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CHAPTER 14

STATISTICAL MODELS FOR THE

PREDICTION OF FIELD-SCALE AND

PATIAL SALINITY PATTERNS FROM SOIL
CONDUCTIVITY SURVEY DATA

S. M. Lesch

» wollection of apparent soil electrical conductivity (EC,) survey data
W purpose of characterizing various spatially referenced soil proper-
"“ received considerable attention in the soils literature over the last
decades (Corwin and Lesch 2005a,b). Although now commonly used
iy precision agriculture survey applications, most of the original
wstin EC, survey data was motivated by the need to characterize and

over time, as more agricultural land becomes degraded due to
tion.
arent soil conductivity survey data often correlate reasonably well
vanous soil properties (salinity, soil texture, soil water content, etc.)
Jder different field conditions (Corwin and Lesch 2005b; Lesch and
wwin 2003). However, as a general rule, EC, survey readings tend to be
wngly correlated with soil salinity levels. Thus, accurate salinity predic-
s can normally be constructed from EC, survey data in semi-saline
ol saline fields using fairly simple statistical calibration techniques.
tionally, accurate maps of the field-scale salinity pattern can some-
also be produced from EC, survey data in marginally saline fields,
puvided that other important soil properties (such as soil texture and soil
ater content) exhibit fairly minimal spatial variation.
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462 AGRICULTURAL SALINITY ASSESSMENT AND MANAGEMENT

After EC, survey data have been acquired in a field, calibration s
samples are normally collected at a certain number of EC, survey li
tions. The measured salinity levels associated with these soil samples
then used (in conjunction with the co-located survey data) to es
some type of spatial-statistical or geostatistical model. This statistia
model is in turn used to predict the detailed spatial soil-salinity paties
from the full set of acquired survey data.

This chapter discusses the simplest and most frequently used sta
modeling approach for calibrating EC, survey information with mi
ured salinity data, such as ordinary regression. Ordinary linear reg
models represent a special case of a much more general class of me
commonly known as linear regression models with spatially correl
errors (Schabenberger and Gotway 2005), hierarchical spatial modes
(Banerjee et al. 2004), or geostatistical mixed linear models (Haskard ¢t
2007). This broader class of models includes many of the geostatistics
techniques familiar to soil scientists, such as universal kriging and kriging

linear regression (LR) models and analysis of covariance models.

The remainder of this chapter is organized as follows. A technig
review of the basic linear regression model estimation and validat n
techniques is presented in “Regression Models” and “Regression M |
Validation Tests.” Some suitable sampling strategies for calibrating li
regression equations are discussed in “Sampling Strategies,” while
subsequent section presents a brief overview of the ESAP software
age. Two salinity assessment examples are then presented in “
Analysis Examples”; these data analyses demonstrate the statistical
bration and prediction techniques discussed in this chapter, along will
some of the types of analysis output that the ESAP software can produc.

Regression Models: Estimation and Prediction Formulas

Site-specific prediction of diverse soil properties from EM survey das
can be achieved using regression model estimation and prediction tech
niques. In the regression modeling approach advocated by Lesch and
Corwin (2008), Lesch (2005), Rhoades et al. (1999), and Lesch et al. (1993
a suitable linear equation is specified that relates the target soil property
of interest to a linear combination of conductivity signal data readings
and (possibly) trend surface coordinates. One example of such an equa-
tion would be

vy = Bo + BilEMy,] + Bo EMy] + Balewil + Baley,] + & (14

where the response variable (y) represents the soil property of interest
(e.g., salinity, texture, water content) at the ith survey location; the predic
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s (EMy, EMy,, ¢, ¢,) represent the corresponding EM38 vertical
ontal signal readings and associated ith survey site coordinate
espectively; the B parameters represent empirical regression
\wiiicients; and ¢ represents the random error component associ-
emodel. Equation 14-1 relates the response variable (e.g., soil
o both EM signal and trend surface components, and thus can
#5a “signal + trend” model. The trend surface components
Eq. 14-1 are optional and should only be included if they are
benecessary (i.e., if the associated parameter estimates are statis-
wificant or if the inclusion of such components is needed to
anobvious spatial trend in a residual plot).

