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6.1 Imntroduction

Soil scientists and agricultural engineers have traditionally been interested in the behavior and
effectiveness of agricultural chemicals (fertilizers, pesticides) applied to soils for enhancing crop
growth, as well as in the effect of salts and other dissolved substances in the soil profile on plant
growth. More recently, concern for the quality of the vadose zone and possible contamination of
groundwater has provided a major impetus for studying solute transport in soils.

The movement and fate of solutes in the subsurface is affected by a large number of physical,
chemical and microbiological processes requiring a broad array of mathematical and physical sciences
to study and describe solute transport. A range of experimental and mathematical procedures may be
employed to quantify transport in soils. Transport of a dissolved substance (solute) depends on the
magnitude and direction of the solvent (water) flux; considerable experimental and numerical effort
may be needed to determine the transient flow regime in unsaturated soils. Furthermore, the
determination of solute concentrations is not always straightforward, particularly if the solute is
involved in partitioning between different phases or subject to transformations.

A vast body of work on solute transport can be found in the soil science literature. An equally vast
amount of pertinent studies on solute transport in porous media has been published by civil and
environmental engineers, geophysicists and geochemists, physical chemists and others. The scope
of this chapter permits only an introductory treatment of the subject. First, the standard transport
mechanisms pertaining to the fundamental advection-dispersion equation (ADE) will be introduced in
Section 6.2. This equation, also known as the convection-dispersion equation, is most often used to
model solute transport in porous media. The movement of a solute that undergoes adsorption by the
soil requires modifications of the ADE, particularly if several solute species are present that may
participate in a number of different reactions. Section 6.3 is devoted to analytical and numerical
methods for quantifying solute concentraiions as a function of time and space. The traditional
advection-dispersion concept is not always adequate to describe solute transport in field soils.
Section 6.4 describes the stream tube model as an example of an alternative transport model that may
be better suited to model transport in real world situations.
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6.2 The Advection-Dispersion Equation

Consider the transport of a chemical speciesin a three-phase soil-air-water system, and assume that
the chemical species (the solute) is completely miscible with water (the solvent). At the macroscopic

level and for one-dimensional flow, the mass balance equation for a solute species subject to arbitrary
reactions is given as: :

where 8 is the volumetric water content (L L), Cis the solute concentration expressed as solute
Thass-per-solvent volume (M L), tistime (T), xis position (L), J,is the solute flux expressed in solute
mass-per-cross-sectional area of soil-per-unit time (M L-2 T),and R _denotes arbitrary solute sinks <
0) or sources (> 0) M L T, Similar equations may be derived for multidimensional flow and

transport. The solute flux is usually distinguished in an advective and a dispersive component
according to:

Js=J,C+Jp [62]
where J_is a vector quantifying the water flux (LT"), namely, the Darcian velocity expressed as

volume of water-per-cross-sectional area of soil-per-unit time, and Jp is a solute flux to quantify
transport caused by a gradient in the solute concentration (M L-2 T-!), also per unit area of soil.

6.2.1 Transport Mechanisms

substances move in a passive fashion, advective
transport can be readily quantified when the solvent flux (/,) is known. The water flux is generally a

function of time and position. However, for transport in laboratory soil columns, J, is often constant

while for field studies, approximations may sometimes be made to facilitate a simpler steady-state one-
dimensional flow description.

steady water flow, the solute concentration of the solution at the inJet of
is changed abruptly at time t= 0, the observed breakthrough of
>0 will not exhibit an equivalent abrupt change (Nielsen and Bi

a water saturated soil column
a solute at the column outlet at times
ggar, 1961). The solute concentration

6.2.1.1 Diffusion

- Molecular orionic diffusion is an important mechanism for solute transport in soils in directions where
there is little or no water flow. A net transfer of molecules of a solute species usually occurs from

regions with higher to lower concentrations as the result of diffusion as described by Fick’s first law.

Forafree or bulk solution, the one-dimensional mass flux (/M L2T-")] due to molecular diffusion is
given by:
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where D, is the coefficient of molecular diffusion for a free or bulk solution @T

)-Many publications
exists that provide data on D,(Kemper, 1986; Lide, 1995).

with nonideal mixing behavior, the activity coefficient of the solute
activity coefficients can be estimated with the extended Debye-

concentration range up to 16 M can be estimated with the Pitzer virial equations (Pitzer, 1979: Harvie
and Weare, 1980). Codiffusion or counterdiffusion occurs in systems with multiple ion species.
Diffusion rates for individual species as predicted solely by Fick’s model would violate the
electroneutrality principle. The ionic diffusion flux consists then of a term for ordinary Fickian
diffusion and a term accounting for electric transference of ions. The cotresponding diffusion
coefficient is related to the ionjc mobility using the Nernst-Planck equation (Helfferich, 1962).

To characterize diffusion in soils, the diffusivity in a free solution is typically adjusted with terms
accounting for a reduced solution phase (a smaller cross-sectional area available for diffusion), and an
increased path length. A general treatment of diffusion in soils can be found in Olsen and Kemper
(1968) and Nye ( 1979). The macroscopic diffusive flux Per unit area of soil can be written as:

oC
Sy == D X [6.4]

where D,, is the coefficient of molecular or ionic diffusion for the liquid phase of the soil. The

diffusion coefficients for the soi] liquid and a free liquid are related by (Epstein, 1989):

D D
D, = L =0 Dy,
dif (Ld;, / L)z ) [6.5]
where L,,,and L are the actual and the shortest path lengths for diffusion L),t= L, /Lisknown as the

tortuosity, and 12 as the tortuosity factor, while 1 « = (L/L)* is often designated as an apparent
tortuosity factor. The tortuosity L, /L appears twice in Equation [6.5] to account for changes in the
concentration gradient along the streamline and the travel distance as compared to a higher
concentration difference and a shorter travel distance along a straight path with length L in a free
solution (Olsen and Kemper, 1968). It should be noted that

the terms tortuosity and tortuosity factor
have not been used consistently in the literature, Furthermore, some authors include the water

content in their definition of tortuosity (Dykhuizen and Casey, 1989) or solute adsorption
(retardation) in the expression for either t or D,,(Nye, 1979; Robin et al,, 1987).

For unsaturated conditions, it is convenient to quantify the dependency of the diffusion
coefficient on water content. Assuming that the tortuosity affects diffusion in the liquid phase in the
Same way as in the gaseous phase, the tortuosity term previously derived for gaseous diffusion in
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soils by Millington (1959) and Millin

gton and Quirk (1961), can be adapted to describe aqueous
diffusion in variably saturated soils.

The following expressions then resulit:

01013 2

e
Dy, = Z Do Ddif=£zTDo

[6.6]

where € is the soil porosity (L* L?). An equivalent of the first expression, using a volumetric air
content instead of @, has been used frequently to describe gaseous diffusion in soils although Jin and
Jury (1996) reported that the lesser known second version provided a better description.

Diffusion coefficients in soil systems are usually determined by mathematically analyzing solute
concentration profiles in the soil as a function of time or position. Van Rees et al. (1991) measured
diffusivities by allowing diffusion from (1) a spiked solution into a soil having a zero or low initial
concentration, (2) a spiked soil into a solution, and (3) a spiked soil into the soil. In the first two
procedures, the concentration of the solution is observed as a function of time. A mathematical
solution is then fitted to the observation to determine the diffusion coefficient.

The third procedure of diffusion from a soil with a higher to alower concentration has been widely
applied (Kemper, 1986; Oscarson et al., 1992). Two blocks of soil with different concentrations are
brought together at time £ = 0. After sufficient time has elapsed for solute diffusion to occur from the
block with the higher to the lower concentration, the joined soil blocks are sectioned. The solute
concentration of each section is determined, for example, by using extraction,
chemical analysis of the supernatant liquid. This approach yields a concentration profile versus
distance from which the diffusion coefficient may be estimated using an appropriate analytical
solution of the governing solute diffusion equation. Consider the diffusion equation,

centrifugation, and

oc a*c

a P gm . 6.7

subject to the initial condition,

C, —=<x<0 »
C 0<x<e [6'§]

C(x,0) = {

and the approximate boundary conditions, '

Cl~=,t)=C, , Cle,t)=C; (69]

The solution for this problem is given by (Crank, 1975).

Clx 1)= C; +0.5(C, - C; Jerfc(x/ 4Dyt) [6.10]

where erfc is the complementary error function (Gautschi, 1964). The distributions of the solute
concentration as a function of distance for different times after joining two soil blocks with
concentrations C; = 0 and C,, and assuming D,,=1cm?d", are presented in Fig. 6.1.
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Fig. 6.1 Concentration profiles resulting from diffusion (D =14
withC=0and C= C, were joined at¢=0

") at different times after two soil columns

Typical values for diffusion coefficients in clays and soils with accom

panying T, are provided in
Table 6.1. Additional soil diffusivity data are given by, among others, Ham

aker(1972) and Nye (1979).
6.2.1.2 Dispersion

Local variations in water flow in a
mechanisms that are commonly use

different sizes; (3) the mean water flow direction in the porous medium bein
streamlines within individual pores, which differ in shape, size, and orientation; and (4) solute
particles cbnvcrging to or diverging from the same pore. All of these processes contribute to
increased spreading, in which initially steep concentration fronts become smoother during movement
along the main flow direction.

