ;η;η;σÞ

+ gmðτ;η;σÞð f ðt;η;σ;0Þ
+ ∫

σ

0

gimðσ;κ;0Þf ðτ;η;σ;κÞdκÞdσ�dηgdτ
ð13Þ

where τ, η, σ, and κ are dummy integration variables. The
auxiliary functions f, g, and h are defined as follows:

f ðτ;η;σ; κÞ =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
amaimðτ−ηÞ

σ−κ

r
exp − aim + bimð Þ σ−κð Þ½ �

× I1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4amaimðτ−ηÞðσ−κÞ

ph i ð14aÞ

gjðη;σ;κÞ =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
βjbjðη−σÞ

σ−κ

s
exp −βj σ−κð Þ
h i

× I1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4βjbjðη−σÞðσ−κÞ

qh i
ðj = m; imÞ

ð14bÞ

hðz;τ;ηÞ = zffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4πDm t−τð Þ3 = Rm;1

q

× exp − am + bmð Þ τ−ηð Þ−
Rm;1z−vm τ−ηð Þ
h i2

4DmRm;1 τ−ηð Þ

0
B@

1
CA

ð14cÞ
with I1 as the first-ordermodified Bessel function. The auxiliary
parameters aj and bj are defined in Table 1. Note that Table 1
also provides results for the limiting cases of PCE and CNE.

The expressions for the immobile concentration Cim and
the different types of concentrations for the solid phase (Sm,1,
Sm,2, Sim,1, and Sim,2) follow from these results as outlined
in Appendix B. Special cases of the problem arise when βm=
βim=0 (i.e., exclusive physical nonequilibrium PNE) and
α=0 (i.e., chemical nonequilibrium CNE). The additional
nonequilibrium process that is included in the PCNE compli-
cates the mathematical problem; existing solutions for the
PNE or CNE models such as derived by Toride et al. (1993)
cannot be readily adapted.
2.3. Applications

The solution for the PCNE is now used to illustrate the
sensitivity of the breakthrough curve to different types of
nonequilibrium. Values for themodel parameters are adapted
from Leij and Toride (1998) and Bradford et al. (2002), but
the solution can obviously be applied to different sets of
parameters. Fig. 2 shows effluent breakthrough curves as a
function of actual time when physical nonequilibrium
(α=0.01 min−1) is more pronounced than chemical non-
equilibrium (βm=βim=0.1 min−1) for three mobile water
fractions (θm=0.05, 0.25, and 0.45) and the same Darcy
velocity q=θmvm=0.25 cm/min. There is slightly earlier
breakthrough and more tailing for the lower θm /θ but the
shapes of the curves are similar. Now consider a scenario with
both physical (α=0.01 min−1) and chemical (βm=βim=
0.01 min−1) nonequilibrium where the fraction of solid
phase (“sites”) with equilibrium that partitions with the
aqueous phase varies (Fig. 3). If most of the partitioning is a
nonequilibrium process (fm= fim=0.1), the solute appears
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somewhat earlier in the effluent and there will be slightly
more tailing. However, the general shape of the breakthrough
curve does not alter much if exchange between solid and
aqueous becomes more of an equilibrium process (i.e., f
increases to 0.5 or 0.9).

Of particular interest for studying the combined effect of
physical and chemical nonequilibrium parameters is the
dependency of the breakthrough curve on both rate para-
meters α and β. Fig. 4 displays breakthrough curves for
physical rate parameter α equal to 0.1, 0.01, or 0.001 min−1

and the chemical nonequilibrium parameter β, also equal to
0.1, 0.01, or 0.001 min−1. The latter values are based upon the
detachment rates reported by Bradford et al. (2002) assuming
that βm=βim. A decrease in exchange between mobile
and immobile regions of the aqueous phase (i.e., lower values
for α) results in earlier breakthrough and a higher peak
Fig. 4. Breakthrough curves according to the PCNE model for a 10-cm long
soil column with to=60 min, vm=0.50 cm/min, Dm=0.05 cm2/min,
ρb=1.325 g/cm3, θm= θim=0.25, fm= fim=0.5, Km=0.4 cm3g−1, and
Kim=0.6 cm3g−1 for three values of α and βm=βim=β.
concentration. The longer tail is not shown in Fig. 4. The
behavior is similar as for the PNE model (Leij and Toride,
1998). Due to chemical nonequilibrium, the breakthrough
curve exhibits a higher maximum concentration and steeper
gradients (i.e., a more rectangular curve) for lower β. During
nonequilibrium conditions, assuming unchanged θm, Km, and
Kim, solutes are less likely to move from the aqueous to the
solid phase (CNE) or from mobile into the immobile aqueous
phase (PNE). If they do, the reverse transfer back into the
mobile aqueous phase and the subsequent appearance in
the effluent will also proceed more slowly. Hence, chemical
nonequilibrium enhances the differentiation between solute
travel times with a greater amount of solute appearing early
in the effluent as a more rectangular part of the breakthrough
curve, the remaining solute will reside longer in the porous
medium. The chemical nonequilibrium component of the
PCNE allows more flexibility to simulate the residence times
of solutes without impacting the pore-water velocity (which
is determined by the Darcy flux and θm).