jplimal estimation of the aforementioned (or similar) regression
nds on the assumptions placed on the random error compo-
the errors are assumed to be normally distributed and exhibit spa-
dation, then Eq. 14-1 is commonly called a spatial linear regres-
in the statistical literature, or a kriging with external drift
W the geostatistical literature (Cressie 1991; Schabenberger and
.Such models can be efficiently estimated using maximum
or restricted maximum likelihood fitting techniques (Littell
#6). In contrast, if the errors can be assumed to be approximately
tlifed, then ordinary least squares (OLS) fitting techniques can be
i this latter case the model becomes identical to an ordinary linear
son equation, the only difference being that the predictions are
\ referenced.

ihood of the residual errors being approximately uncorrelated
d to spatially correlated) depends primarily on (1) the method
b select the calibration sample sites, and (2) the degree to which the
ity signal data correlates with the response variable of interest.
gnal data is strongly correlated with the target soil property and
sampling strategies are employed, the assumption of approxi-
sidual independence is often satisfied. For detailed discussions
ung these issues, see Lesch and Corwin (2008) and Lesch (2005).
luugh appropriate prediction statistics can be derived for either
uly the OLS results are presented here. Additionally, all of the fol-

un from a regression modeling viewpoint is given in Myers (1986).
ying standard matrix notation, note that we can express Eq. 14-1 as
Il + e, where y represents a (n X 1) vector of soil property measure-
s (collected across 1 sites), X represents the corresponding (1 X p)
ssion model design matrix and e represents the (n X 1) vector of
wl errors. Then, under the uncorrelated residual error assumption,
witlinear unbiased estimate (BLUE) for B is

B=(X"X)"'X"y (14-2)
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with a corresponding variance of
Var(@) = o*(X"X)""

where o represents the regression model mean square error (MSE) &
ponent.

that is

6" =("r)/(n—p).

Now, let y, represent the (unknown) vector of soil property values atall
the remaining survey locations and define X, to be the correspondis
design matrix associates with these sites. Then, again under the uncom
lated residual error assumption, the best linear unbiased predicti
(BLUP) of these soil property values can be shown to be

with a corresponding variance estimate of

Var(y, —y.) = oI+ X, (X"X)7'X]).

eling theory. For example, individual survey site predictions (and their
corresponding variance estimates) become

}?0 = XZé
Var{yo — 90} = 02(1 + xz(XTX)_lsz)
where x. represents the (1 X p) design vector associated with a specific

prediction site. Likewise, the average prediction associated with the entire
nonsampled survey grid can be computed as
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]}m: = x.-mcé
(14-8)
Var (Ve = Yo} = 0" (1/(N — 1) + X e (XTX)

1. represents the average of the N — n design vectors associated
{he nonsampled survey positions. Note that all of these results are
y identical to ordinary linear regression model parameter estima-
Jud prediction formulas presented in standard regression model
s (Myers 1986).

many practical survey applications, determining the probability
Jnew prediction exceeds some specific threshold value is also of
st Although not commonly discussed in most classical linear mod-
fextbooks, regression models can also be used to produce such
whility estimates. More specifically, upon adopting a Bayesian per-
wive, the probability that an unobserved y, lies within the interval
‘lun be computed as

mla,b]= Prob(a = yo < b) = [t dt (14-9)

wie f, - represents a central t-distribution having n — p degrees
om (i.e., the regression model residual degrees of freedom),

- y)/yVar{iye} , and h=(b—3,)/\Var(y,) (Press 1989: assuming

N=n
REST M= 00 Santa] (14-10)
N -n

1=

vhich represents a prediction of the percentage of nonsampled sites (on
tesurvey grid) that exhibit soil property values falling within the inter-
1l (g, b). For example, one might be interested in predicting the per-
unlage of survey sites in a field with salinity levels in excess of 4 dS/m.
lﬁguaﬁons 14-9 and 14-10 can be used to calculate this value, while
simultaneously adjusting out the “shrinkage-effect” inherent in the
ussociated regression model predictions. Lesch et al. (2005) discuss the
hove estimates in more detail and show multiple examples of their
“pplication.
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Regression Model Validation Tests