The effects of dispersion can be illustrated with a hypothetical laboratory experiment in which
water and a dissolved tracer are applied to an initially tracer-free, uniformly packed soil column of
length L (Fig. 6.3). The column is subjected to steady-state water flow with a uniform water content.
As more of the tracer is added, the initially very sharp concentration front near the soil surface
becomes spread out because of dispersion. Eventually, a smooth and sigmoidally shaped effluent’
curve can be monitored at the column exit as shown in Fig. 6.3d. In the absence of dispersion, the front
ofaperfectly inert tracer will travel as a square wave through the column (a process often called piston
flow) to reach the bottom of the column attime t=L/y, where v is the average pore water or interstitial
velocity. This velocity is the ratio of the Darcian water flux density (J,), and the volumetric water
content (8). Notice that v is given per unit area of fluid whereas J, is defined per unit area of (bulk) soil.
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Table 6.1 Sclected diffusion coefficients for aqueous solutions in clay and soil materials
D . ta pb o
cm? day! - gem™ Comments
yan Rees et al. {1991t
1.46 0.64 1.42 spiked water on top of sediment (8= 0.42)
1.47 0.70 142 spiked water on top of sediment (6= 0.42)
1.66 0.79 1.35 spiked water on top of sediment (6= 0.45)
1.46 0.69 1.35 lake water on top of spiked sediment (0=045)
0.97 0.46 1.42 sediment on top of spiked sediment (60=0.42)
Robin et al. (1987}
0.19 0.11 1.63 25°C
0.20 ~on 1.61 25 °C
0.36 0.11 1.62 60 °C
0.40 0.12 1.61 60 °C
0.54 0.11 1.63 90 °C
0.56 - 0.11 1.64 90 °C
Oscarson et al. (1992)§
033 0.19 0.90
0.27 0.15 112
0.17 0.10 1.31
0.08 0.05 1.50

= = = %
*H,O tracer in litoral sediment

*Cl tracer in bentonite-sand mixture using a spiked (C, =
temperatures

§ '1 tracer in compacted bentonite using spiked and unspiked clay plugs

'R

+H -+

0.27 M) and unspiked soil plug for different

For piston flow, the tracer reaches the column exit exactly after one pore volume of tracer solution has
been injected (or collected at the column exit

). Pore volume is defined as the amount of water stored in
that column.

“'The degree of spreading is usually related to the solute travel time, although some constraints do
exist on the amount of spreading. Dispersion, as sketched in Fig. 6.2a, is limited because of transverse
molecular diffusion which causes solutes to move from the center of a tube to arcas near the pore
walls, or vice versa, in response to local concentration gradients. Such transverse diffusion
counteracts spreading caused by variations in the longitudinal flow velocity. Dispersion is also
limited since capillaries in a porous medium generally are not independent cylindrical tubes, but
branch and join or rejoin each other at distances characteristic of the pore or particle size distribution
of the medium. This branching and rejoining promotes lateral mixing of solutes from different pores as
sketched in Fig. 6.2d. ‘

The macroscopic solute flux due to mechanical dispersion is often conveniently described by
FicK’s first law of diffusion, despite the conceptual differences between the diffusion and dispersion
mechanisms (Scheidegger, 1974). A mathematical foundation for the Fickian' description of
mechanical dispersion is provided in a classical paper by Taylor (1953). He considered a circular tube,
with tube radius r, (L), filled with water flowing according to a parabolic velocity profile, with v, being
the maximum velocity at the axis (L T"') and a mean velocity < v > = v./2 over a cross-section of the
tube. Taylor (1953) obtained the following expression for the coefficient of mechanical dispersion:
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‘ Direction of average flow
Fig. 6.2 Schematic concepts contributing to mechanical dispersion
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Fig. 6.3 Hypothetical laboratory tracer experiment: (a) column of soil, (b) influent curve, (c) concentration
distributions inside the column, and (d) breakthrough curves with and without dispersion [Modified after van Genuchten,
1988. p. 360-362. In S.P, Parker (ed.) McGraw-Hill Yearbook of Science and Technology, McGraw-Hill, New York]
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_ r:v: _ '2,2 <y >z .
“ 192D, 48D, [6.11]

which is valid after sufficient time has elapsed. Note that D, (L2 T-) is inversely proportional to the
coefficient of molecular diffusion, D, The results by Taylor were later derived by Aris (1956) for more
general conditions.

Because of the complex geometry of the pore space, microscopic flow and transport processes in
soils do not easily lend themselves to a relatively simple analysis as is possible for solute transport in
awell-defined, water-filled pore. Dispersion in soils can only be approximately described as a Fickian

process, particularly at the early stage of solute displacement in which case other models may need to
be employed (Jury and Roth, 1990).

The one-dimensional solute flux due to mechanical dis

persion in a uniform isotropic soil may be
approximated in a similar way as Fick’s law:

[6.12]

where J,, is the dispersive solute flux (M L2 T-),

The above one-dimensional geometry may be too simplistic for many transport problems. Three-
dimensional dispersion is quantified with a dispersion tensor. The components of the symmetric
dispersion tensor for an isotropic soil are given as (Bear and Verruijt, 1987): '

D; =8 ;0r[9|+(a, +a,)v,.vj 19} [6.13]
where 1l denotes the magnitude of the pore water velocity with v, as the ith component (LT),8;isthe
Kronecker delta (8,.1 =1,ifi=jand 8” =0,ifi#j),and o, and 0. are, respectively, the longitudinal and
transverse dispersivity (L). For a one-dimensional system, Equation {6.13] reduces to D, = ol
Mechanical dispersion, as sketched in an idealized fashion in Fig. 6.2a, can be reversed by changing
the flow direction to make a smooth front steep again. In soils, however, dispersion is not reversible
since mixing erases antecedent concentration distributions, as illustrated in Fig. 6.2d. Absolute
values are, therefore, used for v in Equation [6.13]. :

In the case of uniform water flow parallel to the x-axis of a Cartesian coordinate system, only the
following three main components of Equation [6.13] need to be considered:

Dy=o,v , Dy=0gv , D,=0gv [6.14]
where D_ is the coefficient of longitudinal (mechanical) dispersion, and D_ and D, are the
coefficients of transverse dispersion. This relationship is similar to that derived by Taylor since <v>
is inversely proportional to 7,2 in Equation [6.11].

The macroscopic similarity between diffusion and mechanical dispersion has led to the practice of
describing both processes with one coefficient of hydrodynamic dispersion (D = D, + D). This
practice is consistent with results from laboratory and field experiments which do not permit a
distinction between mechanical dispersion and molecular diffusion. The hydrodynamic dispersive

flux (J,) (Equation [6.2]) consists of contributions from molecular diffusion (Equation [6.4]) and
mechanical dispersion (Equation [6.12]): :
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Ip =gy + 1y, [6.15)

Since diffusion is independent of flow, the contribution of diffusion to hydrodynamic dispersion
diminishes if the soil water flow rate increases. Hydrodynamic dispersion is often simply referred to as
dispersion, as will be done in the remainder of this chapter.

Dispersion coefficients may be determined by fitting a mathematical solution to observed
concentration (Toride et al., 1995). Additional procedures to determine dispersion coefficients are
given by Fried and Combarnous (1971) and van Genuchten and Wierenga (1986). Values of the
longitudinal dispersivity (c,) for laboratory experiments typically vary between 0.1 and 10 cm with six
to 20 times smaller values for 0., (Klotz et al., 1980). Dispersivities for field soils are generally much
higher. Gelhar etal. (1992) reviewed published field-scale dispersivities determined in aquifer materials

that are typically one or two orders of magnitudes larger, even more so for relatively large experimental
scales,

6.2.2 Advection-Dispersion Equation

The expressions for the advective and dispersive solute fluxes can be substituted in mass balance

Equation [6.1). The one-dimensional advection-dispersion equation for solute transport in a
homogeneous soil becomes: : '

aeCc 0 aC
—==-2{j,c-o0%)+or
a  ox (J‘"C o ) TR, [6.16]

In the case where the water content is invariant with time and space, the ADE may be simplified to (v
=J,/0).

aC 9’C acC
—— D__ — R .
at W Ak 617

This is a second order linear partial differential equation. Similar to the diffusion equation, the ADE is
classified as a parabolic differential equation. To complete the mathematical formulation of the
transport, several concentration types and mathematical conditions will be reviewed in Section 6.3.1.

A variety of solute source or sink terms may be substituted for R,. The most common source/sink
term is due to adsorption/desorption and ion exchange stemming from chemical and physical
interactions between the solute and the soil solid phase. Many other processes such as radioactive
decay, aerobic and anaerobic transformations, volatilization, photolysis, precipitation/dissolution,
reduction/oxidation, and complexation may also affect the solute concentration. A further refinement
of the transport model is necessary in the case of nonuniform interactions between the solute and the

soil, or if there is adsorption on moving particles and colloids. In the following, only interactions at the
solid-liquid interface will be considered.

6.2.3 Adsorption

Dissolved substances in the liquid phase can interact with several soil constituents such as primary
minerals, oxides, and inorganic or organic colloids. Dissolved ions in the soil solution counterbalance
the surface charge of soil particles caused by isomorphous substitution of one element for another in
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the crystal lattice of clay minerals, by the presence of hydronium or hydroxyl ions at the solid surface,

or other mechanisms. The net surface charge of an assemblage of soil particles produces an electric
field that affects the distribution of cations and anions within water films surrounding the soil
particles. The mechanisms and characteristics of reactions in solid-solution-solute systems are
further discussed in Section B, Chapter 3. :

Adsorption of solute (adsorbate) by the soil

fate and movement of solutes, The ADE for o
written as:

(adsorbent) is an important phenomenon affecting the
ne dimensional transport of an adsorbed solute may be

X _py &S _*C a
ER Rls s [6.18]

where S is the adsorbed concentration, defined as mass of solute per mass of dry soil (M M). The

above equation can be expressed in terms of one dependent variable by assuming a suitable
relationship between the adsorbed and liquid concentrations. This is typically done with a simple
adsorption isotherm to quantify the adsorbed concentration as a function of the liquid concentration
at a constant temperature. In addition to temperature, the adsorption isotherm is generally also
affected by the solution composition, total concentration, the pH of the bulk solution, and sometimies
the method used for measuring the isotherm. A mathematically pertinent distinction is often made
between linear and nonlinear adsorption. Although most adsorption isotherms are nonlinear, the

adsorption process may often be assumed linear for low solute concentrations or narrow
concentration ranges. B

