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Abstract. Traditional models to describe hydraulic properties in soils are constrained by 
the assumption of cylindrical capillarity to account for the geometry of the pore space. 
This study was conducted to develop a new methodology to directly measure the porosity 
and its microscopic characteristics. The methodology is based on the analysis of binary 
images collected with a backscattered electron detector from thin sections of soils. Pore 
surface area, perimeter, roughness, circularity, and maximum and average diameter were 
quantified in 36 thin sections prepared from undisturbed soils. Saturated hydraulic 
conductivity Ksat, particle size distribution, particle density, bulk density, and chemical 
properties were determined on the same cores. We used the Kozeny-Carman equation 
and neural network and bootstrap analysis to predict a formation factor from microscopic, 
macroscopic, and chemical data. The predicted Ksa t was in excellent agreement with the 
measured Ksa t (R 2 = 0.91) when a hydraulic radius rr• defined as pore area divided by 
pore perimeter and the formation factor were included in the Kozeny-Carman equation. 

1. Introduction 

Flow and transport of water and solutes in soils are con- 
trolled by size, geometry, and characteristics of the soil poros- 
ity. Most of the characteristics of soil pores are microscopic, 
such as roughness and circularity. Conventional models of liq- 
uid distribution, flow, and solute transport rely solely on cylin- 
drical capillarity, ignoring the role of surface area, angularity, 
and connectivity. It is known that the geometry of the soil 
pores is very irregular; for example, Figure 1 shows a thin 
section from an undisturbed sample of Gilman silt loam soil. 
We identify polygonal and angular pores associated with 
feldspars and quartz while the more elongated pores are, in 
general, associated with clays. These different shapes are im- 
portant because the water retention in the pores depends on 
the angularity and roughness of the pores [Tuller et al., 1999]. 
Also, elongated pores may be more susceptible to the effect of 
the chemical composition of the soil water since they are as- 
sociated with clays, which have colloidal properties. 

If we look closely at one of the features in Figure 1, we see 
a montmorillonite domain (Figure 2). The arrangement of this 
organized structure modifies with changes in the chemical 
composition, as has been demonstrated in previous studies 
with electrophoretic mobility for montmorillonites [Shainberg 
and Otoh, 1968] and illires [Lebron et al., 1993]. The hypothesis 
of this study is that the self-arrangement of the particles in the 
soil is not totally random and if we understand the forces 
determining this self-arrangement, we will be in a better posi- 
tion to model pore space and, consequently, water flow. 

The use of thin sections to measure grain sizes has been 
performed for more than 60 years in petrological studies 
[Friedman, 1958, 1962]. The advance of new technologies al- 
lows the use of more powerful microscopes and sophisticated 
software packages to quickly process thousands of measure- 
ments. Scanning electron microscopy and image analysis have 
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been successfully applied to the measurement of porosity in 
rocks by Chretien and Bisdom [1983], Schoonderbeek et al. 
[1983], Berryman [1998], Berryman and Blair [1987], Ehrlich et 
al. [1991], and Blair et al. [1996] and in soils by Bruand et al. 
[1996] and Vogel [1997]. 

Image-based technology provides unique information about 
pore geometry by direct measurement. While other techniques 
are used to obtain indirect or deducted values using a number 
of assumptions, microscopy and image analysis supply actual 
values of the pore space. The size of the pores resolved in the 
image depends on the magnification and the size of the pixels. 
Berryman and Blair [1987], using correlation functions, devel- 
oped a methodology to derive the characteristic length at 
which the physical properties of the heterogeneous soil micro- 
structure are spatially correlated. More recently, Blair et al. 
[1996], with a two-point correlation function, determined the 
adequate image resolution to obtain image parameters consis- 
tent with those used in a simple flow model, such as the 
Kozeny-Carman equation, for prediction of the permeability. 

Neural network techniques have been used to predict water 
retention properties in soils by Pachepsky et al. [1996] and 
Schaap and Bouten [1996] using macroscopic parameters. We 
can find no examples in the literature of the use of neural 
networks in combination with pore microfeatures to predict 
flow in soils. 

The objectives of this study are as follows: (1) to establish a 
methodology using a two-point correlation function and image 
analysis software to analyze soil pore space and pore geometry 
from microphotographs and (2) to interpret these data in the 
context of the model proposed by Kozeny and Carman using 
neural network and bootstrap analysis to predict soil hydraulic 
properties. 