If an ordinary linear regression model is to be successfully u
place of the geostatistical or spatial linear model, then mo
modeling assumptions need to be met. In addition to the assumy
normally distributed error process, the critical assumption in the
regression model is the uncorrelated residual assumption. A forn
for spatial correlation in the residual pattern can be carried ouf
either a nested likelihood ratio test or via the Moran residual
(Upton and Fingleton 1985; Haining 1990; Tiefelsdorf 2000;
berger and Gotway 2005). The likelihood ratio test can only be
after first estimating a suitable geostatistical or spatial linear mod
pages 343-344 of Schabenberger and Gotway (2005) for more discu
of this topic]. In contrast, the Moran test can be carried out directly on
ordinary regression model residuals. '

As originally introduced by Brandsma and Ketellapper (197
Moran test statistic was designed to detect spatially correlated
in conditionally and/or simultaneously specified spatial autoreg
models (Schabenberger and Gotway 2005). However, it can also
to assess the uncorrelated residual assumption in a general linear mix
ing framework. The Moran residual test statistic (8,) is defined as

' Wr
r'r

SM:

where r is defined in Eq. 14-4, W represents a suitably specified proxin

matrix, and p is calculated using Eq. 14-2. While the specification of W
be application-specific, in most soil survey applications it is generall
sonable to specify W as a scaled inverse distance squared matrix. |
such a specification, where d; represents the computed distance betwes
the ith and jth sample locahons, the {w;} elements associated with the il
row of the W matrix are defined as

Wy = 0 and wy = d,?/z d,;z,

respectively.

Brandsma and Ketellapper (1979) describe how to calculate the firs
two moments of 3y, i.e., E(dy) and Var(d,,) [see also Lesch and Con
(2008) and Lesch (2005)]. The corresponding Moran test score can
computed as

zZm =Om — E(SM))/\/VW(SM
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mpared to the upper (one-sided) cumulative standard normal
wility density function. A test score in excess of 1.65 (a = 0.05) is
Jly interpreted as being statistically significant. Provided that the
s model has been correctly specified, such a test score implies
»model residuals exhibit significant spatial correlation. In this situ-
Ve parameter estimates and survey predictions may be highly inef-
{and the mean square error estimate and parameter test statistics
v substantially biased. If sufficient data are available (or additional
i be collected), then a suitable spatial or geostatistical linear mod-
2approach should instead be employed.
Jddition to the uncorrelated residual assumption, one must also ver-
%l the model residuals satisfy the usual standard normal error
aption and that the hypothesized model is correctly specified. Fortu-
A\, most well-known residual analysis techniques used in an ordinary
wsion analysis are just as useful when applied to a spatially refer-
Wl linear regression model. These include assessing the assumption of
normality using quantile (QQ) plots and the Shapiro-Wilk test
Wi and Wilk 1965), detecting outliers and/or high leverage points
W of internally or externally studentized residuals), and detecting
Wil specification bias (residual versus prediction plots, partial regres-
o leverage plots, influence plots, etc.).
lestandard jack-knifing techniques commonly used to assess the pre-
\\¢ capability of an ordinary regression model are also directly appli-
. Most standard statistical software packages can readily produce
nifed residual and /or prediction estimates in a computationally
"t manner. Cook and Weisberg (1999) and Myers (1986) offer good
wws of many relevant regression model diagnostic and assessment

mpling Strategies for Spatially Referenced Linear
ion Models

s models. Broadly speaking, the most common strategies currently
iploved can be classified as either (1) probability-based (design-based)

general, probability-based sampling strategies tend to be commonly
‘wployed in most spatial research problems. Probability-based sampling

Sadom sampling, cluster sampling, capture-recapture techniques, and
e transect sampling. Thompson (1992) provides a good review of mul-
1ok types of probability-based sampling strategies.
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Probability-based sampling strategies have a well-developed unds
ing theory and are clearly useful in many spatial applications (Thomps
1992; Brus and de Gruijter 1993). However, they are not designed sps
cally for estimating models per se. Indeed, most probability-based:
pling strategies explicitly avoid incorporating any parametric mg de
assumptions, relying instead upon randomization principles (which:
built into the design) for drawing statistical inference.