6.23.1 Linear Adsorption

Consider the general case of nonequilibrium adsorption,

where a change in C is accompanied by a
delayed change in S. The adsorption rate can be describe

d assuming first order kinetics:

ds
5 kh(C, S) [6.19]

where k is a rate parameter (T-') and h is a function to quantify how far the adsorption or desorption

process is removed from equilibrium. A single-valued isotherm for equilibrium adsorption ITC) as in
Equation [6.24], is used to define h(C,S) according to:

K, S)=T(C)-5 {6.20]

For equilibrium adsorption k —» e, and hence h(C,S) =0, which implies that S = I(C).Foralinear
adsorption isotherm, the relation between I"and C can simply be given as:

r=K,c (621}
where K, is a partition coefficient, often referred to as the distribution coefficient, expressed in volume
of solvent per mass of soil (L M-). For I'= S, substitution of Equation [6.21] into Equation [6.18] -

leads to the following ADE commonly used to describe transport of a solute that undergoes linear
equilibrium exchange:



Solute Transport

A-193
x_ PC o |
RE -p2t_, % .
x T Vo 6221
in which the retardation factor R is given by
R=1 +% K, [623]

with p, as soil bulk density. The advective and dispersive fluxes are reduced by a factor R as a result
of adsorption. The movement of the solute is said to be retarded with respect to the average solvent
movement. If there is no interaction between the solute and the soil (K,=0), the value for R is equal to
unity. The value for R can be readily calculated from K, as obtained from chemical analyses of the
solution and adsorbed phases. Alternatively, R can be estimated from solute displacement studies on
laboratory soil columns (Fig. 6.3). A mathematical solution may then be used to estimate R from
observed concentrations with nonlinear optimization programs. The change in the amount of solute in

the soil column should be equal to the net solute flux into the column; the following mass balance can
hence be formulated to estimate R:°

vg(r)-C.]= Ri [C(x.0)- £(x))dx [6:24]

where C, is the effluent concentration and fx) and g(¢) are the initial and influent concentrations.
The effects of linear adsorption on solute transport in a homogeneous soil profile are shown in Fig.
6.4. Analytically predicted solution and adsorbed concentrations are plotted four days after the start
of a one-day application of influent with a unit solute concentration (units may be selected arbitrarily)
to an initially solute-free soil profile subject to stéady saturated water flow. Other parameters for this
exampleareJ_=10cmd™, 0=0.40cm*cm?, and D= 62.5cm?d". The pore water velocity (v=J7,/0)is
hence 25 cm d! and o, = 2.5 cm. Solute distributions are plotted (Fig. 6.4) for three values of the
retardation factor, R: When R is increased from 1.0 to 2.0, the apparent solute velocity (v/R) is reduced

0} R=4 4 > ;
=4

=Y R=2 1 *r R=2 |

Sa 1 of

g, ©

%_ R=1

© 100 1 1001

% /R=l

“ 120 - 1200 L
W ® 1 wl ®
B S mar e S L 2

Solution Concentration (C‘). A;lsorbed concentration ()

Fig. 6.4 Effect of adsorption, as accounted for by the retardation factor R, on solution (C) and adsorbed (5)
concentration distributions in a homogeneous soil profile
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by one-half (Fig. 6.4a), causing a shallower penetration of the §
time, the area under the curve in Fig. 6.4ais also reduced byo
velocity and the area under the curve are again reduced

solute pulse into the profile. At the same
ne-half. When R =4, the apparent solute
by half. Distributions for the adsorbed
when R=1to amaximum when R= 4are
25 g cm™® and the same water content as

before (6=0.40 cm? cm), one may calculate, using Equation [6.23), that the distribution coefficient K,

=0,0.32and 0.96 cm?® g-! for R = 1,2, and 4, respectively.

Anion exclusion occurs when negatively charged surfaces of clay
are present; anions are repelled from such surfaces and accumulate
water flow velocities are zero at pore walls and maximum in the

s and ionizable organic matter
in the center of pores. Because

V. =[(1-c/C,)dv [6.25]

where V,, is the exclusion volume (L’ M), ¢ is the local concentration of the anion (ML) and C, its
bulk concentration (M L), and V is th

e entire volume encompassing the liquid phase. Instead of
using R< 1, anion transport may be modeled with a model, with R = 1, which restricts the accessible
liquid volume (Krupp et al., 1972).

Anions are also adsorbed by the soil through surface comple:

xation and adsorption onto positively
charged areas of the solid matrix (Section B, Chapter 7). If the effect of adsorption exceeds exclusion,
the anion will be retarded. The retardation factor should be viewed as an effective parameter since it

which the solute (anion) is subjected.
Breakthrough curves typical for the transport of an excluded anion (CI) a nonreactive solute
(tritiated water, *H,0), and an adsorbed cation (Ca?*) are presented in Fig. 6.5. The first two tracers

pertain to transport through 30 cm columns containing disturbed Glendale clay loam soil (P. J.

1.0

I. Te
‘s 0.8 -
S
g
§ 0s 4
8
<
8 o4l .
£
5
2 92 J
0.0  S—
0.0 20 40 5.0 8.0 10.0

Pore volumes (T)

Fig. 6.5 Observed and fitted ADE breakthrough curves for three tracers typifying the transport of anions ), a
(nearly) nonreactive solute (’HZO), and an adsorbing solute (Ca?)
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Wierenga, personal communication; van Genuchten and Cleary,
transport through a 30-cm long column containing a Troup loam and a Savannah fine loam (Leij and
Dane, 1989). Analysis of the three breakthrough curves in terms of the ADE, using inverse procedures
(Parkerand van Genuchten, 1984b), yielded R values of 0.681 »1.027,and 4.120 for CI-, *H,0, and Ca?*,

Hence, the CI- curve was strongly affected by anion exclusion, while *H,0 transport was subject to
very minor adsoxption/exchange.

1982), while the Ca2* data are for

6.23.2 Nonlinear Adsorption

In many cases adsorption, and hence, the retardation factor, cannot be described using a simple K|,
approach. For nonlinear equilibrium adsorption, R is given as:

—140 9T
R(C)=1+ e

[6.26]
Two common nonlinear adsorption isotherms are the Langmuir and Freundlich equation
r=-4¢ Langmuir (6271
1+k,C
I'=k,c" Freundlich {6.28]

where k,, k,, k,, and n are empirical constants. Many other equations for adsorption exist, including

some that account for differences between adsorption and desorption isotherms (van Genuchten and
Sudicky, 1999). . -
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Fig. 6.6 Freundlich equilibrium plots for k; = 0.64 and three values of the cxponent n
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The Freundlich isotherm will be used in the following to illustrate the effects of nonlinear
equilibrium adsorption on solute transport. In order to keep the calculations simple, the value of k, in
Equation [6.28) is taken to be 0.64. Three different values of the exponent nare used, viz., 0.5, 1 .0,and
1.5, to demonstrate favorable, linear, and unfavorable adsorption isotherms (Fig. 6.6). Calculated
distributions of the solution (C) and adsorbed (S) concentrations versus soil depth (2) eight days after
application of a 4-day long solute pulse to the soil surface are shown in Fig. 6.7. The same pore water
velocity is used as for the example illustrated in Fig. 6.5, but with a smaller dispersion coefficient of D
=25 cm? d! (o, = 1 cm). Notice that, as in Fig. 6.5, the solution concentration distribution for i =
(linear adsorption) has a nearly symmetrical shape versus depth. The other two n values yield
nonsymmetric profiles.

Ifn=0.5, a very sharp concentration front develops, while the curve near the soil surface becomes
more dispersed. The sharp front can be explained by considering the retardation factor (R) for
nonlinear adsorption (Equation [6.26]), which for n = 0.5,p,=1.25gcm™,0=0.40, and k,=0.641eads
to R=1+1/ C. This shows that R increases rapidly when C decreases with the extreme R 00, if C=0.
Consequently, the apparent solute velocity v, = v/R is very small at the lower liquid concentrations,
but increases at higher values. Of course, higher concentrations cannot move faster than lower
concentrations; front sharpening will lead to a steep solute front. This front never becomes a step
function because the large concentration gradient across the front will create a large diffusion/
dispersion flux. When n < 1, an estimate of the front can be obtained from the average slope of the
isotherm between the initial and the maximum concentration. Because in the present example these are
zero and approximately one, the average slope of the isotherm is exactly the same as the linear
distribution coefficient (dI7dC=0.64). Substituting this value into Equation [6.26] yields R=3. Hence,

the apparent solute velocity (v,) equals 25/3 or 8.33 cm d-!, and the solute front after 8 days is located

at a depth of about 67 cm (Fig. 6.7). Transport of favorably adsorbed solutes is frequently modeled

with traveling wave solutions (van der Zee, 1990; Simonetal., 1997).

A reverse scenario occurs if n> 1 (unfavorable exchange). Adsorption at the lower concentrations
is now relatively small and, as displayed in Fig. 6.7, the toe of the front moves through the profile at a

g .
)
5 .
5 ] -
& ; i

120 / k=0.64 4 1204

/ —— =05 f =8 days
140 -.I — n=10 4 140

3 fo=4 days
—— =15

%50 160 R S

Solution Concentration (C) (g cm?) Adsorbed Concentration (S) (mg kg™)

Fig.6.7 Effect of nonlinear adsorption on solution (C) and adsorbed (S) concentrations in a deep homogeneous soil
profile during stcady-state flow. The distributions were obtained for the three isotherms shown in Fig. 6.6.
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velocity nearly equal to that of an inert solute. Adsorption at the higher concentrations, on the other
hand, is much more extensive, resulting in a lower apparent solute velocity in the higher range of
concentrations. As a result, the concentration front becomes increasingly dispersed over time.
Ignoring dispersion, the velocity of the solute front (v, = w/R) at any given value of C is given by:

1%

v :
“1+3JC (6291

while the depth of the solute front can be approximated by:

ZCt)=2(C0)+v,t [6.30]

where z(C,0) is the location of a solute concentration with value C at¢=0.

