
CHAPTER 14 

STATISTICAL MODELS FOR THE 
PREDICTION OF FIELD-SCALE AND 

SPATIAL SALINITY PATTERNS FROM SOIL 
CONDUCTIVITY SURVEY DATA 

S. M. Lesch 

wllection of apparen t soil electrical conductivity Ca) survey data 
purpose of characterizing various spatially referenced soil proper­

, 'R' eived considerable attention in the soils literature over the last 
d Jdes (Corwin and Lesch 200Sa,b). Although now commonly used 

mJOI' precisi011 agriculture survey applications, most of the original 
.t l in EC"survey data was motivated by the need to characterize and 
.;oil salinity in a cost-effective manner (Rhoades et a1. 1999; H n­

~\ et al. 2002). The need for such surveying work is exp ected to 
ll~~ over time, as more agricultural land becomes degraded due to 
~ilJtion. 

\ par nt soil conductivity survey data often correlat reasonably well 
til I'ariolls soil properties (salinity, soil texture, soil water content, etc.) 
Jl'r different field conditions (Corwin and Lesch 2005b; Lesch and 
~m 2003). However, as a general rule, EC. survey readings tend to be 
n'1~' correlated with soil salinity levels. Thus, accurate salinity p redic­
' can normally be constructed from EC" survey data in semi-saline 
,a line fi elds using fairly simple statistical calibration techniques. 

'JIIi mally, accurate maps of the field-scale salinity pattern can some­
also be produced from ECa survey data in marginally saline field , 

11\ided that other important soil properties (such as soil texture and soil 
Jt~r content) exhibit fairly minimal spatial variation. 

461 

jrose
Typewritten Text

jrose
Typewritten Text

jrose
Typewritten Text

jrose
Typewritten Text

jrose
Typewritten Text

jrose
Typewritten Text
Lesch, S.M. 2012.  Statistical models for the prediction of field scale, spatial salinity patterns from sol conductivity survey data. In: W.W. Wallender and K.K. Tanji (eds.) ASCE Manual and Reports on Engineering Practice No. 71 Agricultural Salinity Assessment and Management (2nd Edition). ASCE, Reston, VA. Chapter 14 pp:461-482.

jrose
Typewritten Text

jrose
Typewritten Text

jrose
Typewritten Text
2197

jrose
Typewritten Text

jrose
Typewritten Text



462 AGRIC ULTU RAL SALI NI TY ASSESSMENT AND MA NAGEME :T 

After ECa surv y data have been acquired in a field , calibratl\ln 
samples are normally collected a t a certain number f EC" sun ('\ JI_ 
tions. The measured salinity level associated with these soil sampll 
then used (in conjlmction with the co-located survey data) to e. tim' 

some type of spatial-statistical or geostatistical model. This 5 ti1tl~ti 

mod I is in turn used to predict the detailed spa tia l soil-salinity pJtt 
fr m the full set of acquired survey data. 

This chapter d iscusses th simplest and most fr quently used ,tdh~tll 
mod ling approach for calibra ting ECa survey information with mt 
ured salinity data, such as ordinary regression. Ordinar y linear regrl" I 

models represent a special case of a much more general das ' of mild 
conunonly known a linear regression models with spatially COrrt'IJa 

rrors (Schabenberger and Gotway 2005), hierarchical spatial nlllJ 
(Banerjee et al. 2004), or geostatistical mixed linear mod' (Haskard t'I 
2007). This bro( del' lass of models in cludes many of th geos ta ti.sth 
t chniques familiar to soil scientists, such as universal krigin and J.n~.r. 

with external d rift, as well as standard regression techniqu s-ordmill, 
linear regre sian (LR) models and analysis of covariance models. 

The rem aind er of this chapter is organized as follows. A tcchni 
review of the basic linear regression model es timation and validati 
techniques is p resented in " Regression Models" and "Regres ion Ml~l 
Validation Tests." Some suitable sampling strategies for calibrating lin,' r 
regres i n equations are discussed in "Sampling Stra tegies," while 1M 
sub quen t section presents a brief overview of th ESAP software pac'· 
age . Two ' alinity assessment examples are then presented in" Da 
Analysis Examples"; these data analyses demonstrate the stabstical call 
b ration and prediction t chniques discu s d in this chapter, along witl 
some of the types of analysis outpu t that the ESAP software can produ ". 