With the analytical solution, additional sensitivity analy-
ses involving aqueous or solid concentration profiles versus
time or distance may be performed for one or more PCNE
parameters (vm, Dm, Km, Kim, θm, α, βm, βim, fm, fim).
Furthermore, the PCNE model can be readily simplified by
setting parameters to zero or reformulated by regrouping
parameters. For example, for colloid transport it is common to
use different attachment and detachment rates and to assume
that all partitioning should be described as a nonequilibrium
process (cf. Bradford et al., 2002). Partitioning between the
mobile or immobile aqueous and the solid phase may be
written as:

∂Sm
∂t =

θmkm;a

ρb
Cm−km;dSm ;

∂Sim
∂t =

θimkim;a

ρb
Cim−kim;dSim

ð15a;bÞ

where km,a and km,d are rate coefficients [T−1] for attachment
(retention) and detachment (release) of colloids from the
mobile region, kim,a and kim,d are the corresponding coeffi-
cients [T−1] for the immobile region. They can be related to
the parameters in the general PCNE model according to:

βm = km;d; Km =
θmkm;a

ρbkm;d
; βim = kim;d ; Kim =

θimkim;a

ρbkim;d
:

ð16a;b; c;dÞ

2.4. Transfer functions and moments

The different types of aqueous and solid phase concen-
trations can be conveniently related with each other using
transfer functions (Sardin et al., 1991). These functions are in
essence the ratio of an “output” to an “input” signal in the
Laplace or frequency domain. Fig. 1 depicts functions for the
PCNE with transfer between the different aqueous and solid
phases. Transfer from the mobile to the immobile region is
governed by:

―
H

im
m ðpÞ =

―
Cimðp; zÞ
―
Cmðp; zÞ

=
aimðp + βimÞ

ðp + aim + bimÞðp + βimÞ−βimbim

ð17Þ



Table 2
Expressions for first-, second-, and third-order moments for breakthrough after a Dirac delta input according to PNE, CNE, and PCNE models.

Model M1 M2 M3

PNE Rz
v

z R2

v3 ð2D + vzÞ + 2θ2imR2
im

αθv

h i
z R3

v5 ð12D2 + 6Dvz + v2z2Þ + 6θ2imR2
im

αθv
R
v2 ð2D + vzÞ + θimRim

α

� �h i

CNE
Rz
v

z R2

v3 ð2D + vzÞ + 2R2
βv

h i
z R3

v5 ð12D2 + 6Dvz + v2z2Þ + 6R2
βv

R
v2 ð2D + vzÞ + 1

β

� �h i

PCNE
Rz
v

z R2

v3 ð2D + vzÞ + 2
θv

θ2imR2
im

α + θimRim;2
βim

+ θmRm;2
βm

h in o
zf R3

v5 ð12D2 + 6Dvz + v2z2Þ + 6
θv ½ θ2imR2

im
α

R
v2 ð2D + vzÞ + θimRim

α

� �
+ θimRim2

βim

R
v2 ð2D + vzÞ + 1

βim
+ 2θimRim

α

� �
+ θmRm;2

βm

R
v2 ð2D + vzÞ + 1

βm

� ��
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where the overbar denotes Laplace transformation and p is
the Laplace variable (cf. Appendix A). Inversion of the transfer
function to the time domain yields:

Him
m ðtÞ = aim

2w3
fðw1 + w2Þexp½−ðw2 + w3Þt = 2�

− ðw1−w3Þexp½−ðw2−w3Þt = 2�g
ð18aÞ

with w1 = aim + bim−βim ;

w2 = aim + bim + βim;

w3 =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2

2−4aimβim

q
:

ð18b; c;dÞ

This inverse is referred to as the residence time distribu-
tion, RTD, which is a probability density function of times
required for transfer from the mobile to immobile region. The
concentration in the immobile region is a convolution of the
mobile concentration and the RTD, i.e.,

Cimðz; tÞ = ∫
∞

0

Him
m ðt−τÞCmðz;τÞdτ ð19Þ

The RTDs for transfer from the mobile and immobile pore
space into the corresponding solid phases are respectively
given by:

H1
mðtÞ = δðtÞKm;1 ; H2

mðtÞ = Km;2βmexpð−βmtÞ ð20a;bÞ

H1
imðtÞ = δðtÞKim;1 ; H2

imðtÞ = Kim;2βimexpð−βimtÞ: ð21a;bÞ

Equilibrium partitioning occurs instantaneously and, in
this trivial case, the RTD is a Dirac delta function. The transfer
function concept is convenient to deal with “in series”
transport of solutes from the mobile via the immobile to the
type 2 solid phase, or the “parallel” process of sorption by
sites with different rate coefficients.

Evaluation of the analytical expressions for the concen-
tration according to the PCNE is cumbersome in view of the
integrations. Instead, solute breakthrough may be more
conveniently characterized with the following time
moments:

mnðzÞ = ∫
∞

0

tnCðz; tÞdt ðn = 0;1;2…Þ ð22Þ

where n is the order of the moment and C is the dependent
variable. As is well known, moments can be conveniently
obtained from the solution in the temporal Laplace domain
according to:

mnðzÞ = lim
p→0

dn
―
C

dpn
; MnðzÞ =

mnðzÞ
m0ðzÞ

ð23a;bÞ

with p as the Laplace variable and M as the normalized
moment.

The solution in the Laplace domain is given in Appendix A
(i.e., Eq. (A9)). With the help of mathematical software,
expressions for the first three moments were derived for the
PNE, CNE, and PCNE models for a Dirac-type input of a unit
mass (i.e., m0=1). Table 2 shows the results. From these
expressions follow the mean breakthrough time, μ=M1, the
variance about the mean, σ 2=M2−(M1)2, and the skewness,
γ=M3/σ 3. Mean breakthrough time is not affected by non-
equilibrium parameters for the PCNE model, as was already
observed for PNE and CNE (Valocchi, 1985; Leij and Toride,
1998). The second moment quantifies solute dispersion,
which depends on nonequilibrium processes but physical
and chemical nonequilibrium phenomena act independently.
The skewness of the breakthrough curve for the PCNE model
will be larger than predicted according to mere physical or
chemical nonequilibrium due to the “cross” term.

Themoment resultswere used to examine the sensitivity of
colloid displacement to transport parameters. For brevity, the
sensitivity will be considered for two parameters at a time.
Consider the transfer between mobile and immobile regions
and subsequent colloid retention. Fig. 5 depicts contours for
mean breakthrough timeM1 (min), variance (min2), and skew
as a function of logα and logkim,a for a breakthrough curve at
z=10 cm. As is well known (Sardin et al., 1991), the mean
breakthrough timeM1 is not affected by the transfer coefficient
α, but it does depend on the amount of colloids that will be
retained and hence on kim,a. The variance (dispersion) of the
breakthrough increases with α up to log α=−2 and increases
throughout with log kim,a. The skewness changes rapidly for
logα<−2 and logkim,a>−2 and exhibits a more gradual
changeelsewhere. In theother useofmoments, Fig. 6 shows the
dependency of mean breakthrough time, variance and skew on
immobile water content θim and, again, deposition rate kim,a.
Larger values forM1, Var, and γ tend to occur for larger θim and
kim,a, which both imply increased colloid retention. The mean
breakthrough time appears to depend more strongly on kim,a

whereas skewness is mostly determined by θim.