The above discussion pertained to adsorption of a single ion species. Cation exchange processes
in transport studies involve at least two species. The simplest case arises when two cations of the
same valency and total concentration such as Ca* and Mg?* are considered. The resulting exchange
process is then approximately linear for relatively small changes in the composition of the soil
solution. Exchange between Na* and Ca?*, on the other hand, is considerably more nonlinear.

Equations that quantify the exchange reaction have been proposed by Gapon, Kerr, Vanselow,
Eriksson, and others (Section B, Chapter 7).

6.2.4 Nonequilibrium Transport

Solute breakthrough curves for aggregated soils will exhibit asymmetrical distributions or
nonsigmoidal concentration fronts. The concept behind physical nonequilibrium models is that
differences between regions of the liquid phase lead to mostly lateral gradients in the solute
concentration resulting in a diffusive type of solute transfer process. Depending upon the exact pore
structure of the medium, asymmetry is sometimes enhanced by desaturation when the relative fraction
of water residing in the marginally continuous immobile region increases.

Since most of the sorption sites are only accessible after diffusion through the immobile region of
the liquid phase, a corresponding delay in adsorption will occur. The delayed adsorption can also be
explained with a kinetic description of the adsorption process. Both cases may be described with
chemical nonequilibrium models, which distinguish between sites with equilibrium and kinetic
sorption.

Bi-continuum or dual-porosity nonequilibrium models are the most widely used. Only two
* concentrations need to be considered and the equilibrium ADE (Equation [6.18]) can be readily

modified for this purpose. The same dimensionless mathematical formulation can be used for physical

and chemical nonequilibrium models. If necessary, the ADE can be modified to incorporate additional
nonequilibrium processes and continua. ’ :

6.24.1 Physical Nonequilibrium

Consider one-dimensional solute movement in an isotropic soil with uniform flow and transport
properties during steady flow, and assume that the solute is subject to linear retardation, that is,
equilibrium sorption can be described with a linear exchange isotherm. The physical nonequilibrium
approach is based on a partitioning of the liquid phase into amobile or flowing region and an immobile
or stagnant region. Solute movement in the mobile region occurs by both advection and dispersion,
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whereas solute exchange between the two regions oceurs by first order diffusion (Coats and Smith,
1964). Following van Genuchten and Wierenga (1976), the governing equations for the two region
model are

o, a'C, ac,
(6m+fpbKd) af =6mDm?_emvm?

-a(C,-C,,) [631]

[6w +- 1oy} 2

=a(C,-C,) (6.32]

where f represents the fraction of sorption sites in equilibrium with the fluid of the mobile region, aLis
first order mass transfer coefficient (T-'), and the subscripts m and im, respectively, refer to the mobile
and immobile liquid regions (with 8= 6,+ 6, ), while p, and K are the soil bulk density and distribution
coefficient for linear sorption. Transport Equation [6.31] follows directly from addition of a source/
sink term (R,) to Equation [6.18). '

Anion exclusion can be viewed as a particular example of physical nonequilibrium, the exclusion
volume roughly corresponds to the immobile region (Kruppetal,, 1972). The physical nonequilibrium

concept may, therefore, be adapted to describe transport of excluded anions (van Genuchten, 1981)
instead of using a retardation factor of less than one. .

6.24.2 Chemical Nonequilibrium

Sorption of solute, especially for organic chemicals, has often been described with a combined
equilibrium and kinetic sorption expression so as to better simulate transport in soils with a wide
variety of soil constituents (clay minerals, organic matter, and oxides). The lack of an instantaneous
equilibrium for the sorption process is sometimes referred to as chemical nonequilibrium. This
terminology is somewhat misleading since the rate of adsorption or exchange is usually determined
mostly by physical phenomena such as diffusion through the liquid film around soil particles and
inside the aggregates (Boyd et al., 1947; Sparks, 1989).

The simplest and by far most popular approach distinguishes between type-1 sites, with
instantaneous adsorption, and type-2 sites, where adsorption obeys a kinetic rate law (Selim et al.,

1976). In the case of first-order kinetics, the general adsorption rates can be given with amodel similar
to Equations [6.19] and [6.20] as:

% =a,[[(0)-5] | (633]

%~ ary(0)-5,] [634)

where @ is again a rate constant (T-!), S is the actual adsorbed concentration (M M), I'is the final
adsorbed concentration at equilibrium as prescribed by the adsorption isotherm, the subscripts 1 and
2 refer to the type of adsorption site, and I';+ I', = I'. Because type-1 sites are always at equilibrium, S,
= I', and Equation [6.33] can further be ignored. The transport equation becomes:
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9C py ol  a,p, _pdC_ ac :
3t+0 5t 5 (I,-8,)=D VS [6.35)

Ifthe fraction of exchange sites that is at equilibrium (type-1) equals £, and if equilibrium adsorption is
governed by the same linear isotherm for both types 1 and 2 (I =T,) then:

T +T; = fK,C+(1- f)K,C [6.36]

Of course, nonlinear equilibrium isotherms may also be used in none

quilibrium transport models,
The complete transport problem can now be written as:

Lﬂ&)£= 9°C_ K _apr. _
(1+ o |3 Daxz G i [a-nk,c 5] (637]

ﬁ = a[(l—f)K,,C—S,]

> [6.38]

where the subscript for o has been dropped. This two-

aone-site kinetic nonequilibrium model by setting f=0. The two-site chemical nonequilibrium model
was applied successfully to describe solute breakthrough curves by Selim et al. (1976), van
Genuchten (1981), and Nkedi-Kizzaetal. (1983), among others.

site chemical nonequilibrium model reduces to

6243 GeneralNonequilibﬁumFonnulation

The two-site and the two-region nonequilibrium models can be cast in th

e same (dimensionless)
model according to Nkedi-Kizzaet al. (1984):

aC, 13*C
R =rac —ax +G=C) o]
. C.
(- ﬁ)R%=a)(C, -, [6.40]

where # is a partition coefficient, R isa retardation factor, C, and C, are dimensionless equilibrium
and nonequilibrium concentrations, Tis time, X is distance, Pis the Peclet number, is a mass transfer
coefficient, and the subscripts 1 and 2 refer to the equilibrium and nonequilibrium phases,

respectively. The common dimensionless parameters are defined using an arbitrary characteristic
concentration (C,) and length (L):

T=w/L , X=x/L , P=vwL/D |, R=1+p,K,/0 [6.41]

For the physical nonequilibrium model, the remaining dimensionless parameters are
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— om +fpbKd - oL — Cm — Cim
ﬁ— 9+pbKd ’ = o ’ Cl""co s Cz—?a [6.42]
whereas for the chemical nonequilibrium model:
0, +fo,K a(l-B)RL C S.
e+pKd ' v Cu (l_f)KdCo

In the chemical engineering literature, ¢LA is known as the Damkohler number; it quantifies the rate
of the reaction or exchange relative to advective transport.

6.3 Solutions of the Advection-Dispersion Equation

The research and management of solute behavior in soils almost invariably require that the temporal
and spatial solute distribution be known. Solute distributions as a function of time and/or space can

be estimated with a variety of analytical and numerical solutions of the ADE, some of which will be
briefly reviewed in the following.

6.3.1 Basic Concepts

A complete mathematical formulation of the transport problem requires that the pertinent dependent
variable or concentration type is used and that the proper auxiliary conditions are specified.

6.3.1.1 Concentration Types

'Concentration is conventionally defined as the amount of solute-per-unit volume of the liquid. Since
microscopic concentrations are based on a relatively small scale, a concentration at a larger scale
needs to be introduced to allow use of the ADE which is based on larger macroscopic variables and

parameters. For this purpose, a macroscopic resident or volume-averaged concentration (Cp) is
defined as:

1
Ce= v il cav (6.44]

where c is the variable local-scale (microscopic) concentration (ML?)inavolume element (V) and V
is some representative elementary volume (Bear and Verruijt, 1987).
A different concentration type may be encountered at soil boundaries. In many solute

displacement experiments, the concentration is determined from effluent samples as the ratio of the
solute flux (J,) and water flux (J, ) densities:

Cr=J,/J, [645]

where C, is the flux averaged concentration. This concentration represents the mass of solute-per-
unit volume of fluid passing through a soil cross-section during an elementary time interval (Kreft and

Zuber, 1978). For a one-dimensional solute flux consisting of an advective and a dispersive

component, the flux-averaged concentration can be derived from the resident concentration
according to the transformation:
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D aC
Cr=Cy -T'a—;‘ [6.46]

The resident concentration may be determined from the flux averaged concentration using (van
Genuchtenetal., 1984):

Calx, )= Lexp| 2Z Jfexp[ - 24 #(& 0)ag [647]
5o el -5

Additional transformations between flux and resident type concentrations are given by Parker and
van Genuchten (1984a).

The difference between C, and C, is usually small, except when the second term on the right-hand
side of Equation [6.46] is relatively large. It should be noted that a distinction between flux and
resident type can be made for both the application and the detection of solutes (Kreft and Zuber, 1978,
1986). In soil science, a flux type application mode is often implicitly assumed (Parker and van
Genuchten, 1984a). Flux-averaged concentrations are typically used when it is not possible to
determine or specify a reliable value for the (resident) concentration. Resident concentrations are
used for solute detection with, for example, time domain reflectometry, and to specify most initial
conditions. Flux-averaged concentrations, on the other hand, are used for effluent samples, and to
specify the influent concentration in most boundary value problems. Unless stated otherwise, it is

- assumed that solute concentrations are of the resident type.

Averaged concentrations can also be defined in terms of the observation scale, the latter
exceeding the macroscopic scale associated with using the ADE. A time-averaged concentration (C)),
is obtained by averaging over a time interval (At) about a discrete time (t,) (Fischer et al., 1979):

1o +4112

1
— C(x,t)dt
At 1, -IANZ(X ) [648]

where C is a continuous solution of the solute concentration, which can be obtained by solving the
ADE. This type of concentration occurs if solute breakthrough curves are measured using, for
example, fraction collectors or gamma ray attenuation. Similarly, a one-dimensional spatial average

can be defined as:
x,+j4vt/2 )
C.x,t)=—  [C(x,8)dx
1(x,7) A ( (6.49]

This concentration may be used to describe experimental results obtained for samples with centroid
(x,) and length (Ax). This situation occurs, for example, when the measured concentration of a large
core sample is to be modeled as a point value (Leij and Toride, 1995).