Regression Models: Estimation and Prediction Formulas 

Site-specific p r diction of diverse soil properties from EM survev dal.! 
can be ach ieved using regression model estimation and pr diction tcch· 
niques. In the r gression modeling approach advoca ted by Lesch and 
Corwin (2008), Lesch (2005), Rhoades et a1. (1999), and Lesch et al. (19'1;1 
a suitable linear equation is specified that relates the target soil prop rtI 

of interest to a linear combination of conductivity signa l data readin~, 

and (possibly) trend smfac coordinates. One example of sltch an equ,l­
tion would be 

where the response variable (y) represen ts the soil prope rty of inte rl.'~ t 

(e.g., salinity, texture, water content) at the ith survey location; the predic· 
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(EMlI, EMil, CX' cy ) represen t the corresponding EM38 vertical 
Inta l signal readings and associated ith su rvey site coordinate 
re<i pectively; the (3 p arameters represent empirical regression 
lfil'icnts; and E represents the random error component asso i­
the modeJ. Equation 14-1 relates the response variable (e .g., soil 

II I both EJv[ signal and trend surface components, and thus can 
.1~ a "signal + trend" model. The tr n d surface components 

i11 Eq. 14-] are optional and should only be included if they are 
necessa ry (i .e., if the associated parameter estimates are statis­

")!oificant or if the inclusion o f such components is needed to 
nnbvious spatial trend in a residual plot). 

tpt imal estimation of the aforementioned (or similar) regression 
Jl'p~nds on the assumptions placed on the random error com po­

'{'rro rs ar assumed to be normally distributed and exhibi t spa­
dation, then Eq. 14-1 is commonly called a spatial linear regres­
'lid in the statis tical literature, or a kriging with external drift 
r Ihe geosta tisticalli terature (Cressie 1991; Schab nberger and 
21.105). Such models can be efficiently estimated using maximum 

or restricted m aximum likeLihood fi tt ing techniques (Littell 
'f-JoJ In contrast, if the errors can be assLUned to be approximately 

then ordinary least squares (OLS) fitting techniques can be 
this latter ca e the model becomes identical to an ordinar linear 

. eq uation, the only difference being that the predictions are 
referenced. 

~.keli h(lod of the r sidual errors being approximately uneoa-ela ted 
I)l'li to spatially corr lated) depends primarily on (1) the method 

, 'l'lect the calibration sa mple sites, and (2) the degree to which the 
Ity signal data correla tes with the respons variable of interest. 

!he ignal de ta is strongly corr lated with the targe t soil p roperty and 
.,IO.IIIJ;l'd 'ampJing strategies a re employed, th assump tion of approxi­

'nidual independence is often satisfied . Fo r detailed discussions 
these i ' ues, see Lesch and Corwin (2008) and esch (2005). 

huugh appropriate prediction statistics can be d rived for either 
Iflly the OLS results are presented here. Additionally, 11 of the fol­
rl'Sults are pr sented in matrix nota tion; a good review of matrix 
nirom a regre ion modeling viewpoint is given in Myers (1986). 
In~ standard matrix notation, note that we can express Eq. 14-1 as 

\d ~ e, where y repre nts a (n x 1) vector of soil property measure­
(collected across n itl's), X represents th e correspondin g (n x p) 
,ion model de ign matrix and e represents the (n x 1) vector of 

(I ~ 1 IlJ Ierrors. Then, under the LU1correlated residual error assumption, 
tlinear unbiased estimate (BLU E) for (3 is 

f in It r 
l' pI" di (14-2) 
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with a corresponding variance of 

[1 

where (J2 represents the regression model mean square error (MSEI( 
ponent. 

Likewise, the residuals (i.e., empirical model errors) for Eq. I-H 
defined to be 

r = y - Xf3 ( I 

and these residuals provide an unbiased estimate of the MSEcompon~l 

that is 

Now, let Yzrepresent the (unknown) vector of soil property values at ,til 
the remaining survey locations and define Xz to be the correspondl1 
design matrix associates with these sites. Then, again under the unCunl 
lated residual error assumption, the best linear unbiased predicti 
(BLUP) of these soil property values can be shown to be 

(1-!-­

with a corresponding variance estimate of 

(1~ 

Corresponding formulas for both individual and field average pr dk· 
tion estimates can also be immediately derived from standard linear mod· 
eling theory. For example, individual survey site predictions (and thl'ir 
corresponding variance estimates) become 

Yo = xz~ 


Var!yo - yol = (J2(1 + xz(XTXr1x;) 


where x, represents the (1 X p) design vector associated with a specific 
prediction s ite. Likewise, the average prediction associated 'with the entirl' 
nonsampled survey grid can be computed as 
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(14-8) 

\ represents the average of the N - n design vectors associated 
nonsampled survey positions. Note that all of these results are 'n 

t 

\ identical to ordinary linear regression model parameter estima­
nd prediction formulas presented in standard regression model 
k"(MyeL 1986). 

m,my practical survey applications, determining the probability 
new prediction exceeds some specific threshold value is also of 
L Although no t com monly discussed in most classicallmear mod­

: It,\ tbooks, regression models can also be used to produce such 
JDi li~' estimates. More specifically, upon adopting a Bayesian per­
le, the probability that an unobserved Yo lies within the in terval 

,JIl be computed as 

II 
'IT;[a,b] = Prob(a:s Yo "; b) =Jg I(PI_p)dt (14-9) 

rl' t ' ~_I) represents a central t-distribution having n - p degrees 

fa 

tined as 

'n'edom (i.., the regression model residual degrees of freedom), 

!1 ,I )I JVarlYo) , and h=(b-Yo)/JVarrYo} (Press 1989: assuming 

Ut' prior distributions on the model parameters). These latter probability 
,Jictions can in turn be used to calculate a range interval estimate (RIE) 