2. Materials and Methods 

The soil used in this study was Gilman silt loam soil, from 
Coachella Valley, California. The field, 9.7 ha of saline sodic 
soil, was monitored and mapped in a previous survey for elec- 
trical conductivity (EC) and sodium adsorption ratio (SAR) 
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Figure 1. Scanning electron micrograph from a thin section of an undisturbed sample from Gilman silt loam 
soil, Coachella Valley, California. 

(SAR = Na+/(Ca 2+ + Mg2+) ø'5, where the cation concentra- 
tion is expressed in mmol L-•). A sampling scheme was estab- 
lished to cover a maximum range of EC and SAR which re- 
sulted in 36 undisturbed soil samples. The undisturbed soil 
cores were 12 cm in diameter by 12 cm in height and were 
collected from the top 25 cm of the soil by hand, to avoid 
excessive mechanical compression of the natural structure. Sat- 
urated hydraulic conductivity Ksa t was measured on all soil 
cores using Colorado River water as eluent (water used for 
irrigation on those fields); the chemical composition of the 
Colorado River water is as follows: EC, 1.15 dS m-•; pH, 8.15; 
SAR, 2.8; HCO•-, 2.8; CI-, 3.1; SO42-, 5.8; Na+, 5.0; K +, 0.12; 
Ca 2+, 4.0; and Mg 2+, 2.5; where ion concentrations are in 
mmol c L- •. 

Samples were saturated by first wetting by capillary rise from 
below, then gradually raising the water level until water 
ponded on the surface; Ksa t was measured with the constant 
head method. After the Ksa t was measured, bulk density PB 
was determined, and the air-dried cores were cut vertically with 
a knife (in the direction of the water flow) into two equal parts. 
One part was used to prepare thin sections, and the other half 
was used to analyze for particle density p,• [Blake and Hartge, 
1986], particle size distribution [Gee and Bauder, 1986], and 

chemical composition (using inductively coupled plasma emis- 
sion spectroscopy). Because of the scarcity of sample, EC, pH, 
and SAR were measured in a combination of the three nearest 

samples; the same value appears for the three combined soils. 
The results of the analyses are shown in Table 1. Thin sections 
were prepared by impregnation of the samples with epoxy 
EPO-TEK 301 (Epoxy Technology Inc., Billerica, Massachu- 
setts). After hardening, a thin section 3.5 x 2.5 cm was cut at 
the plane perpendicular to the water flow, mounted on a glass 
slide, and polished. The polishing process was done with a 
series of diamond polishers to avoid the introduction of con- 
taminants and in the absence of water to preserve soluble 
minerals. 

Thin sections were observed in a scanning electron micro- 
scope (SEM) (AMRAY 3200, AMRAY Inc., Bedford, Massa- 
chusetts) with the backscatter electron detector. The intensity 
of the backscattered electrons (BE) is a function of the atomic 
weight of the element, with heavier elements having higher 
backscattering properties. The result is that elements with 
higher atomic weight give images that are brighter than lighter 
elements in the sample. Charging effects are counteracted by 
using low vacuum in the specimen chamber and by the intro- 
duction of air molecules to dissipate the charge accumulated 
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Figure 2. Scanning electron micrograph of a montmorillonite domain. 

on the surface of the sample. No coating of the sample is 
needed. The selection of the magnification is made with a 
two-point correlation function (see section 3.2) and the quan- 
tiffcation and classification of pore spaces with commercially 
available software (Princeton Gamma-Tech Inc., Princeton, 
New Jersey). The image collected by the scanning electron 
microscope in the backscatter electron detector (1024 x 800 
pixels) is transformed into a binary image, and maximum, 
minimum, and average diameter (Dmax, Dmin, and D•vg, re- 
spectively), surface area A, and pore perimeter P are quanti- 
fied by directly measuring the number of pixels that conform 
each feature in the binary image. Roughness R is calculated by 
R = P(•Davg), and the circularity C is calculated by C = 
rrO 2max/ ( 4A ) . 

To increase the size of the sampling area, we collected 10 
pictures from each thin section distributed in a regular grid; 
the total area sampled is equivalent to 2.5 mm 2. Each of the 
pictures was processed; average parameters are presented in 
Table 1. 