Prediction-based sampling strategies represent an alternative app
for developing sampling designs that are explicitly focused toward ma
estimation. The underlying theory behind this approach for finite po
tion sampling and inference is discussed in detail in Valliant eta
More generally, response surface design theory and optimal experim .
design theory represent two closely related statistical research areas
also study sampling designs specifically from the model estimation v
point (Atkinson and Donev 1992; Myers and Montgomery 2002). l&
niques from these latter two subject areas have been applied to the o
mal collection of spatial data by Miiller (2001), the specification of aptis
designs for variogram estimation by Miiller and Zimmerman (19%),1
estimation of spatially referenced regression models by Lesch (2003
Lesch et al. (1995), and the estimation of geostatistical linear mod
Brus and Heuvelink (2007), Minasny et al. (2007), and Zhu and
(2006). Conceptually similar types of nonrandom sampling designs |
variogram estimation have been introduced by Bogaert and Russo (1%
Warrick and Myers (1987), and Russo (1984).

Grid sampling represents another form of nonrandom samplmg
has been used for many years in the soil sciences. Grid sampling ha
torically been recommended for accurately mapping soil boundan
and/or as a precursor to an ordinary kriging analysis (Burgess etal. |f
Burgess and Webster 1984).

Theoretically, any of these sampling approaches can be used fm
purposes of estimating a regression model, although each appru
exhibits various strengths and weaknesses. Lesch (2005) compares u
contrasts probability-based and prediction-based sampling strategies
more detail, and highlights some of the strengths of the prediction-bass
sampling approach.

Overview of the ESAP Software Package

Many types of diverse software programs can be utilized for the ass
ment and quantification of soil salinity inventory information via sml
ductivity survey data. The more common types of software application
include spatial mapping software, GIS software, statistical software,
geophysical software (when appropriate). Nonetheless, the need furs
stand-alone, comprehensive salinity assessment software package ws
recognized some years ago by the technical staff at the U.S. Salinity Labw
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1 ESAP software package was specifically developed to handle
Wl salinity inventorying and assessment work, primarily in
o{o this need (Lesch et al. 2000).
SAP software package contains a series of integrated, compre-
e programs, designed for the Windows XP (or equivalent)
5 system. This software can be used for the prediction of field-
uhial soil salinity information from conductivity survey data and
wiically been designed to facilitate the use of cost-effective, techni-
und soil salinity assessment and data interpretation techniques.
fen publicly available shareware version of ESAP (version 2.35)
ce data processing programs designed to guide the analyst
theentlre survey process: ESAP-RSSD, ESAP-SaltMapper, and
\lite. The ESAP-RSSD program can be used to generate optimal
soil sampling designs from conductivity survey data. The
SiMapper program may be used to generate 1-D transect plots
¢ 2 raster maps of either raw soil conductivity or predicted soil
data Additionally, the SaltMapper software can be used to iden-
,j“. ucate tile line positions in fields suffering drainage-related salin-
. The ESAP-Calibrate program is normally used to convert
:m data into estimated soil salinity data, via either statisti-
‘leterministic calibration modeling techniques. However, this latter
ncn also be used to estimate other soil properties from conduc-
urvey data and /or analyze various soil property/conductivity
f ships.
: ! version 2.35 contains two additional utility programs: ESAP-
W and the DPPC-Calculator. The SigDPA program can be used to
un various conductivity data preprocessing chores, such as screen-
Wi negative conductivity readings and/or assigning row numbers to
«f conductivity survey data. The DPPC-Calculator can be used to
wl insertion four-probe readings into calculated soil salinity levels
wjunction with measured or estimated soil temperature, texture, and
v ontent information).
e FSAP-RSSD and ESAP-Calibrate programs contain the bulk of the
wlbased sampling and statistical modeling algorithms within the
oftware package. As discussed, the ESAP software package repre-
wan integrated, self-contained salinity assessment software system.
fhe data analysis examples presented in the next section were per-
med using the versjon 2.35 ESAP software components (i.e., RSSD,
“wile, and SaltMapper).