100 N - .. 

RIE[a,b ] =--)' 'IT;[a,b] (14-10) 
N-n~ 

,'nich represents a prediction of the percentage of nonsampled sites (on 
. L urvey grid) that exhibit soil property values falling within the inter­
,.11 (17, b), For example, one might be int rested in predicting the per­
. nldge of survey sites in a field with salinity levels in excess of 4 dS/ m. 
qu,ltions 14-9 and 14-1 0 can be used to calcu[ate this value, while 

lin ultaneously adjusting out the "shrinkage-effect" inherent in t he 
1 s(lciated regression model predictions. Lesch et al. (2005) discuss the 
hove (' timates in more detail and show multiple examples of their 

lpplication. 
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Regression Model Validation Tests 

If an ord inary linear regr ssion model is to be 'Llccessfully 1I 

place of the geosta tistical or spa tial linear model, then more-r 
modeling assumptions need to be met In addition to the assumptllln 
normally d istributed error process, the critical assumption in the Ii 
regressi n modeJ is the uncorrelated residual assumption. A formJ 
for spatial corre la tion in the r sidual pattern can be carried (lut u 

either a nested likelihood ratio test or via the Moran residual test ·t.I' 
(Upton and Fingleton 1985; Haining 1990; iefe lsdorf 2000; , h.1 
berger and Gotway 2005). The likelihood ratio tes t can only be peril! 
after first estima ting a suitable geostatistical or patial linear m( dd I 
pages 343-344 of Schabenberger and Gotway (2005) for more di:.ctl 
of this topic]. In contras t, the Moran test can be carried out directly I I 

ordinary regression model residuals. 
As originally introduced by Brandsma and Ke tellapper (lq711\ • 

Moran test statistic was d esigned to detect spatially correlated r\~id\ 
in conditionally and / or simultaneously specified spatial 3utoregrc" 
models (Schabenberger and Gotway 2005). H owever, it can aisut c u 
to assess the uncorrelated residual assumption in a general linear mod 
ing framework. The Moran residual test statistic (OM) is defined as 

(J .J­

where r is defined in q. 14-4, W rep resen ts a suitably specified proxim,' 
matrix, and ~ is calculated using Eq. 14-2. While the specification ofW 
be app lication-specific, in most soil survey applications it is generalh r,· 
sonable to specify W as a scaled inverse distance squar d matrix. Unlit 
such a specification, where dij repr ents the computed distance bclI\, 
the ith and Jth sample loca tions, the (Vi ii ) elements associated with th~, 
row of the W matrix are defined as 

(1 .J-12 

respectivel y. 
Brandsma and Ke t Hap per (1979) describe how to calculate the Itr­

two moments of OM, i.e., E(OM) and Var(oM) [see also Lesch and 0 1'\1 . 

(2008) and Lesch (2005)]. The corresponding Moran test score can then bt 
computed as 

(14-b) 
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mp red to the upper (one-sided) cumulative standard normal 
"itt density function. A test score in excess of 1.65 (ex = 0.05) is 

Iii" interpreted as being statistically significant. Provided that the 
-lOll model has been correctly specified, such a test score implies 

model residuals exhibit significant patial correlation. In this situ­
"It' parameter estimates and survey predictions may be highly inef­
Jnd the mean square error estimate and parameter test statistics 
,ubstantially biased. If sufficient data are available (or additional 

In be collected), then a suitable spatial or geostatisticallinear mod­
rpnlilCh should instead be employed . 
"clition to the uncorrelated residual assumption, one must also ver­
t the model residuals satisfy the usual standard normal error 

:mption and that the hypothesized model is correctly specified. Fortu­
most well-known resid ual analysis techniques used in an ordinary 
I,lll analysis are just as useful when applied to a spatially refer­

~ linear regression model. These include assessing the assumption of 
, I normality using quantile (QQ) plots and the Shapiro-Wilk test 
~Iro dnd Wilk 1965), detecting outliers and / or high leverage points 
., of internally or externally studentized residuals), and detecting 
"specification bias (residual versus prediction plots, partial regres­
1,'\' 'rage plots, influence plots, etc.). 