Fig. 5. Contours for mean breakthrough time (M_1, min), variance (Var, min2), and skew (γ) as a function of logα (with mass transfer coefficient α in min−1) and
log kim,a (with kim,a also in min−1) for instantaneous colloid application and z=10 cm with vm=0.339 cm/min, Dm=0.0339 cm2/min, θm=0.301, θim=0.0334,
ρb=1.76 g/cm3, fm= fim=0, km,a=0.0201 min−1, km,d=0.001 min−1, and kim,d=0.001 min−1.
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3. Colloid transport

The analytical results can be used to quantify and elucidate
a wide variety of transport scenarios involving breakthrough
curves and retention profiles. In this study the solutions
were applied to describe colloid breakthrough curves re-
ported by Bradford et al. (2002). During a steady flow of
buffered aqueous solutions with a Darcy velocity of approx-
imately 0.1 cm min−1, a pulse with carboxyl latex micro-
spheres and a bromide tracer (0.001M NaBr buffered to a pH
of 7) was applied to columns packed with different porous
media. Results of four experiments were used (Table 3).
The porous medium consists of Ottawa quartz sand with a
Fig. 6. Contours for mean breakthrough time (M_1, min), variance (Var, min2), and
from the immobile phase kim,a for instantaneous colloid application and z=10 cm
ρb=1.76 g/cm3, fm= fim=0, km,a=0.0201 min−1, km,d=0.001 min−1, and kim,d=0
median grain diameter of either 710 µm (denoted as “2030”)
or 240 µm (denoted as “mix”). For both media the colloid
diameter was either 0.45 or 3.2 µm. The latter is typical for
the size of pathogenic bacteria. The corresponding colloid
concentrations in the pulse solution are approximately
4.24×1011 and 1.18×109 particles/L yielding a total mass
of applied colloids of approximately 3.28 mg. Table 3 lists the
Darcy flux (q), column length (L), and porosity (ε) for the
column experiments. The reader is referred to Bradford et al.
(2002) for more extensive details.

First consider the breakthrough curves for the bromide
tracer with results listed below the experimental conditions in
Table 3. Moments of the breakthrough curve, concentration
skew (γ) as a function of immobile water content θim and rate of attachment
with vm=0.339 cm/min, Dm=0.0339 cm2/min, α=0.001 min−1, θ=0.334,
.001 min−1.
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versus time, were determined according to Eq. (22). The zero-
order moment, m0, yields a value in the order of 70 min. This
value was used as the pulse duration to in the analysis of the
colloid data. The retardation factor for the conventional
advection–dispersion equation (ADE) is calculated according
to R=M1−to/2. Values for R are close to unity as would be
expected for a conservative tracer. Higher-order moments will
not be presented because these becomemore inaccurate as the
order increases. The breakthrough curves were optimized with
the solutions of the ADE and the PNE using the Levenberg–
Marquardt procedure. For the ADE,R andD are given in Table 3.
The values for the coefficient of determination r2, suggest a
good description of the data. Using the analytical solution for
the PNE, which involves the additional nonequilibrium para-
meters α and the fraction of mobile water θm/θ, does not
greatly improve the description of the data judging by the r2

value. The value for θm/θ, with θ equal to the porosity ε, is
typically close to unity. Equilibrium conditions appear to exist
for bromide transport and, as already pointed out by Bradford
et al. (2002), bromide serves as a good conservative tracer.
Table 3
Breakthrough experiments for bromide tracer and colloids.