i Analysis Examples

umple 1: A survey of a marginally saline lettuce field in Indio, California

nelectromagnetic induction (EMI) survey was performed by the
uthella Valley Resource Conservation District in June 2003 within a
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14-ha lettuce field located in Indio, California. The primary goals u-,
survey were threefold: (1) to construct an accurate soil salinity invenis
for the field, (2) to determine if this field should be leached before the
cropping season, and (3) to construct relevant yield-loss projectio
based on the predicted field soil salinity conditions. A total of 25
Geonics EM38 vertical (EMy, mS/m) and horizontal (EMy, mS/m) s
readings were collected across 29 north-south survey transects wilk
this field and then processed through the USDA-ARS ESAP sof
package. This software selected 12 survey locations for soil sa
using a prediction-based ESAP sample design (Lesch et al. 2000}, §
samples were collected from 0 to 0.6 m and 0.6 m to 1.2 m depths
analyzed for soil salinity (EC,, dS/m), soil saturation percentage (S,
and gravimetric water content (8,, %). Table 14-1 lists the univariatesu
mary statistics (mean, standard deviation, minimum, and maximum|
the EM38 survey and soil sample data, respectively. Figure 14-1 shos
the interpolated EMy signal map for this field, along with the spat
positions of the 12 sampling locations. Note also that some advancad:
tistical aspects concerning this specific data analysis are discussed
Lesch and Corwin (2008).

The results from an exploratory regression modeling analysrs
formed in ESAP suggested that the following natural log(EC,)/loglt

TABLE 14-1. Basic EM38 and Soil Sample Summary Statistics:

Indio Lettuce Field
Variable Units N Mean Std. Dev. Min
EMy mS/m 2040 63.67 13.87 36.25
EMy mS/m 2040 38.02 10.28 17.63
Variable  Units Depth N  Mean  Std.Dev. Min M
EC, dS/m 0-06m 20 1.86 1.18 0.72
06m-12m 20 193 128 02
SP % 0-0.6m 20 36.95 4.09 32.20
06m-12m 20 3292 514 263
0, % 0-06m 20 16.76 3.41 9.85

0.6m-12m 20 16.64 5.33 10.60

EC, = soil salinity

EM,; = EM38 horizontal signal
EMy = EM38 vertical signal
SP = soil saturation percentage
0, = gravimetric water content
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HGURE 14-1. Survey of a marginally saline lettuce field in Indio, California,
suwing the interpolated EMy, signal map for this field, along with the spatial
Jusitions of the 12 sampling locations.

ngression equation should be used to describe the soil salinity/signal
wnductivity relationship in this field:

In(EC;) = By + Byj (z11) + Boj (22)) + Bai(2%) + &y (14-14)
where

zy; = In(EMy,)) + In(EMy;), and
Zy; = In(EMy) — In(EMy, ) (14-15)

In Eq. 14-14, the subscript j = 1, 2 corresponds to the two sampling
depths, i = 1,2, ...2,040 corresponds to the EM38 sampling locations, By,
through B,; represent the two sets of regression model parameters (which
define the two depth-specific prediction functions), and the residual
errors for each sampling depth are assumed to be spatially uncorrelated.
Table 14-2 presents the key summary statistics for each estimated regres-
sion function; these statistics include the R?, root mean square error
(RMSE) estimate, overall model F-score and associated p-value, and the
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TABLE 14-2. Summary Statistics for Depth-Specific In(EC,) Linew
Regression Models: Indio Lettuce Field

Depth R? RMSE  F-score Pr>F  Moran Score k; ,
0-06m 0922 019 3137 <0.001 0.652 :
06-12m 0798 049  10.54 0.004  —0.067

corresponding Moran test score and p-value. These latter Moran s
suggest that the uncorrelated residual assumption is valid. Likews
residual QQ plots (not shown) confirm that the regression model en
follow a normal distribution and, hence, the ordinary linear regr
modeling approach can be adopted. Additionally, the R* values
that these regression models can be used to describe 92% and 80% of i&
0 to 0.6 m and 0.6 to 1.2 m observed spatial log(EC,) patterns in this fies
respectively.