:1t' standard jack-knifing techniques commonly used to assess the pre­
\~'(apabiJity of an ordinary regression model are also d.irectly appli ­
t· . \ lost standard statistical software packages can readily produce 
·knifed residuai and/ or prediction estimates in a computationally 
I,nt manner. Cook and Weisberg (1999) and Myers (1986) offer good 

It'll'S of many relevant regression model diagnostic and assessment 

piing Strategies for Spatially Referenced Linear 

I'1!ssion Models 


' rJce limitations preclude a detailed discussion of the numerous sam­
",' strategies one can employ to estimate spatially referenced regres­

TO models. Broadly speaking, the most common strategies currently 
rillyI'd can be classified as either (1) probability-based (design-based) 
pii ng, (2) prediction-based (modeJ-based) sampling, and (3) grid sam­

rn~ . Brief descriptions of each of these approaches are given here. 
mgeneral, probability-based sampling strategies tend to be commonly 

mployed in most spatial research problems. Probability-based sampling 
!IJlegies include techniques, such as simple random sampling, stratified 
nLiom sampling, cluster sampling, capture-recapture techniques, and 
~ transect sampling. Thompson (1992) provides a good review of mul­

• It> types of probability-based sampling strategies. 
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Probability-based sampling strategies have a weJl-developed una 
ing theory and a r ~ clea rly useful in m any spatial applications (rhl1m 
1992; Brus and de Gruijter 1993). H owever, they are not designed ,pt 
cally for estimating mod Is per se. Indeed, most probability-based 
pling strategies expli itly avoid incorporating any parametric nndl 
assump tions, relying in tead upon randomization principles (\\ hi t 

built into the design) fo r drawing statistical inference. 
Pred iction-based ampling sh'a tegies represent an alternative "pp 

for d veloping sampling design s tha t ar explicitly foc used toward m 
estimation . The und rJying theory behin d this appr ach for finite pl1r 
tion sampling an d inference is discussed in detail in Valliant et a1. L 
More generally, response surface d esign theory and optimal experimc 
design theory represent two closely related statistical research area-' 
also study sampling designs specifically from the model stimation \. 
point (A tkinson and Don v 1992; My rs and Montgomery 2002). 1( 
niques from the ' e latter two subject areas have been applied to the, 
mal collection of spatial data by Muller (2001), the specification of opt 
designs for vari gram estimation by Muller and Zimmerman (lCl 
e timation of spatially referenced regression models by Lesch (20051 
Lesch et al. (1995), and the estimation of geostatistical linear modl'l· 
Brus and Heuvelink (2007), M ina ny et a1. (2007), and Zhu dnd ~ 
(2006) . Conceptually similar types of nonrandom sampling deSign., 
variogram estimation ha e been introd uced by B gaert and Russo (1 
Warrick and Myers (1987), and Rus 0 (1984). 

G rid sampling represents anoth r form of nonrandom samplin -' 
has been used for many years in the soil sciences. Grid sampling hi! 1 
torically been recommended for accurately mapping soil boundar 
and / or as a pre ursor to an ordinary kriging analysis (Burgl:' ss et aJ. 1 
Burgess and Web ter 1984). 

Theore tically, any of th se ~ ampling approaches can be used fl1r 
purposes of es timating a regression mod el, although eacll appn\ 
exhibits various strengths and weakn sses. Lesch (2005) compare 
contrasts p robability-based and prediction-based sampling strategic 
more detail, and highlights some of the sh'engths of the prediction-ro 
sampling approach. 

Overview of the E AP Software Package 

Many types of d iver e softwar programs can be utilized for the a 
ment and quantification of soil salini ty inventory information via soil ll 
d uctiv ity survey data. The more common types of software applicat 
indude patial mapping software, GIS software, statistical software, j 

geophysi al software (when appropriate). Nonetheless, th 
stand-al one, comprehensive salinity assessment software packagp \ 
re ognized some yea rs ago by the technical staff at the U.S. Salinity Llt­
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, AP software package was specifically developed to handle 
Ito tl linity inventorying and assessment work, primarily in 
to this need (Lesch et a1. 2000). 
'.If software package contains a series of integrated, compre­
~tware programs, designed for the Windows XP (or equivalent) 
rstem. This software can be used for the prediction of field­

mal soil salinity information from conductivity survey data and 
....I\IIII.uUJ been designed to facilitate the use of cost-effective, tedmi­

nli soil salinity assessment and data interpretation teclmiques. 
'I1t publicly available shareware version of ESAP (version 2.35) 
thrrt' data processing programs designed to guide the analyst 

~ theentire survey process: ESAP-RSSD, ESAP-SaltMapper, and 
. Ilhmtr. The ESAP-RSSD program can be used to generate optimal 
.N.'t1 soil sampling designs from conductivity survey data. The 

r program may be used to generate 1-0 transect plots 
_.[) raster maps of either raw soil conductivity or predicted soil 
dJta Additionally, the SaltMapper software can be used to iden­
IICa te tile line positions in fields suffering drainage-related salin­

·iems. The ESAP-Calibrate program is normally used to convert 
l1ductivity data into estimated soil salinity data, via either statisti­
lderministic calibration modeling teclmiques. However, this latter 
mcan also be used to estimate other soil properties from conduc­
urvey data and/or analyze various soil property / conductivity 
"hips. 
f version 2.35 contains two additional utility programs: ESAP­

'\ dnd the DPPC-Calculator. The SigDPA program can be used to 
m1 rarious conductivity data preprocessing chores, such as screen­
t negative conductivity readings and/ or assigning row numbers to 
-t conductivity survey data. The DPPC-Calculator can be used to 
rt insertion four-probe readings into calculated soil salinity levels 

njunction with measured or estimated soil temperature, texture, and 
:wntent information). 

illt' FAP-RSSD and ESAP-Calibrate programs contain the bulk of the 
"I-based sampling and statistical modeling algorithms within the 

,oftware package. As discussed, the ESAP software package repre­
In integrated, self-contained salinity assessment software system. 