63.1.2 Boundaryand Initial Conditions

Initial and boundary conditions need to be specified in order to obtain a meaningful solution of the
ADE. For a finite or semi-infinite soil, the initial condition can be formulated as:



A-202 Soil Physics

C(x0)=f(x) - x20 (6.50]

where f{x) is an arbitrary function. Initial concentrations are almost invariably of the resident type.

The selection of the most appropriate boundary conditions for a transport problem is a somewhat
esoteric topic that has received considerable attention in the literature. This is partly due to a lack of
detailed experimental information for evaluating and applying boundary conditions, and inherent
shortcomings of the transport equation itself at boundaries.

Many transport problems involve the application to the soil of a solute, whose influent
concentration may be described by a function g(f). The application method may be pumping,
ponding, or sprinkling. Two different types of inlet conditions are used, which assume either
continuity in solute concentration or solute flux density. Simultaneous use of both conditions is
seldom possible. It is generally more desirable to ensure mass conservation in the whole system than

acontinuous concentration at the inlet. The solute fluxes at the inlet boundary are, therefore, equated
to obtain the following third or flux type inlet condition:

D

where 0* indicates a position just inside the soil. It is assumed that there is no dispersion outside the
soil. The.alternative condition requires the concentration to be continuous across the interface at all
times. At smaller scales, such continuity will likely exist. However, at the scale of the ADE, it appears
difficult to maintain a constant concentration at the interface, particularly during the initial stages of

solute displacement for low influent fluxes and high dispersive fluxes in the soil. Mathematically, the
first or concentration type condition is expressed as;

C(0,1) = g(r) t>0 [6.52]

The outlet condition can be defined as a zero gradient at a finite or infinite distance from the inlet.
The infinite outlet condition,

oC
—(o0,£)=0 [6.53]
ox

is more convenient for mathematical solutions than the finite condition,
oC
—I\L,t)=0 6.54
= (L) [6.54]

The use of Equation [6.53] implies that there is a semi-infinite fictitious soil layer beyond x = L, with
identical properties as the actual soil. Such a layer does not affect the movement of the solute in the
actual soil upstream of the exit boundary. Since the transport at the outlet cannot be precisely -
described, the intuitive contradiction of an infinite mathematical condition to describe afinite physical

system is often more acceptable than using Equation {6.54], which precludes dispersion inside the soil
near the outlet. '
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The formulation of the boundary and inlet conditions should account for the injection and
detection modes in order to arrive at a mathematically consistent formulation of the problem with the
same concentration type as independent variable. Only differences in detection mode for finite and

semi-infinite systems will here be explored. The ADE in terms of the (usual) resident concentration is
given as:

0Cr _ . 9%Cx 0C,
—R_p —p =R
ot ox> Y dx [6:55]

subject to a uniform initial condition, a third-type inlet condition, and a finite or infinite outlet
condition;

Cr(x0)=¢; [6.56]
ac
(VCR - D;”Lw =vg(t) | [6.57]
a&(m, )=0 or a&(L =0 (6.58)
ox ox

This problem can be written in terms of a flux-

averaged concentration using Equation [6.48]
according to (Parker and van Genuchten, 1984b):

acC, 3Cy aC

R e 652
subject to

CF(X,O) = Ci [6.&)]

Cr(0,1)=g(r) [6.61]

aC aCc D a*C

#(oo’ t) = 0 or #(L, t) = —7#(14, t) [662]

Notice that the mathematical problem for the flux mode involves a simpler first-type inlet condition
with mass being conserved, unlike the use of a first-type condition for a resident concentration. The
solution for C, for a semi-infinite system involving a first-type inlet condition is the same as the
solution for C, that conserves mass. As shown by Toride et al. (1994), the transformation is less
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convenient for nonuniform initjal conditions or finite systems,
obtained by transforming C, according to Equation [6.46).

Differences between the preferred third type solution for Cy and its first type solution are usually
small except for low values of the dimensionless time [S=V*#/(RD)] (van Genuchten and Parker, 1984),
The relative mass balance error in asemi-infinite soil profile if a first typerather thana third-type inlet

ker, 1984). The error pertains to the
ute-free semi-infinite soil profile.
therwise, aresident concentration

Solutions for C, are then more easily

Especially for small G asubstantial error may occur. Unless stated o
is used in conjunction with a third-type inlet condition.

6.3.2 Analytical Solutions

Analytical solutions can formally be obtained only for linear trans
analytical solutions are not very useful for transport in field soils where there is (1) spatial and
temporal variability of flow and transport parameters, (2) transient flow, especially for unsaturated
soils, and (3) nonuniformity in the boundary and initial conditions. However, analytical solutions can
still be quite valuable. A nonlinear transport problem may be linearized through a suitable

i alytical solution is available, Also, analytical
ver large temporal and spatial scales while they
sses. Moreover, there is usually a lack of input
advantage of numerical over analytical model

port problems. It would appear that

6.3.2.1 Variable Transformation

One straightforward Wway to obtain an analytical solution is to transform the ADE to an equation for
whi

ch a solution already exists. As an example, consider transport in an infinite system given by:

N
o

(o] - g
o () o

Relative Mass Balance Error (E)
o
Y

<]

) 2 4 6 8
Dimensionless Time (£ v2v/DR)

Fig. 6.8 Plot of the relative mass balance error versus dimensionless time for a semi-infinite profile when a first-
type rather than a third-type inlet condition is used [After van Genuchten and Parker, 1984)
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aC_3’C ac
R—=D——-y—=
* ot ox (6.63)
C(1,0)= C, x<0
%o x>0 [6.64]
The new coordinates
=x—-wt
f=x-v [6.65]
T=t
transform the ADE into a heat or solute diffusion problem given by:
aC | 9*c
R—=D—
or = 92 (6.66]
_)Cy &<o0 :
C(¢,0) = { 0 £s0 [6.67)

The solution for this problem can be readily found in the literature on diffusion problems (Carslaw and
Jaeger, 1959; Crank, 1975):

Cx,1)= —Czlerfc( Rx— vt )

J4RD: [6.68]

Other transformations to the diffusion problem have been employed as well (Brenner, 1962; Selim and
Mansell, 1976; Zwillinger, 1989). Transformation of time to a time-integrated flow variable sometimes
also allows one to derive an analytical solution of the nonlinear ADE for transient flow (Wierenga,
1977; Parker and van Genuchten, 1984b; Huang and van Genuchten, 1995).

6.3.22 Laplace Transformation

The ADE is commonly solved directly with the method of Laplace transforms. The solution procedure
will be illustrated here for an initially solute-free semi-infinite soil with a constant solute flux (vC,)or

concentration (C,) at the inlet boundary. The mathematical problem consists of solving the ADE
given by Equation [6.63] subject to:

DJD _ _ [0 firsttype
C"?TE"Cf 5'{1 third type [6.69]
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ac
;(«z =0 (6.70)

with 8 as a coefficient depending on the type of inlet condition. The Laplace transform (&) of the
solute concentration with respect to time is defined as (Spiegel, 1965):

C(x ) =LCxON= [ Clx, r)explsi)dt [6.71)
0

where s is the (complex) transformation variable (T"). This transformation changes the transport
equation from a partial to an ordinary differential equation;

d,C v dC sR— .

Y e——-2_C=0

dx* Ddx D (6.72]

subject to
= .DdC C .
C-8—""=2¢
i [6.73]

%(m, 5)=0 [6.74]

where the bar denotes a transformed variable. The following

solution for the concentration in the
Laplace domain is obtained with help of the inlet condition:

- v C, _ Y vy SR "
C(x,s)—mTexp(l x) , A —E_[(EB) +3'] [6.75]

Inversion of this solution may be done with a table of Laplace transforms, by applying the inversion
theorem, or by using a numerical inversion program. It should be noted that the solution for a finite

outlet condition is also possible with the Laplace transform, although a bit more cumbersome
(Brenner, 1962; Leij and van Genuchten, 1995). ’ '

6323 Equilibrium Transport

Van Genuchten and Alves (1982) provided a compendium of available analytical one-dimensional
solutions for a variety of mathematical conditions and physical processes. Four common analytical
solutions for a zero initial condition involving a first- or third-type inlet condition and an infinite or
finite outlet condition are listed in Table 6.2. The solutions may be expressed in terms of the
dimensionless variables (P), (T), and (%) (Equation [6.41]). Typically, L is equal to the position of the

outlet (the column length) for a finite system, whereas for a semi-infinite soil system, L can be
assigned to any arbitrary length.
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Fig. 6.9 contains solute profiles, [C/C (X)) according to the solutions listed in Table 6.2 usingR=1
and two different values for P and T for a first- (A1) or a third-type (A2) inlet condition assuming an
infinite outlet condition, or a first- (A3) or third-type (A4) inlet condition in case of finite outlet
condition. The predicted profile for a first-type condition (A1, A3) for the lower Peclet number (P = 5)
lies considerably above the line predicted for a third-type condition (A2, A4). The effect of the outlet
condition is initially minor, but when the solute front reaches the outlet (L), a clear difference between
afinite and an infinite outlet condition can be observed for both afirst (A1, A3) and a third-type (A2,
Ad4) inlet condition. The simpler solution for a semi-infinite system can, in many cases, be used to

approximate the solution for a finite condition; van Genuchten and Alves (1982) formulated the
empirical restriction:

X<09-8/P [6.76]

on the position for which such an approximation is reasonable. For smaller times (T «1), when the

solute has not reached the outlet, the finite and infinite outlet condition obviously lead to a similar
solution.