Experiment 1

Medium Ottawa sand 2030
Colloid Size (µm) 0.45
Column q (cm/min) 0.100

ε 0.367
L (cm) 13.28

Bromide
Moments m0= to (min) 76.9

M1 (min) 87.1
R 1.01

ADE R 1.00
D (cm2/min) 0.021
r2 0.998

PNE R 1.01
D (cm2/min) 0.020
α (1/min) 1.48×10−4

θm /θ 0.994
r2 0.999

Colloids
Moments m0= to (min) 69.2

M1 (min) 90.4
R 1.15

ADE R 1.12
D (cm2/min) 0.15
r2 0.969

CNE R 2.22
D (cm2/min) 0.051
β (1/min) 3.06×10−3

f 0
r2 0.997

PCNE R 2.22
D (cm2/min) 0.051
β (1/min) 3.06×10−3

f 0.001
α (1/min) 8.26×10−4

θm /θ 0.576
r2 0.998
Colloid breakthrough curves are reported as normalized
concentration C/Co, i.e., the ratio of the number of colloid
particles in the effluent and the pulse solutions, versus nor-
malized time T=vmt/L. Fig. 7 shows the observations aswell as
optimized curves for the four experiments. The bottom half of
Table 3 contains the experimental moments followed by the
optimized parameters for the ADE, PNE, and PCNEmodels. The
breakthrough curves obtained from these fitted parameters are
also shown in Fig. 7. Colloid size has a strong negative
correlation with the total amount of colloid in the effluent.
The values for the zero-order momentm0 are close to the pulse
duration to for the smaller 0.45-µm colloids (experiments 1
and 3), but for the larger 3.2-µm colloids only about 45%
(experiment 2) and 12% (experiment 4) of the applied col-
loids end up in the effluent. The finer medium, i.e., a mixture of
sand with a median diameter of 240 µm, will retain more
colloids (experiment 4). The colloids that pass through will
experience more retardation for the larger colloid and smaller
grain size as demonstrated by the R values computed from
moment results.
2 3 4

mix
3.2 0.45 3.2
0.103 0.104 0.108
0.362 0.328 0.336

13.1 12.4 12.5

75.7 74.5 78.2
85.4 77.9 78.9
1.04 1.04 1.02

1.03 1.04 1.16
0.020 0.031 0.032
0.997 0.989 0.928

1.04 1.03 1.03
0.017 0.031 0.015
7.1×10−4 1.72×10−2 2.51×10−4

0.980 0.989 0.984
0.998 0.989 0.998

33.8 74.0 9.49
86.4 80.7 86.7
1.52 1.12 2.10

1.57 1.05 2.18
0.44 0.088 0.48
0.864 0.980 0.889

31.0 1.27 358
0.053 0.042 2. 59
5.64×10−4 1.31×10−2 3.74×10−4

0 1.31×10−2 0.009
0.920 0.993 0.925

31.0 1.27 437
0.053 0.042 0.059
5.64×10−4 1.31×10−2 4.92×10−4

0.001 0.031 0.019
2.88×10−4 1.5×10−3 6.38×10−3

0.039 0.903 0.312
0.956 0.993 0.973
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Optimizing the observationswith the solution of the ADE, using
D and R as optimization parameters, yields a relatively poor
fit — especially in the case of the lower mass recoveries
for experiments 2 and 4. Values for D are unrealistically high
whereas the r2 values suggest a poor fit (cf. Fig. 7). It should
be noted again that the equilibrium model did provide a
good description of the curves for the simultaneously applied
bromide. Apparently additional processes affect colloid trans-
port. First consider using the CNE model to describe the data
with optimization parameters D, R (inferred from the “total”
distribution coefficient K), fraction of “equilibrium” sites f, and
rate parameter β. The observations are described considerably
better with the CNE than the ADE, the greatest improvements
occur for the 3.2-µm colloids (i.e., r2 increased from 0.864 to
0.920 for experiment 2 and from 0.869 to 0.925 for experiment
4). The breakthrough curves predicted with these parameters
describe the observations fairly well for the 0.45-µm colloids
and reasonably well for the 3.2-µm colloids (Fig. 7). Including
some type of nonequilibrium model seems to improve the
description. Especially the large colloids are excluded frompart
of the aqueous phase (PNE) and experience prolonged
retention (CNE). Therefore, the PCNE was also employed to
describe the observations using D, R, f, β, α and θm/θ as
optimization parameters. To minimize the number of optimi-
zation parameters, no distinction is made between f and β for
the “mobile” and “immobile” region. The optimization results
can be found in the last seven rows of Table 3. Application of the
PCNE model leads to a slightly better description of the data
than with the CNE model. The improvements are most
noticeable for the 3.2-µm colloids (i.e., r2 from 0.920 to 0.956
for experiment 2 and from 0.925 to 0.973 for experiment 4).
Fig. 7 also suggests that the curves predicted with the PCNE
model aremore suited to describe the abrupt changes in colloid
Fig. 7. Normalized colloid concentration in effluent samples (observations and optim
transport of smallest and largest colloid (0.45 and 3.2 µm) in two Ottawa sands wi
concentrations. The utility of the PCNE model will likely
increase for modeling transport in natural porousmedia rather
than in the uniform, packed sand columns where there was
virtually no nonequilibrium for bromide.