The spatial salinity pattern in the 0 to 0.6 m depth was of primas
interest in this survey. More specifically, the field was scheduled
leached if (1) 50% of the field was predicted to exhibit 0 to 0.6 m deph
salinity levels >2 dS/m and/or the field average In(EC,) level exceeds
In(2) = 0.693, or (2) 25% of the field was predicted to exhibit 0 to (6%
depth salinity levels >3 dS/m. Table 14-3 presents the predicted fis
average In(EC,) levels (and corresponding 95% confidence intervals| ;
well as the range interval estimates for both sampling depths. These pi
dictions can be automatically calculated in the ESAP software packa
(using Eqgs. 14-8 through 14-10, respectively). Figure 14-2 shows the cofe

TABLE 14-3. Regression Model Predicted Field Average In(EC)
Levels and Range Interval Estimates: Indio Lettuce Field

0-0.6 m Depth 0.6-1.2 m Deph.

Field average In(EC,) 0.494 0.548
95% confidence interval (0.35, 0.64) (0.19, 091}

Range Interval Estimates (% Area of Field Classified into RIEs)

<2.0dS/m 66.5 548
2.0-3.0dS/m 229 19.9
3.0-6.0dS/m 10.1 20.0
>6.0dS/m 0.5 5.3

RIE = range interval estimate
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HGURE 14-2. The corresponding predicted spatial salinity map for the field in
Fig. 14-1. This map was produced within the ESAP SaltMapper program by
iterpolating the back-transformed, individual In(EC,) predictions onto a fine-
mesh grid using an adjustable smoothing kernel.

sponding predicted spatial salinity map for this field. This map was pro-
duced (within the ESAP SaltMapper program) by interpolating the back-
transformed, individual In(EC,) predictions onto a fine-mesh grid using
an adjustable smoothing kernel.

The results shown in Table 14-3 and Fig. 14-2 suggest that this field
does not need to be leached. The 0 to 0.6 m field average In(EC,) estimate
is 0494, and 66.5% of the individual 0 to 0.6 m depth predictions are cal-
culated to be below 2 dS/m. Additionally, only 10.6% of these predictions
are calculated to exceed 3 dS/m. Thus, none of the specified criteria for
implementing a leaching process are met in this field.

Within the preceding 5 years, the landowner had grown alternating
winter vegetable crops of romaine lettuce and broccoli in this field. The
ESAP software can be used to convert the Fig. 14-2 salinity map into pro-
jected relative yield loss maps for these crops, using standard salt-toler-
ance equations published for these vegetables (Mass and Hoffman 1977).
Figure 14-3 shows the projected relative yield loss map for romaine let-
tuce, based on a threshold of 1.3 dS/m, a slope estimate of 13% yield loss
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FIGURE 14-3. For the field shown in Figs. 14-1 and 14-2, the proj
yield loss map for romaine lettuce, based on a threshold of 1.3 dS/m, a
mate of 13% yield loss per one unit increase in EC, (beyond the thre
80:20 root-weighting distribution (for the 0-m to 0.6-m and 0.6-m fo |
depths, respectively).

per one unit increase in EC, (beyond the threshold), and a 80% to
root-weighting distribution (for the 0 to 0.6-m and 0.6- to 1.2-
respectively). The calculated field average romaine lettuce yie
this field is 8.7%. The corresponding calculated field average yi
broccoli is <1% (using a threshold of 2.8, a slope of 9.2%, and a
30% root-weighting distribution). These additional yield loss es|
also suggest that a full-scale leaching of this field is currentl
ranted, particularly if broccoli is the next scheduled crop in the ro