Table 6.2 Analytical solutions of the ADE for different boundary conditions after van Genuchten and Alves (1982)

Case Inlet Condition Exit Condition Analytical Solution C(x,f)
Al c,n=c -
0= a_c(a,;)=o lerfc: __Rx vl'/z +chp(3)erfc “R’H'V:n
ox 2 (4RDr) 2 D (4RDx)
A2
(vC—Da—C) =v¢, (=0 Lop Reove | 1f vx Vi) o[ Re+wr
3 ), g ax 2\ (4rD0Y” ) 2\ "D DR (4RD1)'?
v 2 (Rx—vt)
exp| +———
nRD 4RD¢
A3 c(0,)=¢, aC B,.x w vVt PBiD:
—_(L.Y=0 in| Em> —_————_Fm
3 (0 -3 25"‘"“( L ]’x 2D 4DR  I°R
m=] 2 +(£)2 +V_L
™ \2D 2D
L
Bcot(B,, )+ ‘:_D =0
A4 ac 9C ., »L B ) L (B ) Vi Pt
(vC—Dg) 0=vC,, =0 ‘D"""[""""‘(‘f',£ "zn""(% 20 4DR” LR
2=
_z 2 (LY il (v
Z l“~*(ﬁ) *51“ {35) ] ‘
BaconB)-E22, 2L _q

vL 2D
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For a third-type inlet condition, the concentration at X < 0 Just inside the soil is not equal to the
influent concentration, even at time T'= 1. Although the jump in concentration is physically odd, mass
conservation is ensured. For the higher Peclet number (P=20), deviations between a first- and a third-
type inlet condition are significantly reduced. This is in accordance with Fig. 6.8, which shows a
smaller error for increased v2/RD.,

Large differences in the predicted concentration may occur if the solute front approaches the
outlet at X = 1 or x = L. Calculated concentrations according to solutions Al, A2, A3, and A4 versus
the Peclet number at the outlet for T= L are illustrated in Fig. 6.10. The greatest difference occurs for
small Peclet numbers, namely, when hydrodynamic dispersion is relatively important, The nature of
hydrodynamic dispersion suggests that C/C, should be approximately 0.5 for X=T=R = 1, the
average of the zero initial concentration and the influent concentration (C,). Because of the effect of
the boundary conditions, this only happens when the Peclet number exceeds 10 or more, depending
on the type of solution. For the first-type inlet condition (A1, A3), C/C, exceeds 0.5 at low Peclet
numbers since a considerable amount of solute is forced to diffuse into the column to establish a
constant inlet concentration. :

Differences between calculated solute breakthrough curves because of boundary conditions are
further depicted in Fig. 6.11 for three different Peclet numbers. Notice that for P = 60, the curves are
almost indistinguishable, considering the margin of error of most solute displacement experiments.
. Theresults in Fig. 6.11 show that the choice of inlet and outlet conditions for determining parameters

from breakthrough experiments becomes less important when P exceeds about 30, .

Finally, for displacement experiments involving finite columns, it may be of interest to quantify the

amount of solute that can be stored in the liquid and sorbed phases of the soil (Equation [6.24)).

When, beginning at ¢= 0, a solution with concentration (C,) is applied to a soil column, holdup can
be defined as (Nauman and Buffham, 1983):

v =C, - C(L.i)
H=— _O‘dt .
i (I) C. [6.77)

This amounts to the integration of the complementary solute concentration versus dimensionless
time, namely, the area above the breakthrough curves in Fig. 6.11. Van Genuchten and Parker (1984)
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Fig. 6.9 Plot of the concentration (C/C) as a function of distance (X) calculated for four different combinations of

boundary conditions according to the solutions in Table 6.2 at two different times for a Peclet number of § and 20
[After van Genuchten and Alves, 1982]
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Fig. 6.10 Solute concentration predicted with solutions Al, A
atT=1and X = 1 {After van Genuchten and Alves, 1982)

showed that H = R for solutions A1 and A4, H=
[1~exp(-P)]} for solution A3. In case of anion ex
and the column holdup will be less than one.

6.3.24 Nonequilibrium Transport
Analytical solutions for one-dimensional bimodal non
among others, Lindstrom and Narasimhan (1973), Li
Toride et al. (1993). The boundary value problem

concentration may be specified by Equations [6.39]
conditions: '

Gi(X,0)=C,(x,0)=0

1ac,]'
C--=1 =1
(' P X )y o

1o}

% (°°’T) = 0

1000

Solutions for the equilibrium and nonequilibrium concentrations are

C = fj(a, b)G(X, )t
0
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2, A3, and A4 as a function of the Peclet number

R[1+(1/P)] for solution A2 and H =R{1 - (1/P)
clusion, the relative exclusion volume equals 1-R

equilibrium transport have been presented by,
ndstrom and Stone (1974), Lassey (1988), and
involving solute application with a constant
» [6.40], and [6.53] subject to the following

[6.78]

[6.79]

[6.80]

[6.81]
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Fig. 6.11 Solute breakthrough curves predicted with the four analytical solutions of Table 6.2 for three different
Peclet numbers [After van Genuchten and Alves, 1982)
T
G, = (j) [1-J(b.a)]G(X, T} [6.82]
where the auxiliary (equilibrium) function G(X,7) for resident concentrations is defined as:
2
RX -1 5
G(X,7)= P €xp| (p ) L erfc PRX +7 [6.83]
npRT 4PRT/P | 2BR JABRT/P ‘
and for flux-averaged concentrations by:
2
BRPX? (BRX -7)
G(X,7)= exp| —
)=\ oo 4PRT/P [6.84]
Furthermore, J denotes Goldstein’s J function (Goldstein, 1953), which is defined as:
J(a,b) =1-exp(-b)[ exp(-x)I, (2v/ab)dg [6.85]
0

with I, as the zero order modified Bessel function. The variables a and b are given by

i b=w(T—r)

B
=
|
=
P

[6.86]
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The above solution for a flux-averaged concentration was used to
the pesticide 2,4,5-T (2,4,5-trichlorophenoxyacetic acid) as observe
containing aggregated (< 6 mm) Glendale clay loam (van Gen
nonequilibrium model with three adjustable parameters P
the data (Fig. 6.12b). The retardation factor (R) was estimated independently, using the distribution
coefficient obtained from batch experiments, according to Equation [6.23). A one parameter ADE fit
(using P as adjustable parameter) did not yield a good description of the data (Fig. 6.12a) while a
similar two parameter (P, R) fit, which is not shown, gave results that were only marginally different
from those shown in Fig. 6.12a.

As pointed out by van Genuchten and Dalton (1986), the main disadvantage of the first order
physical nonequilibrium approach is the obscure dependency of the transfer coefficient (0. or @ ) on
the actual diffusion process in the aggregate, particularly the value for the diffusion coefficient and
the aggregate geometry. For well-defined structured or aggregated porous media (media for which the
size and geometry of all aggregates are known), the diffusion process inside the aggregate can be
modeled, which allows a more detailed description of the concentration inside the aggregate.
Analytical solutions are available for several aggregate geometries. The simplified immobile

concentration, which is used in the general nonequilibrium formulation, can always be obtained by
averaging the more detailed solution over the aggregate volume.

describe breakthrough data for
d from a 30-cm long soil column
uchten and Parker, 1987). The
\3, @) provided an excellent description of

6.3.2.5 TimeMoments

Moments are frequently used to characterize statistical distributions such as those of solute particles
(concentrations) versus time or positions. Analytical expressions for lower order moments are

~ 1.0 ——t—y—r v )
Q [ 245-1 G oo a®
Zos
8§
gu
Boa
g 3
_‘é o2} .
M ol * A I A A A A e A
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=
O\go.s
.: I
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Fig.6.12 Observed and fitted effluent curves for 2,4,5-T movement through Glendale clay loam. The fitted curves
were based on: (a) the equilibrium ADE and (b) the nonequilibrium ADE.
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sometimes derived for deterministic transport models, es
be difficult to obtain. Moment analysis is more widel
transport models since the uncertainty in both model parameters and predicted results is most
conveniently quantified with moments, Only time moments will here be considered.

The pth (time) moment of the breakthrough curve, as obtained, say, from effluent samples collected

from a soil column (with length x = L) to which a solute pulse is applied during steady water flow, is
defined as: ‘

pecially when adirect analytical solution may
y employed in stochastic than deterministic

m,(L)= :j:t”C(L, Ndt (p=012,..) (6.87]

The zero moment is proportional to the total solute mass,
displacement, the second moment is indicative of the variance

quantifies the asymmetry or skewness of the breakthrough
obtained as follows:

the first moment quantifies the mean
(dispersion), whereas the third moment
curve. Normalized moments (1) are

_ m
by = [6.88)

The mean breakthrough time is given by p,.

Central moments are defined with respect to this mean
according to:

u;,(L)=mi0:J;(t—u|)pC(L £)dt [6.89]

The variance of a breakthrough curve, which can be used to assess solute.dispersion, is given by the

second central moment (u 2" The degree of asymmetry of the breakthrough curve is indicated by its
skewness (u'/(u,"Y?).

The previous definitions are employed to obtain numerical value:
results. Substitution of an analytical solution for the solute concen
the derivation of algebraic expressions for time moments. Values for transport parameters can be
obtained by equating numerical and algebraic moments (Leij and Dane, 1992; Jacobsen et al., 1992).
This procedure is not reliable if experimental moments of higher order (P> 2) are needed since even
small deviations, at larger times, between experimental and modeled concentrations will greatly bias
such moments.

Algebraic moments are normally obtained by using the solution for the concentration in the

Laplace domain. The following equality can be established from properties of the Laplace transform
(Spiegel, 1965):

s for moments from experimental
tration into the definitions allows

im PC s
m, (x) = (-1)m, %(;”) [6.50]

where, as before, E‘(x,s) is the concentration in the Laplace domain,

and s is the (complex)
transformation variable. Expressions for moments can hence be

obtained by differentiating the
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solution in the Laplace domain and letting the Laplace variable 80 to zero (Aris, 1958; van der Laan,
1958). This task is conveniently handled by mathematical software.