': thedata analysis examples presented in the next section were per­
:ei using the version 2.35 ESAP software components (i.e., RSSD, 

QIt',and SaltMapper). 

mple 1: A survey of a marginally saline lettuce field in Indio, California 

electromagnetic induction (EMI) survey was performed by the 
"hella Valley Resource Conservation District in June 2003 within a 
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14-ha lettuce field located in Indio, California . The p rimary goal 
survey were threefold : (1) to construct an accurate soil salinity inwI I 
for the field, (2) to determine if this field should be leached before till 
cropping season, and (3) to construct relevan t yield-loss proietti, 
based on the predicted field soil salinity conditions. A totailli 2 
Geonics EM38 vertical (EMv, mS/ m) and horizontal (EMf-!, mS /m) I,;; 

readings were collected across 29 north-south survey tra nsect~ II IU 

thi s field and then processed through the USDA-ARS ESAP sofnl 
package. This software selected 12 survey locations for soil samph 
using a prediction-based ESAP sample design (Lesch et al. 20110)
samples were collected from 0 to 0.6 m and 0.6 m to 1.2 m depths 
analyzed for soil salinity (ECe, dS / m), soil sa tura tion percentage (511. 
and gravimetric water content (eg, %). Table 14-1 lists the univariate 
mary statistics (mean, standard deviation, minimum, and maximuml 
the EM38 survey and soil sample data, respectively. Figure 14-1 
the interpolated EMv signal map for this field, along with the SP,1l 

positions of the 12 sampling locations. Note also that some advanced­
tistical aspects concerning this specific data analysis are discu:~c 

Lesch and Corwin (2008). 
The results from an exploratory regression modeling analyse. 

formed in ESAP suggested that the following naturallog(EC,.)/lo~(F 

TABLE 14-1. Basic EM38 and Soil Sample Summary Statistics: 

Indio Lettuce Field 


Variable Units N Mean Std. Dev. Min 

EMv mS/m 2040 63.67 13.87 36.25 

EMH mS/m 2040 38.02 10.28 17.63 

Variable Units De£th N Mean Std. Dev. J'"lin 

BCe dS/ m 0-0.6 m 20 1.86 1.18 0.72 

0.6 m-1.2 m 20 1.93 1.28 0.26 

SP % 0-0.6 m 20 36.95 4.09 32.20 

0.6 m-1.2 m 20 32.92 5.14 26.35 

8g % 0-0.6 m 20 16.76 3.41 9.85 21 

0.6 m-1.2 m 20 16.64 5.33 10.60 2L 

Ee., = soil alinity 
EM = EM38 horizontal signal 

" EM" = EM38 vertical signal 
SP =soi l saturation percentage 
ag = gravimetric w~te,content 
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rlGURE14-1. Survey of a margillally saline lettuce field in Indio, California, 
Ilowillg tile in terpolated EMv signal map for this field, along with the spatial 
, "i1i0115of the 12 sampling locations. 

n!gress ion equation sho uld be u sed to d escribe the soil salinity1signal 
,onductivity re la tionship in thi ' field: 

\~here 

Z u = In(EMv,t} + In(EM(.u), and 

221 = In(EM v,) - In(EMJ-l.J (14-15) 


In Eg. '14-14, the subscript j = 1, 2 carre ponds to the two sampl,jng 
depths, ; = 1,2, .. . 2,040 conesponds to the EM38 sampling locations, !30j 

through f34i rep resent the two sets of regression model parameters (which 
define the two d epth-specific prediction functions), and the residual 
errors for each sampling depth are assumed to be spatially uncorrebted. 
fable 14,2 presents the key summary s ta tisti s for each es timated regres­
,ion function; th s s ta ti tics include th R2, roo t mean square error 
,:R.VfSE) estimate, overall model F-score and associated p-value, and the 

580760 580863 580966 581 172581 069 
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TABLE 14-2. 	Summary Statistics for Depth-Specific In(ECJ Une I 

Regression Models: Indio Lettuce Field 

Depth RMSE F-score Pr > F Moran Score r 

0-0.6 m 0.922 0.196 31.37 <0.001 0.652 

0.6-1.2 m 0.798 0.490 10.54 0.004 -0.067 

corresponding Moran test score and p-value. These latter Moran 
suggest that the uncorrelated residual assumption is valid. 