4. Summary and conclusions

The advection–dispersion equation was adapted to sepa-
rately account for physical and chemical nonequilibrium
during transport of solutes and colloids in porous media. In the
resulting physical–chemical nonequilibrium (PCNE) model the
aqueous phase is partitioned into immobile andmobile regions.
Based on equilibriumor nonequilibrium interaction of solutes or
colloidswith the solid phase, four types of solid domainsmay be
distinguished (cf. Fig. 1). Although analytical solutions may
appear to have limited applicability, there are several reasons
to have analytical tools available to quantify PNCE transport.
A solution for the “mobile” concentration of the PCNE was
obtainedwith Laplace transforms (Appendix A). Expressions for
other concentration types are given in Appendix B. The solution
can be evaluated numerically to quantify concentration as a
function of time or distance; here only breakthrough curves are
considered. Furthermore, expressions for the first three time
moments of the solutions are presented in Table 2. Thesemaybe
used to elucidate the impact of transport parameters on the
mean, variance, and skewness of breakthrough curves.

The sensitivity of the breakthrough curves to model pa-
rameters was illustrated for different types of nonequilibrium
using the analytical solution for the PCNE model. The sim-
plest cases involve the dependency of the curve on the PNE
parameter θm /θ (Fig. 2) and the CNE parameters fm and fim in
the presence of physical nonequilibrium (Fig. 3). The curves
exhibit the characteristic features of earlier breakthrough and
ized solution of the ADE, CNE and PCNE) as a function of normalized time for
th median grain sizes 710 and 240 µm (2030 and mix).
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more tailing with increased nonequilibrium. However, the
shape of the curves is not very sensitive to the parameter
values. On the other hand, the shape of the curve will change
with different combinations of the PCNE parameters α and
β (Fig. 4). The additional parameters in the PCNE allow
greater flexibility to generate different types of breakthrough
curves. The moment results of Table 2 were used to predict
contours of M1, Var, and γ as a function of either logα and
log kim,a (Fig. 5) or θim and log kim,a (Fig. 6). Both figures also
illustrate the utility of having a model with independent
physical and chemical nonequilibrium terms to correctly
describe mean breakthrough time, variance, and skewness of
colloid breakthrough curves.

Colloid transport will be affected by physical nonequilib-
rium because all pores are not (readily) accessible and by
chemical nonequilibrium due to (different) attachment and
detachment rates. These nonequilibrium phenomena are
intertwined because attachment/detachment rates depend
on flow regime. The PCNE model, with its ability to
independently model physical and chemical nonequilibrium,
was therefore applied to four colloid breakthrough experi-
ments by Bradford et al. (2002). Breakthrough curves for the
bromide tracer were described fairly well with the equilibri-
um ADE, use of the PNEmodel did not noticeably improve the
optimization for these packed and uniform sands. On the
other hand, the colloid breakthrough curve could not be
described well using the simple ADE. Using the nonequilib-
rium CNE yielded a substantially better fit of the colloid data.
In particular for the larger 3.2-µm colloids (experiments 2
and 4), the fit became even better when the PCNE model was
employed. The need for added parameterswas also illustrated
by Fig. 4. There was no need for the other experiments to use
the PCNEmodel with its additional fitting parameters. Results
of the optimization algorithm showed strong correlation
between PCNE parameters suggesting an excessive number
of fitting parameters. It should be noted that independently
quantifying physical and chemical nonequilibrium processes
will becomemore useful for transport in natural porousmedia
where, even for solutes such as the bromide tracer, nonequi-
librium phenomena may no longer be ignored.
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Appendix A. Solution procedure

A.1. Solution in Laplace domain

The mathematical problem given by Eqs. (10)–(12) is solved by applying a Laplace transform with respect to time with p as
transformation variable. Writing the mathematical problem in terms of the transformed variables leads to:

p
―
Cm + p

ρb
θm

―
Sm +

α
θm

ð ―
Cm−

―
CimÞ = Dm

d2
―
Cm

dz2
−vm

d
―
Cm

dz
ðA1aÞ

―
Cim =

α
―
Cm−ρbp

―
Sim

θimp + α
ðA1bÞ

―
Sm;1 = fmKm

―
Cm ;

―
Sm;2 =

ð1−fmÞKm

p + βm
βm

―
Cm ;

―
Sim;1 = fimKim

―
Cim ;

―
Sim;2 =

ð1−fimÞKim

p + βim
βim

―
Cim ðA1c;d; e; fÞ

Addition of (A1c) and (A1d), and of (A1e) and (A1f) yields

―
Sm = fmKm

―
Cm +

ð1−fmÞKm

p + βm
βm

―
Cm ;