Example 2: Pre- and postleaching surveys of a Coachella Valley
vegetable field

Pre- and postleaching EM surveys were performed by U.S. Salin
Laboratory personnel in july and October 2003 within a 13-ha vege
field located in Thermal, California. The main goal of this survey
spatially quantify the leaching process and determine the percent r
tion in the post- versus preleaching median salinity levels in the field.
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{1,243 and 1,288 Geonics EM38 vertical (EMy, mS/m) and horizon-
3/m) signal readings were collected within this field during
d postleaching survey processes, respectively, and processed
USDA-ARS ESAP software package. This software was again
lect 12 locations for soil sampling in each survey, using a pre-
ESAP sample design (Lesch et al. 2000). Soil samples were

m the 0 to 0.6 m sample depth and analyzed for soil salinity
m), soil saturation percentage (SP, %), and gravimetric water
“s). Table 14-4 lists the univariate summary statistics for the
v and 0 to 0.6 m sample data associated with each survey
that one soil sample in the preleaching survey event had to be
ue to contamination during the laboratory analysis proce-
¢s 14-4 and 14-5 show the interpolated July (preleaching) and
eaching) EM,, signal maps for this field, along with the spa-

results from an exploratory regression modeling analysis per-
in ESAP confirmed that the following simple log(EC,)/log(EM)
psion equation could be used to describe the soil salinity /signal con-
ity relationship for each survey event in this field:

In(ECy) = Boj + Byj (z1y) + & (14-16)

. Basic EM38 and Soil Sample Summary Statistics:
Coachella Valley Vegetable Field®

Date N Mean Std.Dev. Min Max
July 1243 23.25 912 10.63 79.75
July 1243 44 35 13.29 27.25 124.63

October 1288 30.99 13,10 1525 12188
October 1288 48.26 18.69 27.75 17538

July 11 1.83 0.99 0.75 3.69

Yo July 11 32.53 2.36 29.44 37.33
Y% July n 0.12 0.03 0.06 0.16
dS/m October 12 0.98 0.39 0.63 1.94
% October 12 34.07 5.88 28.63 46.33
% October 12 0.24 0.10 0.11 0.44

il samples acquired from 0-0.6 m sampling depth
o il salinity

- [M38 horizontal signal

W« EM38 vertical signal

- wil saturation percentage

1 gvimetric water content
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FIGURE 14-4. The interpolated July (preleaching) EMy signal maps of o
Coachella Valley, California, vegetable field, along with the spatial positions of
the sampling locations.

where z;; = In(EMy,;;) + In(EMy;). In Eq. 14-16, the subscript j = 1, 2 now
corresponds to the two sampling dates, the i subscript correspond to the
EM38 sampling locations acquired during each survey process, {Bg;, Byl
and {Bgn, Bia}Jrepresent the two sets of regression model parameters (which
define the two time-dependent prediction functions), and the residual
errors for each sampling depth are again assumed to be spatially uncorre-
lated. Table 14-5 presents the key summary statistics for each estimated
regression function; these statistics again include the R?, root mean square
error (RMSE) estimate, overall model F-score and associated p-value, and
the corresponding Moran test score and p-value. The Moran scores and
residual QQ plots (not shown) suggest that the normally distributed,
uncorrelated residual assumption is valid. The RMSE and R? values sug-
gest that the postleaching LR model is more accurate; this increase in pre-
diction accuracy is most likely due to the presence of higher and more uni-
form soil moisture conditions during the post-leaching survey process.
In September 2003, a total of 64 cm of Colorado River water was
applied to this field over a seven-day leaching cycle. The leaching was
performed using 25 m-wide ponding basins laid out across the field,
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URE 145, The same field as in Fig. 14-4, in October (postleaching).

¢ the soil had been deep-chiseled, plowed, and land-planed. The
uns were laser-leveled and the water was released from a standpipe
wled within the northwest corner of the field (a head channel along
vnorth edge of the field was used to deliver the water to each basin).
Aulations from the flow and volume measurements performed dur-
: the leaching process suggested that approximately 55 cm of water
dlirated the soil and that the distribution uniformity of the basin sys-

The temporal change in the spatial salinity pattern in the 0 to 0.6 m
spth was of primary interest in this survey. Table 14-6 shows the ESAP-
wilicted pre- and postleaching salinity summary statistics for this field.
i postleaching median salinity level is estimated to be 0.91 dS/m,

TABLE 14-5. Summary Statistics for Time-Specific In(EC,) Linear
Regression Models: Coachella Valley Vegetable Field