• 

f11' 

Lik~\ 

residual QQ plots (not shown) confirm that the regression model err 
follow a normal distribution and, hence, the ordinary linear regr , 
modeling approach can be adopted. Additionally, the R2 value~ ~u 
tha t these regression models can be used to describe 92% and 80'\ OlC 

o to 0.6 m and 0.6 to 1.2 m observed spatiallog(EC,,) patterns in thi~ II 

respectively. 
The spatial salinity pattern in the 0 to 0.6 m depth was of prim 

interest in this survey. More specifically, the field was scheduled II • 
leached if (1) 50')10 of the field was predicted to exhibit 0 to 0.6 mdl'r 
salinity levels> 2 dS / m and/or the field average In(ECe) level exc 
In(2) = 0.693, or (2) 25% of the field was predicted to exhibit 0 to 0.0 
depth salinity levels >3 dS/m. Table 14-3 presents the predicted Ill' 
average In(ECe) levels (and corresponding 95% confidence intervalsl, 
well as the range interval estimates for both sampling d pths. Thes 
dictions can be automatically calculated in the £SAP software pack 
(using Eqs. 14-8 through 14-10, respectively). Figure 14-2 shows thecorr· 

TABLE 14-3. Regression Model Predicted Field Average In(EC) 

Levels and Range Interval Estimates: Indio Lettuce Field 


0-0.6 m Depth 0.6-1.2 mOct 

"'T,\T I5TI fJ 

(060 em) 

( 1 5 

15 - 2 

• :' 5 

• , 11) 

Old Sy , m 

U1\l 1m) 

lulln9 
ot1hlng 

nCLlRL 14-2. Tlli 
',11- 1. This 11/11 

111 rl'(l/il ti llg tile b 
1/ grid /lsillg an 

rOl\Jin~ predict 
lIll,d (\ ithin th 
rJI1~formcd, ind 

• 11 .1dilL~ t.a bl Sill' 

I Ill' r 'LIl ts sh 
!lJ4.' not ne ' d to 

Field average In(ECe) 0.494 0.548 

95% confidence interval (0.35, 0.64) (0.19,0.91) 

Range Interval Estimates (% Area of Field Classified into RlEs) 

<2.0 dS / m 66.5 54.8 

2.0-3.0 dS/m 22.9 19.9 

3.0~.OdS/m 10.1 20.0 

>6.0 dS/ m 0.5 5.3 

I (J,-I.9.J., and 66.5 
l 11.,t to b belc 
Ml' ca k ula l 'd to 
!lllpl 'mcnting a I 

\ ithin the p r 
\\ tl1 l l'T vegetable 
lSI I'. ftwar c 
il ' kd relative yi 
• n~1.' equations F 
I if';ure 14-3 sh v 

RIE = range interval estimate 	 lu c, bas d on a 
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fICURE 14-2. The corresponding predicted spatial salinity map for the field in 
Fi . 14-1. This map was produced within the ESAP SaltMapper progralll by 
illterpolating the back-trallsformed, illdividualln(Ee) predictiolls OlltO (l fine ­
mt':lir grid /Ising an adjllstable smoothing kernel. 

sponding predicted spatial salinity map for this field. This map was p ro­
duced (within the E AP SaltMapper program) by interpolating the back­
transformed, individ ual ln(ECe) predic tions onto a fine-mesh grid using 
an adjustable smoothing kernel. 

The results shown in Table 14-3 and Fig . 14-2 suggest that this fi Id 
docs not need to be leached. The 0 to 0.6 m field average In(ECe) timate 
is 0.494, and 66.5% of the individual 0 to 0.6 m depth predictions are ca l­
culated to be below 2 dS/m. Additionally, only 1O.6(Yo of thes predictions 
dre calculated to exceed 3 dS/m. Thus, none of the specified criteria for 
implementing a leaching process are met in this field. 

Within the preceding 5 years, th landowner had grown alt mating 
winter vegetable crops of romaine lettuce and broccoli in this field. The 
ESAP software can be used to convert the Fig. 14-2 salinity map into p ro­
jl'eted relative yield loss maps for these crops, Llsing standard salt-toler­
ance equations published for these vegetables (Mass and H offman 1977). 
Figure 14- shows the projected relative yield los map f r romaine let­
tuce, based on a threshold of 1.3 dS/m, a slope estima te of 13% yield loss 

http:0.19,0.91
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FIGURE 14-3. For the field shown in Figs. 14-1 and 14-2, the projected IT 

yield loss map for romaine lettuce, based on a threshold of 1.3 dS/m, /I ~/ll 
mate of 13% yield loss per one unit increase in Eee (beyolld tlze thres/wldl 
80:20 root-weighting distribution (for the O-m to 0.6-111 and 0.6-1/1 t(ll 
depths, respectively). 