Time moments will now be considered for three different transport problems. First, the
mathematical problem for physical nonequilibrium transport can be written as:

x, aC, d’c, . :
omR—at'l+6,mR 3;”' =6,D, axz"' -w?"' [6.91]
ac .
OimR— = &(Cpy ~Cip,) [692]
The conditions for instantaneous solute application to a soil are
C(x,0)=0 0<x<oo (6.93]
C(0,1) =%8(:) [6.94]
acC
+(00,8)=0
% o)

[6.95]

where m, is the solute mass that is applied per unit area of soil solution at z = 0, and 8(?) is the Dirac
delta function (T-!). The first-type inlet condition is used to describe flux-averaged concentrations
such as effluent samples from column displacement experiments. Second, the equilibrium problem is

defined by the same set of equations by setting 6, = 6, 6., = 0, and @ — 0. Third, the chemical
nonequilibrium transport equations are as follows:

I p,dS _d*C ac | . '
— e = _pZ = _,
* oa T 'm | [656)

as
5 =oK,C-5) (697)

These equations are also subject to boundary and initial conditions in Equations [6.93] through [6.95].

Formulas for the mean breakthrough time (1)) and the variance (1,") of the breakthrough curve
predicted for these three models are presented in Table 6.3. The expressions suggest that
nonequilibrium conditions do not affect the mean travel time but they do increase solute spreading.
Since only the solution in the Laplace domain is needed, moment analysis is particularly useful for
more complex transport problems to study the general behavior of the breakthrough curve.

6.3.3 Numerical Solutions

The solution of many practical transport problems requires the use of numerical methods because of
changes in water saturation (as the result of irrigation, evaporation, and drainage), spatial and
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temporal variability of soi] Properties, or complicated boundary and initial conditions. Numerical

methods are based on a discretization of the spatial and temporal solution domain, and subsequent
calculation of the concentration at discrete nodes in the domain. This approach is in contrast with
analytical methods, which offer a conti ipti

combination of analytical and numeri i | i
Reddell, 1991; Lietal,, 1992),

633.1 _Introduction

The accuracy of the numerical results depends on the input parameters, the approximation of the
governing partial differential equation, the discretization, and implementation of the numerical
solution in a computer code solving the simulated problem. Numerous texts exist on the numerical

modeling of flow and transport in porous media (Pinder and Gray, 1977; Huyakorn and Pinder, 1983;
Campbell, 1985; van derHeijde etal., 1985; Istok, 1989).

The many numerical methods for solving the ADE can be classifie
1984): (1) Eulerian, (2) Lagrangian, and (3) mixed Lagrangian-Eulerian. In the Eulerian approach, the
transport equation is discretized by the method of finite differences or finite elements using a fixed
» the mesh deforms along with the flow whileitisstableina moving

xed approach. First, advective transport
are obtained from particle trajectories.

d into three groups (Neuman,

Subsequently, all other processes including sinks and source:
using finite elements, finite differences, etc.

The method of finite differences (Bresler and Hanks, 1969; Bresler, |

973) and the Galerkin method
of finite elements (Gray and Pinder, 1976; van Genuchten,

1978) belong to the first group as do the

Table 6.3 Mean breakthrough time (1) and variance (u,

ADE at a distance x from the inlet as a result of a Dirac delta
averaged concentration),

) for the equilibrium and nonequilibrium solution of the
input described with a first-type inlet condition (i.e., flux-

=1— e ——————— — "
ADE model Mean breakthrough Variance
time, i, K ‘

A Rx 2DR*x
Equilibrium > 3
Nonequilibrium

26,D,R* 3¢ - 2R2
i Rx m=m ( ﬂ) X
Two-Region = ™ + o
2DR* _ 2(1-PRx
Two-Site % =3 + e




Solute Transport A-215

occur for both methods and small spatial increments should be used. It may not always be possible to
decrease the spatial step size due to the associated increase in computations and a variety of
approaches have been developed to overcome the oscillations (Chaudhari, 1971; van Genuchten and
Gray, 1978; Donea, 1991 ).

Lagrangian solution methods will result in very few numerical oscillations (Varoglu and Finn,

1982). However, Lagrangian methods, which are based on the method of characteristics, suffer from
inherent diffusion and do not conserve

sorption, precipitation, and other reactions,

The mixed approach has been applied by several authors (Konikov and Bredehoeft, 1978; Molz et
al,, 1986; Yeh, 1990). In view of the different behavior of the diffusive (parabolic) and advective

particle tracking (to follow a set of particles as they move through the flow domain),
reverse particle tracking (the initial position of particles arriving at nodal points was cal
each time step), and a combination of both approaches. Ahlstrom et al. (1977),

single-step
culated for
among others, used the

component.

In the following, only a brief introduction to the finite difference and finite element methods to
solve transport problems is provided. Both methods encom
numerical approaches. As a rule of thumb, the finite difference method is attractive because of its
simplicity and the availability, atleast early on, of handbooks and computer programs simulating flow
and transport in porous media. On the other hand, the finite element method has proven to be more
suitable for problems involving irregular geometries of the flow and transport problem, such as
situations involving flow to drainage pipes and along sloping soil surfaces.

6.3.3.2 Finite Difference Methods

For one-dimensional transient solute transport the dependent variable [C(x,0] can be discretized
_ according to

Cln)=CldxjA)=Cy  (i=012,....mj=012,....m) [6.98)

Consider the simulation of the one-dimensional ADE for steady flow of a conservative tracer as
given by Equation [6.63] with R=1. Temporal and spatial derivatives are approximated with Taylor
series expansions, Assume that the concentrations are known at the current time (¢ =jA ¢) and that the
dbjective is to calculate the concentration distribution { CTiAx,(j+1)f]} at the next time. A forward-in-

time finite difference scheme where the unknown concentration is given explicitly in terms of known
concentrations, is written as

Cl.j+l - Cl.j <D Cm.j = 2CI.12 + Cl-l./ —y Ci, ]~ Cl-l. I [6.99]
ar (Ax) 24x .
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On the other hand, a backward-in-time or implicit scheme is given by:
Ciju— C.j D Gy —2C; G Ciotjoi — Ciijn
= -V 6.100]
aAr (4x)’ 24x C

which contains several concentrations at the next time level. The
combining the difference schemes of all nodes,
Finally, a weighted scheme can be defined as:

problem is solved implicitly after
and subsequently using a matrix equation solver.

Giju-C, =D w(CMM =2Cu+Cy ) +(1 "a’)(cm./ -2C,+ Ci-l.j)
4t (ax)’
— ("(C;'+1.j+| ~Citju ) +(1- (D)(C,“_ ;=G }) . [6.101]
24x

in which wis a weighting constant between Oand 1. The scheme is said to be fully explicit for w=0and
fully implicit for w= 1, while a Crank-Nicolson central-in-time scheme is derivedif w=
flow, the scheme becomes more complicated; the velocity (v) and water conten
obtained by solving the Richards equation prior to solving the transport problem. _
Errors associated with the discretization and the solution procedure can be evaluated by

» provided that the problem can be sufficiently idealized (linearized) to

merical solutions as well. For a convergent
scheme, the difference between the numerical and analyti

space and time steps are used in the numerical solution;
and At—0, barring round off and computational errors.

An even more important question relates to the stability of the finite difference approximation,

namely, the degree to which the numerical solution is affected by errors that occur during the
simulation. Such errors can usually not be eliminated completely; they depend on the implemented
discretization, the values of the input parameters, and the type of numerical scheme used for
approximation of the governing transport equation. Errors are damped during the course of a
simulation when a stable scheme is used, while unstable schemes allow such errors to grow
unboundedly. _

Implicit systems are unconditionally stable, but their results may not be as amenable to changes in
grid sizes as is the case with explicit systems. The Crank-

Nicolson method offers an attractive
compromise of being unconditionally stable and having a truncation error of order O[(Ax)? + (A1)?).

These properties imply, among other things, that a variable time step can be used independently of
the spatial step to effectively balance the needs of an accurate approximation and a limited number of
computations. However, oscillations near the concentraf

tion front may develop even for
unconditionally stable methods due to the hyperbolic (convection) term in the solute transport

equation. To avoid these oscillations, stability criteria in terms of the grid Peclet (P or Pe) and Courant
(Cr) numbers are frequently formulated. Huyakorn and Pinder (1983) provided the following
conservative guidelines for one-dimensional transport of a nonreactive solute:

0.5.For transient
t (8) are usually

Pe=vAx/D<?2 (6.102]



Solute Transport A-217

Cr=vAt/ Ax<1 [6.103]

For transport of a reactive solute, the retardation factor R must be included in the denominator of the
Courant number.

6.3.3.3 Finite Element Methods

The application of the finite element methods for modeling solute transport in soils involves several
steps, which will be briefly reviewedina qualitative manner. The specifics of the method can be found
in, among others, Huyakorn and Pinder (1 983) and Istok (1989). The (spatial) solution domain should
first be discretized. The finite element mesh, consisting of nodal points marking the elements, is
usually tailored to the problem at hand. The selection of mesh size is a somewhat subjective process
that considers the required degree of accuracy, the geometry of the problem, the ease of mesh
generation, and the mathematical complexity associated with the use of a particular mesh. The shape
of the finite elements is determined by the dimensionality and the geometry of the transport problem.
One-dimensional elements consist of lines between nodal points along the coordinate where (one-
dimensional) transport occurs. Examples of two-dimensional elements are triangles, rectangles, and
parallelograms, while many different three-dimensional elements can be constructed.

A second step in implementing the finite element method is the description of the transport
problem for each element. Generally, the method of weighted residuals is used to arrive at an integral
formulation for the governing transport equation. An approximate or trial solution for the
concentration in each element is formulated as the weighted sum of the unknown concentration at the

each element. After applying
form

The third step is the assembly of all element matrices into a global matrix system that contains the
nodal concentrations and its temporal derivative as unknown variables,

The last step involves the solution of this global matrix equation. Since there are, in general, no
obvious advantages for also using a finite element approximation for the temporal derivative, the latter
~ isnormally dealt with using the (simpler) finite difference method. The time step may be constant or
variable. As noted earlier, the explicit or forward scheme (w= 0) is conditionally stable whereas the
implicit or backward (o= 1)and the centered or Crank-Nicolson (@=0.5)schemes are uncon-ditionally
stable. The nodal concentration can then be solved using standard numerical procedures.