―
Sim = fimKim

―
Cim +

ð1−fimÞKim

p + βim
βim

―
Cim ðA2a;bÞ

The problem is solved by using the mobile concentration as dependent variable, the other concentrations can be obtained from
the solution for Cm. Substitution of (A2b) into (A1b) results in

α
θim

+ p 1 +
ρbfimKim

θim

� �
+ βim

ρbð1−fimÞKim

θim
1− βim

p + βim

� �� �
―
Cim =

α
θim

―
Cm ðA3Þ

We can employ the various retardation factors defined in Table 1 for the PCNE model to establish the following relationship:

―
Cim =

α
θim

―
Cm = α

θim
+ pRim;1 + βimRim;2 1− βim

p + βim

� �� �
ðA4Þ
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Substitute (A2a) and (A4) into (A1a) to obtain the ordinary differential equation

Dm
d2

―
Cm

dz2
−vm

d
―
Cm

dz
−Rm;1ΩðpÞ ―

Cm = 0 ðA5Þ

The auxiliary functions are as follows

ΩðpÞ = p + am + bm−
βmbm
p + βm

− amaim
p + aim + bim−βimbim = ðp + βimÞ

ðA6Þ

ΞðpÞ = 1 +
bm

p + βm
+

am½1 + bim = ðp + βimÞ�
p + aim + bim−βimbim = ðp + βimÞ

ðA7Þ

with variables a and b as defined in Table 1. The transformed boundary conditions are:

―
Cmð0;pÞ =

―
CoðpÞ ;

―
Cmð∞;pÞ = 0 ðA8a;bÞ

The solution of the (transformed) mobile concentration is

―
Cmðz; pÞ =

―
Coexp

vmz
2Dm

− zffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dm = Rm;1

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΩðpÞ + v2m

4Rm;1Dm

s0
B@

1
CA ðA9Þ

A.2. Inversion procedure

Transformation to the temporal domain is somewhat cumbersome and is based on the iterated Laplace transform (Sneddon,
1995). Inversion of (A9) involves sequential application of the shifting and convolution theorems. The following Laplace
transformation pairs were used:

L−1fexpð−k
ffiffiffi
p

p Þg =
kffiffiffiffiffiffiffiffiffiffi
4πt3

p exp − k2

4t

 !
ðA10Þ

L−1 exp
k

p + a

� �	 

= expð−atÞ δðtÞ +

ffiffiffi
k
t

r
I1ð

ffiffiffiffiffiffiffiffi
4kt

p
Þ

" #
ðA11Þ

where L−1 denotes inversion, δ(t) is the Dirac delta function, I1 is the modified first-order Bessel function, and a and k are arbitrary
constants.

The shifting theorem is used to invert the first Laplace variable of the auxiliary function Ω to obtain:

Cmðz; tÞ = ∫t

0
Coðt−τÞ∫τ

0
L−1
τ−η exp

vmz
2Dm

− z
ffiffiffi
p

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dm = Rm;1

q
0
B@

1
CA

8><
>:

9>=
>;

× L−1
η exp − v2m

4RmDm
+ am + bm−

βmbm
p + βm

− amaim
p + aim + bim−βimbim = ðp + βimÞ

 !
ðτ−ηÞ

" #( )
dηdτ

ðA12Þ

The subscript of the Laplace operator denotes the variable to which the Laplace variable is inverted to. Next (A10) is used and
the remaining exponential functions with Laplace variables are written as a convolution integral:

Cmðz; tÞ = ∫
t

0

∫
τ

0

zCoðt−τÞ ffiffiffiffiffiffiffiffi
Rm1

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4πDmðτ−ηÞ3

q exp
vmz
2Dm

− Rm1z
2

4Dmðτ−ηÞ−
v2m

4DmRm;1
+ am + bm

 !
ðτ−ηÞ

" #

× ∫
η

0

L−1
η−σ exp

βmbmðτ−ηÞ
p + βm

� �	 

L−1
σ exp

amaimðτ−ηÞ
p + aim + bim−βimbim = ðp + βimÞ
� �	 


dσdηdτ

ðA13Þ
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The first inversion is done according to (A11) while the shifting and convolution theorems are, again, used for the second
inversion:

Cmðz; tÞ = ∫
t

0

∫
τ

0

zCoðt−τÞ
ffiffiffiffiffiffiffiffiffi
Rm;1

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4πDmðτ−ηÞ3

q exp −ðam + bmÞðτ−ηÞ− ½Rm;1z−vmðτ−ηÞ�2
4DmRm;1ðτ−ηÞ

 !
∫
η

0

exp½−βmðη−σÞ�

× fδðη−σÞ +
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
βmbmðτ−ηÞ

η−σ

s
I1½ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4βmbmðτ−ηÞðη−σÞ
q �g

× ∫
σ

0

L−1
k fexp βimbimðσ−κÞ

p + βim

� �gL−1
σ−κfexp amaimðτ−ηÞ

p + aim + bim

� �gdκdσdηdτ

ðA14Þ

Upon carrying out the remaining inversions, the solution may be written with the help of the auxiliary functions given by
Eq. (14) as:

Cmðz; tÞ = ∫
t

0

Coðt−τÞ∫
τ

0

hðz; τ;ηÞ∫
η

0

fδðη−σÞexp½−βmðη−σÞ� + gmðτ;η;σÞg

× ∫
σ

0

fδðκÞexpð−βimκÞ + gimðσ; κ;0Þgfδðσ−κÞexp½−ðaim + bimÞðσ−κÞ� + f ðτ;η;σ; κÞgdκdσ dηdτ

ðA15Þ

The solution given by Eq. (13) is obtained after evaluating all Dirac delta functions. Integrals are evaluated numerically using
Gauss–Chebyshev quadrature (Press et al., 2007).
Appendix B. Other aqueous and solid phase concentrations for PCNE model

The immobile concentration is obtained according to (cf. Eq. (A4)):

―
Cim =

aim
―
Cm

p + aim + bim−βimbim = ðp + βimÞ
ðB1Þ

Inversion is accomplished with the results for the mobile concentrations and a table of Laplace transforms or Mathematica, the
result may be written for a constant influent concentration as:

Cimðz; tÞ = ∫
t

0

Cof1 +
w4−w3

2w3
exp −ðw2−w3Þ

t−τ
2

� �
−w4 + w3

2w3
exp −ðw2 + w3Þ

t−τ
2

� �g
× fhðz; τ;0Þ + ∫

τ

0

hðz;τ;ηÞ½ f ðτ;η;η;0Þ + gmðτ;η;0Þ + ∫
η

0

gimðη;σ;0Þf ðτ;η;η;σÞ

+ gmðτ;η;σÞðf ðτ;η;σ;0Þ + ∫
σ

0

gimðσ;κ;0Þf ðτ;η;σ;κÞdκÞdσ�dηgdτ
with: w2 = aim + bim + βim;w3 =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2

2−4aimβim

q
; w4 = aim−bim−βim

ðB2Þ

In case of equilibrium partitioning, the concentrations for the solid phase follow directly from the mobile and immobile
regions:

Sm;1 = KmfmCm ; Sim;1 = KimfimCim ðB3a;bÞ

The concentrations for nonequilibrium partitioning are obtained by inverting Eqs. (A1d,f):

Sm;2ðz; tÞ = ∫
t

0

Coð1−fmÞkmf1−exp½−βmðt−τÞ�g fhðz; τ;0Þ + ∫
τ

0

hðz;τ;ηÞ½f ðτ;η;η;0Þ + gmðτ;η;0Þ

+ ∫
η

0

gimðη;σ;0Þf ðτ;η;η;σÞ + gmðτ;η;σÞðf ðτ;η;σ;0Þ + ∫
σ

0

gimðσ; κ;0Þf ðτ;η;σ; κÞdκÞdσ�dηgdτ
ðB4Þ
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Sim;2ðz; tÞ = ∫
t

0

ð1−fimÞkimCof1 +
2aimβim

w3ðw2 + w3Þ
exp −ðw2 + w3Þ

t−τ
2

� �
− 2aimβim

w3ðw2−w3Þ
exp −ðw2−w3Þ

t−τ
2

� �g
×fhðz; τ;0Þ + ∫

τ

0

hðz; τ;ηÞ½f ðτ;η;η;0Þ + gmðτ;η;0Þ + ∫
η

0

gimðη;σ;0Þf ðτ;η;η;σÞ

+ gmðτ;η;σÞðf ðτ;η;σ;0Þ + ∫
σ

0

gimðσ;κ;0Þf ðτ;η;σ;κÞdκÞdσ�dηgdτ

ðB5Þ
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