R? RMSE F-Score Pr>F Moran Score  Pr > Z,

] 0.600 0.340 13.51 0.005 =187 >0.5
(clober  0.837 0.148 51.37  >0.001 -0.55 >0.5
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TABLE 14-6. Regression Model Predicted Field Average In(EC,) Levels
and Range Interval Estimates: Coachella Valley Vegetable Field

July October
Field average In(EC,) 0.513 —0.098
95% confidence interval (0.26, 0.76) (—0.19, 000

Range Interval Estimates (% Area of Field Classified into RIEs)

<1.0dS/m 16.6 68.0
1.0-1.5dS5/m 7.2 253
1.5-2.0dS/m 214 b
2.0-3.0dS/m 20.9 1
<3.0dS/m 13.9 02

RIE = range interval estimate

which represents about a 46% decrease over the pre-leaching level (167}
The ESAP-Calibrate software can perform a f-test on the difference
between two field median (log mean) estimates; the corresponding f-score
is this example is -5.14 (p < 0.0001). Additionally, 68% of the field is esli-
mated to exhibit postleaching salinity levels below 1 dS/m, and less than
2% of the field exceeds 2 dS/m. These estimates imply a substantial leach-
ing effect, given that the corresponding preleaching estimates were 16,7
(<1dS/m) and 34.8% (>2 dS/m), respectively.

The predicted pre- and postleaching 0 to 0.6 m salinity maps for this
field are shown in Figs. 14-6 and 14-7. A pronounced leaching effect cai
be clearly seen in the postleaching salinity map, and the near-surface
salinity levels across the entire field appear to be significantly reduced.
These results are perhaps not that surprising, given the large volume of
water used during the leaching process (= 8.3 ha-m).

Finally, it is worthwhile to observe that the raw October (postleaching)
EM38 signal data exhibited a higher average level than the July (preleach-
ing) data (see Table 14-4 and Figs. 14-4 and 14-5). The general increase in
the EM signal response was again most likely due to the elevated near-
surface soil moisture conditions. The top 30 cm of the soil profile was
particularly dry during the July survey; these dry surface conditions
undoubtedly depressed the EM38 signal response. These results demon-
strate why a direct interpretation of EM38 signal data is often misleading,
Note that the median near-surface soil salinity level in this field decreased
by nearly 46%, even though the average horizontal EM signal reading
increased from 23.3 mS/m to 31.0 mS/m.
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URE 14-6. The predicted preleaching 0- to 0.6-m salinity map for the field
n Figs. 14-4 and 14-5.
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14-7. The predicted postleaching 0- to 0.6-m salinity map for the field
in Fig. 14-6. A pronounced leaching effect can be clearly seen here and the
w-surface salinity levels across the entire field appear to be significantly reduced.
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SUMMARY

This chapter demonstrates that a practical, regression-based methud
ogy for the prediction of field-scale, spatial salinity patterns from
conductivity survey data has substantial advantages in programs for i
management of soil salinity. The basic parameter estimate and salinity
diction formulas for the ordinary linear regression model have b
reviewed, along with the necessary modeling assumptions that have b
built into the ESAP model, which also provides guidance for soil saling
sampling. The two case studies presented highlight the model estimatio
and salinity prediction capabilities of the ESAP software and demonstiie
how bulk soil electrical conductivity survey data can be efficiently ints
preted and used to quantify field-scale soil salinity information.

It is worthwhile to note that although the focus of this chapter has hes
on predicting soil salinity from survey conductivity data, the associalul
statistical prediction methods discussed here are actually quite general
Indeed, these methods can be used to effectively model many different
soil property/sensor data relationships, provided that the underlying
modeling assumptions are satisfied. For a review of these more gener
calibration techniques, see Lesch and Corwin (2003) and/ or the referencs
contained in Table 1 of Corwin and Lesch (2005a).
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NOTATION

BLUE = best linear unbiased estimate
EC, = soil salinity

EMy = EM38 horizontal signal
EMI = electromagnetic induction
EMy = EM38 vertical signal

e = (n X 1) vector of residual errors

RIE = range interval estimate
SP = soil saturation percentage
X = (n X p) regression model design matrix
Y = (n X 1) vector of soil property measurements
B = (p X 1) parameter vector
34 = Moran residual test statistic
B, = gravimetric water content