Green's theorem for each element, the residual can be written in matrix

63.34 Application

Numerical oscillations and dispersion are illustrated for several numerical schemes using results by
Huang et al. (1997). The numerical solution of the ADE is particularly difficult for relatively sharp
concentration fronts with advection-dominated transport characterized by small dispersivities. As

mentioned earlier, undesired oscillations can often be prevented with judicious space and time

discretizations. The Peclet number increases when advection dominates dispersion; the potentially
adverse effect on the numerical solution can

be compensated by selecting a smaller grid size.
Numerical oscillations can be virtually eliminated if the local Peclet number is always less than 2.
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'However, acceptable results may still be obta;
and Pinder, 1983). The time discreti
number (Equation [6.103]),

Consider one-dimensional, steady-state flow in a 50il column with v=4 cm d-!. The column was
initially free of any solute, a nonreactive solute (C,=1) was subsequently applied for 20 days. For

negligible molecular diffusion and a longitudinal dispersivity (o, =0.02 cm), the grid Peclet for a spatial
discretization (Ax =2 cmy)is given by: :

ined for local Peclet numbers as high as 10 (Huyakorn
zation is based on a second dimensionless number, the Courant

D aq, ‘ [6.104)

This grid Peclet number of 100 indic
calculations, the Courant number w
methods.

The concentration predicted with four diffe
solution is shown in Fig. 6.13. The first nu
scheme for time with weighting constant (@
line. Third, an implicit scheme (0=
weighting (Huyakorn and Pinder,

ates solute transport that is dominated by advection. In all
as less than 1, which is the stability condition for Eulerian

rent finite element methods and with the analytical
merical method is based on the central Crank-Nicolson
=0.5). Second, the analytical solution is shown as a solid
1.0) is used. The last two numerical methods implement upstream
1983) in the central and the implicit schemes, respectively. The

6.4 Stream Tube Models

Considerable errors may be made when applying deterministic methods to the field since model
parameters are actually stochastic due to spatial and temporal variability, measurement errors, and
different averaging scales. Usually, it is not possible or important to obtain discrete values for
parameters in deterministic models of field-scale transport. Instead, transport properties and model
results are described with statistical functions. Stochastic modeling is no substitute for data
collection or model development, but merely a method to deal with uncertainty of model parameters
and complexity of flow and transport processes. The scale at which solute movement is observed or
modeled is important. The averaging process associated with larger field-scale descriptions tends to
filter out the variability at smaller scales.

The stochastic modeling of actual field problems is seldom possible. The stream tube model
provides a possible exception (Dagan and Bresler, 1979; Amoozegar-Fard et al., 1982; Rubin and Or,

1993). The field is conceptualized as a system of parallel tubes illustrated in Fi g.6.14. A process-based
model is used to describe a one-dimensional, autonomous transport in each tube as a function of time
and depth. Transport parameters are either deterministic or stochastic. The problem may be solved
analytically at the scale of the tube and the field. The stream tube model is suitable for inverse
procedures to estimate transport and statistical properties (Toride et al., 1995),
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Fig.6.13 Concentration profiles predicted with different numerical schemes for (a) solute infiltration (t=30d)and
(b) solute leaching (¢ = 30 d)

Fig. 6.14 Schematic of the stream tube model
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6.4.1 Model Formulation

For one-dimensional transport, the

solute concentration at the outlet of a stream tube of length (L)
may be written with the transfer fun

ction approach as (J ury and Roth, 1990):

C(L. r)=£ C(0.t - 1) f(L, T)dx [6.105]

The outlet concentration is a convolution of the input signal and the residence time distribution AL7).
The latter is, in effect, a probability density function (pdf) of the time a solute particleresides in the soil
between x = 0 and L. The pdf, which has dimension of inverse time, can be determined from

experimental results or jt may be a theoretical expression derived from a process-based model such as

the equilibrium problem involving instan il,
averaged concentration and hence the pdf is given by:

2
x (x~w)
X,t)= exp| —-
Note that this is a Gaussian pdf. Expressions for f(x,

t)derived at a particular depth can be readily used
for predicting concentrations at other depths if the

soil is homogeneous,

(Clx,0)) = % [1 C(x,£)dA =lim % zl Ci(x,1) [6.107)

where A denotes the area of the field, n is the number of s

amples, and < > indicates an ensemble
average.

6.4.2 Application

Solute transport in a local-scale stream tube may be described with the one-dimensional ADE.
Following Toride and Leij (1996a), the effects of heterogeneity are studied using pairs of random

parameters (v and K ). Note that the water content (6) and bulk density (p,) are the same for all stream
tubes. The field-scale mean concentration (denoted by #) is equal to the ensemble average:

Cl, )=(Clxn) =[5 C(xtiv, k) f(v.K,)dv dK, [6.108)

where the bivariate lognormal joint probability density function Av.K)is given by:
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fv.Ky)= : exp) X -2, W Y + Y
216,06 ,vK, Jl -p, 2(1 -p% d) (6.109]
with
pvlal = (YvYKd> = I(T I(;‘ YVYde(V, K,,)dv de [6]10]
In(v)~p, In(K,)-p
e Yus ;m = [6.111]

where 1 and o are the mean and standard deviation of the log transformed variable, and Puxa is the
correlation coefficient between Y, and Y,

xa (K, tends to increase with v for positive p,,, while K,
decreases with v for negative P.xa)- Ensemble averages of v and K, are given by (Aitcheson and
Brown, 1963)

1 1
(V)= exp(p.v +§0'3). (Kd) = exp(l»lxd +56?(d) [6.112]

with coefficients of variation (CV):

CV(v)=Jexp(c2)-1, CV(K,)= ,’exp(c%(,,)—T [6.113]

Based upon the detection mode of the local-scale concentration, three types of field-scale
concentrations can be defined: (1) the ensemble average of the flux-averaged concentration (<Cp);
(2) the field-scale resident concentration (Q), which is equal to the ensemble average of the resident
concentration (<C,>); and (3) the field-scale flux-averaged concentration (&) which is defined as
<vCp>/<v>. The second type of concentration is obtained from averaging values of the resident
concentration at a particular depth across the field. The third type is defined as the ratio of ensemble
solute and water fluxes in a similar manner as for deterministic transport. It should be noted that
<VCp>/<v> #<C> because v is a stochastic variable. A

The use of the stream tube model for field-scale transport is illustrated in Fig. 6.15. The local-scale -
concentration only depends on the particular realizations of the two stochastic parameters (vand K)
after the independent variables (tand x) have been specified. The solution for the ADE at x=100cm
and t=5 day as a function of v and K, is shown in Fig. 6.15a and the bivariate lognormal pdf for v and
K, in Fig. 6.15b; the distribution is skewed with respect to v since g, is fairly high, the smaller Oy
results in a more symmetric distribution for K, The negative p,,, results in an increasing v with a
decreasing K, and vice versa. The expected concentration is shown in Fig. 6.15c, which is obtained
by weighting the local concentration (Fig. 6.15a) by multiplying it with the joint pdf (Fig. 6.16b). The
peak in Fig. 6.15c suggests that stream tubes with approximately v = 25 cm d-! and K;=1cm? g
contribute the most to solute breakthrough when x = 100 cm and ¢ = § days. The volume of the
distribution in Fig. 6.15¢ corresponds to the ensemble average (<Cp>). '
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Variations in the local-scale concentration between stream tubes, at a particular depth and time,

can be characterized by its variance. The variance across the horizontal plane is given by (Bresler and
Dagan, 1981; Toride and Leij, 1996b);

Var{C(x,1)] = [ Flctnd)~ ()] £, K, )av ak, = (CCr)~{cxn) 6114
For a deterministic distribution coefficient (K,) Equation [6.108] reduces to:
(C(x.1)) = [ C(x,1;v) f(v)dv [6.115)

where the lognormal pdf for the single stochastic variable (v) is given by:

2
1 [ln(v) —Ry
)= e 207 | [6.116]
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Fig.6.15 Tllustration of the stream tube model for field-scale transport for a 2-d solute application with D =20 cm?d-

and p, /0 =4 g cm: (a) the local-scale concentration, C,, as a function of v and K 4 3 x=100 cm and ¢ = 5 days; (b)

a bivariate lognormal pdf for p,, = 0.5, <»> =50 cm d',0,=02 <K > =1cm® g, and Gy, = 0.2; and (c) the
expected concentration, C¥, at x = 100 cmand ¢ = § days.
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The mean (Fig. 6.16a) (C,', = <Cp>) and the variance (Fig. 6.16b) are shown according to Equation
[6.114), as a function of depth for three values of C,att=

O, increases, more
y=0.1. The double peak in the variance
profiles of Fig. 6.16b is due to the relative minimum for this pulse application at around x = 30cm, where
the highest concentration occurs, :

Forreactive solutes, the variability in the distribution coefficient (K ) must also be considered. The
field-scale resident concentration (C)atr=5 day is plotted versus depth in Fig. 6.17 for perfect and
no correlation between v and K + The figure shows that the negative correlation between v and K #
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Fig. 6.16 The effect of variability in the pore-water velocity, v, on (a) the field scale resident concentration profile,
and (b) the distribution of the variance for q in the horizontal plane; for a 2-d application of a nonreactive solute R
= 1) assuming <v> =20 cm d-' and D = 20cm? &
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Fig. 6.17 The field-scale resident concentration profile, C,',(x). for three different correlations between v and X,
with <v> = 50 cm &, D = 20 cm?d-, <k > =1glem’, 0,202, <R> =5, and P/o=4gcm?
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