per one unit increase in ECe (beyond the threshold), and a 80%10 ~ 
root-weighting distribution (for the 0 to 0.6-m and 0.6- to l.2-m d~p 
respectively). The calculated field average romaine lettllce yield I 
this field is 8.7%. The corresponding calculated field average yield \0',' 
broccoli is < 1% (using a threshold of 2.8, a slope of 9.2%, and a 7Q 
30% root-weighting distribution). These additional yield loss estim. 
also suggest that a full-scale leaching of this field is currently UnI\ • 

ranted, particularly if broccoli is the next scheduled crop in the rolatlon 

Example 2: Pre- and postleaching surveys of a Coachella Valley 
vegetable field 

Pre- and postleaching EM surveys were performed by U.s. Salimi 
Laboratory personnel in July and October 2003 within a 13-ha veget~ 
field located in Thermal, California. The main goal of this survey W(I) 

spatially quantify the leaching process and determine the percent redu, · 
tion in the post- versus preleaching median salinity levels in the field. 
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12~land 1,288 G onics EM38 vertical (EMv, mS/m) and horizon­
m 1m) signal readings were collected within this field during 

~ Jl1d postleaching survey processes, respectively, and processed 
tIlt: U DA-ARS ESAP software package. This softw<lfe was again 
'lect 12 locations for soil sampling in each survey, using a pre­

,N l'd ESAP sample design (Lesch et aI. 2000). Soil samples were 
1tTtlm the 0 to 0.6 m sample depth and analyzed for soil salinity 

m), .oil saturation percentage (Sr, %), and gravimetric water 
II, ";,). Table 14-4 lists the univariate summary sta tistics for the 

urrt'}' and 0 to 0.6 m sample data associated with each survey 
ull' that one soil sample in the preleaching survey event had to be 

rJl'J due to contamination during the laboratory analysis proce­
fl~ures 14-4 and 14-5 show the interpolated July (prdeaching) and 
r f1llStleaching) EM!! signal maps for this field, along with the spa­
Itions of the sampling locations. 

n~ results from an exploratory regression modeling analYSis per­
d in [SAP confirmed that the following simple 10g(ECcl/log(EM) 
illl1 equation could be used to describe the soil salinity / signal con­

l ltv rrlationsnip for each survey event in this field: 

(14-16 ) 

T,\BLE 14-4. Basic EM38 and Soil Sample Summary Statistics: 
Coachella Valley Vegetable Fielda 

L.:nits Date N Mean Std.Dev, Min Max 

mS/ m July 1243 23.25 9.12 10.63 79.75 

mS/ m July 1243 44.35 13.29 27.25 124,63 

mS/ m October 1288 30.99 13.10 15.25 121,88 

mS/ m October 1288 48.26 18.69 27.75 175.38 

dS / m July 11 1.83 0.99 0.75 3,69 
0 ' 1(1 July 11 32.53 2.36 29.44 37.33 

% July 11 0.12 0,03 0,06 0,16 

dS / m October 12 0.98 0,39 0.63 1.94 

% October 12 34.07 5.88 28.63 46.33 
0,
10 October 12 0.24 0.10 0.11 0.44 
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FIGURE 14-4. The interpolated July (preleaching) EMH signal maps of II 
Coachella Valley, California, vegetable field, along with the spatial positiolls or 
tlie sampling locations. 

w h r Z jij = In(EMv,i) + In(EMH,i,j)' In Eq. 14-16, the subscrip t j = 1, 2 no\\' 
corr pon 5 to the two sampling dates, the i subscript correspond to the 
EM38 sampling 10 ations acquired d uring each survey process, {~OJ' ~IJi 
and ((3021 ~ul represen t the two sets of regression model parameters (which 
define the two time-dependen t p redic tion functions), and the residual 
errors for each samp ling dep th are again assLUned to be spa tially uncorre­
lated _ Table 14-5 pres n th key sum.mary stati s tics for each estimated 
regression fun ti on; these sta tistics again include the R2, root mean square 
error (RMSE) estimate, overall model F-score and associated p-value, and 
the corr ponding Moran tes t score an d p-value. The Moran scores and 
residual QQ plots (not sh own) suggest that the normally distributed. 
uncorrelated residual assumption is valid. Th RMSE and R2 values sug­
ge t that th postleaching LR model is more aCCl1r te; this increase in pre­
d iction ac macy is mos t likely d u to the pr sence of higher and more uni­
fonn soil moisture conditions du ring the post-leaching survey process. 

In Sep tember 2003, a to tal f 64 cm of Colorado Ri er w ater was 
applied to this field 0 er a seven-day leaching cycle_ The leaching was 
pe rfo rmed using 25 m-wide p onding basins laid out across the field, 
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TABLE 14--5. ~ 

Regressi 

Date 

July 0.600 


October 0.837 




Mf. I 

!lite R2 RMSE F-Score Pr > F Moran Score Pr > 2M 

ul), 0.600 0.340 13.51 0.005 -1.37 > 0.5 

.ltober 0.837 0.148 51.37 > 0.001 - 0.55 > 0.5 
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JRE 14-5. The same field as in Fig. 14-4, in October (post/caching). 

rIh' soil had been deep-chiseled, plowed, and land-planed. The 
m~ were laser-leveled and the water was released from a standpipe 
lIeUwithin the northwest corner of the field (a head channel along 
north edge of the fie ld was used to deliver the water to each basin). 

J·.u la tions from the flow and volume measurements performed dur­
. the leaching process suggested that approximately 55 cm of water 
iltra ted the soil and that the distribution uniformity of the basin sys­
. WdS 93%. 
/'he temporal change in the spatial salinity pattern in the 0 to 0.6 m 
~Ul was of primary interest in this survey. Table 14-6 shows the ESAP­
!'dieted pre- and postleaching salinity summary statistics for this field . 
f postleaching median salinity level is estimated to be 0 .91 dS/m, 

TABLE 14-5. Summary Statistics for Time-Specific In(EC,,) Linear 

Regression Models: Coachella Valle2: Vegetable Field 
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TABLE 14-6. Regression Model Predicted Field Average In(ECJ Lel"'" 
and RaI1ge Interval Estimates: Coachella Valley Vegetable Field 

July Octob 

Field average In(ECe) 0.513 -O.OIlS 

95% confidence interval (0.26,0.76) (-0.19, 0. 

Range Interval Estimates (°lr, Area of Field Oassified into RIEs) 

<1.0 dS/m 16.6 68.0 

1.0-1.5 dS/m 27.2 25.5 

1.5-2.0 dS/m 21.4 4.6 

2.0-3.0 dS/m 20.9 1.7 

< 3.0 dS/m 13.9 0.2 

RlE '" range interval estimate 

which represents about a 46% decrease over the pre-leaching level (1.6;1 
The ESAP-Calibrate software can perform a t-test on the differencr 
between two field median (log mean) estimates; the corresponding t-scon 
is this example is -5.14 (p < 0.0001). Additionally, 68% of the field is e li· 
mated to ex.hibit postleaching salinity levels below 1 dS/m, and less thJn 
2% of the field exceeds 2 dS / m. These estimates imply a substantial leach· 
ing effect, given that the corresponding preleaching estimates were 16,7", 
« 1 dS/m) and 34.8% (> 2 dS/m), respectively. 

The predicted pre- and postleaching 0 to 0.6 m salinity m aps for this 
field are shown in Figs. 14-6 and 14-7. A pronounced leaching effect call 
be clearly seen in the postleaching salinity map, and the near-surface 
salinity levels across the entire field appear to be significantly reduced. 
Thes results are perhaps not that surprising, given the large volume of 
water used during the leaching process (= 8.3 ha-m). 

Finally, it is worthwhile to observe that the raw October (postleaching) 
EM38 ignal data exhibited a higher average level than the July (pre leach· 
ing) da ta (see Table 14-4 and Figs. 14-4 and 14-5). The general increase in 
the EM signal response was again most likely due to the elevated near· 
surface soil moisture conditions. The top 30 cm of the soil profile 'A d 

particularly dry during the July survey; these dry surface conditions 
undoubtedly depressed the EM38 signal response. These results demon· 
strate why a direct interpretation of EM38 signal data is often misleading. 
Note that the median near-surface soil salinity level in this field decreased 
by nearly 46%, even though the average horizontal EM signal reading 
increased from 23.3 mS/m to 31.0 mS / m. 
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.GURE 14-7. Thc prt'dicted postlcaclzing 0- to O.6-1Il salinity map for the field 
.!UJllIIl ill Fig. 14-6. A pronoll nced leaching effect can be clearly secn here and the 
.. 11" 'lIljizce salinity levels across the entire field appear to be significantly reduced. 
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SUMMARY 

This chapter demonstrates that a practical, regression-based meth 
ogy for the prediction of field-scale, spatiai salinity patterns from 
conductivity survey data has substantial advantages in program f r' 
management of soil salinity. The basic parameter estimate and salini~'r 
diction formulas for the ordinary linear regression model haw r 
reviewed, along with the necessary modeling assumptions that hart' bot 

built into the ESAP model, which also provides guidance for soil salir 
sampling. The two case studies presented h.ighlight the model estima.1 
and salinity prediction capabilities of the ESAP software and demon,lr 
how bulk soil electrical conductivity survey data can be efficientl) inll: 
preted and used to quantify field-scale soil salinity information. 

It is worthwhile to note that although the focus of this chapter has bl't 
on predicting soil salinity from survey conductivity data, the aSSOOJI!' 
statistical prediction methods discussed here are actually quite genw 
Indeed, these methods can be used to effectively model many difft'rrnl 
soil property /sensor data relationships, provided that the underl)in. 
modeling assumptions are satisfied. For a review of these more gener.. 
cali bra tion techniques, see Lesch and Corwin (2003) and / or the referen 
contained in Table 1 of Corwin and Lesch (2005a). 
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NOTATION 

BLUE = best linear unbiased estimate 
Eel' = soil salinity 


EMH = EM38 horizontal signal 

EMI = electromagnetic induction 

EMv = EM38 vertical signal 


e = (n X 1) vector of residual errors 

RlE = range interval estimate 

SP = soil saturation percentage 


X = (n X p) regression model design matrix 

Y = (n X 1) vector of soil property measurements 

f3 = (p X 1) parameter vector 


OM = Moran residual test statistic 
6g = gravimetric water content 
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