3. Development of the Microscopic Method 
3.1. Determination of the Threshold Grey Level 

The images collected with the BE detector contain a grey 
scale that can be represented by a histogram. If the brightness 

and contrast of the image are adequate, the histogram presents 
a bimodal distribution, since the carbon-based epoxy displays 
as a black color and the soil minerals are bright in a wide 
spectra of grey colors. In general, the quality of the histogram 
for soil thin sections is dependent on the clay content; the 
higher the clay content, the poorer the definition of the bimo- 
dality. The reason for this is that the average pore size in clay 
soils is smaller than that in sandy soils, and consequently, 
individual pixels are more likely to contain both pore and 
particle features; therefore, when the pore size approaches the 
detection limit of our SEM (see section 3.3), the definition of 
the image is poor, as is the resu!tant histogram. 

The micrograph is converted into a binary image; this con- 
version is based on the histogram where a threshold level 
needs to be established in order to resolve pore features from 
particle features. Figure 3 shows a typical histogram for a BE 
image in which the particle and pore spaces are represented by 
individual peaks. The valley between the peaks contains am- 
biguous pixels that need to be resolved into particles or pores. 
We evaluated three methods on the basis of the observation 

that the histogram is a superposition of two overlapping Gauss- 
ian curves. However, for finer-textured soils the representation 
of the histograms is complex and is not normally distributed in 
all cases. Since in the present study we have samples with a 



3152 LEBRON ET AL.: SATURATED HYDRAULIC CONDUCTIVITY PREDICTION 

Table 1. Clay, Silt, and Sand Percentages, Saturated Hydraulic Conductivity Ksat, Porosity Measured With Image Analysis 
4>sE•t, Average Pore Diameter Davg, Circularity C, Roughness R, Electrical Conductivity (EC), pH, Sodium Adsorption 
Ratio (SAR), Pore Area A, Pore Perimeter P, Particle Density Pa, and Bulk Density PB of Gilman Silt Loam Soil, 
Coachella Valley, California 

Sample Clay, Silt, Sand, Ksat, (•SEM, D avg, EC, A, P, Pa, 
Number % % % mm h- • % tam C R dS m- • pH SAR tam 2 tam g cm 3 g cm 3 

1 9 35 56 3.18 31.1 12.9 2.97 1.06 25.4 7.25 71 444 118 2.57 1.38 
2 10 39 51 2.84 35.5 12.2 3.21 1.05 25.4 7.25 71 505 116 2.55 ... 

3 10 50 37 2.12 29.2 10.9 3.15 1.04 25.4 7.25 71 144 58 2.71 1.38 
4 16 50 34 3.24 32.4 11.4 3.23 1.03 62.7 7.36 217 498 120 2.67 1.37 
5 34 61 5 0.03 26.0 10.6 3.13 1.05 62.7 7.36 217 97 57 2.71 1.35 
6 26 67 7 0.05 27.3 10.6 3.01 1.05 62.7 7.36 217 81 51 2.65 1.36 
7 7 21 73 19.9 34.7 11.8 3.16 1.02 1.50 7.44 3.8 887 145 2.55 1.39 

8 8 16 76 17.6 32.7 11.4 3.21 1.05 1.50 7.44 3.8 385 100 2.57 ... 
9 4 7 89 50.3 37.6 11.8 3.39 1.02 1.50 7.44 3.8 2204 195 2.54 ... 

10 11 25 64 2.77 36.7 11.0 3.34 1.03 1.16 7.63 4.7 530 112 2.57 1.49 
11 8 23 69 6.80 39.4 11.1 3.13 1.03 1.16 7.63 4.7 677 103 2.58 ..- 
12 9 28 63 2.04 28.7 10.7 3.34 1.03 1.16 7.63 4.7 188 69 2.59 1.44 
13 10 40 50 2.09 35.5 12.8 3.52 1.04 1.20 7.50 3.0 361 114 2.55 1.31 
14 12 34 54 2.31 29.8 11.9 3.33 1.04 1.20 7.50 3.0 230 85 2.54 ..- 

15 10 41 49 4.38 31.0 11.4 3.21 1.05 1.20 7.50 3.0 191 79 2.66 1.37 
16 18 48 34 0.14 25.6 11.5 3.27 1.06 6.41 7.90 12 121 64 2.69 1.42 
17 16 49 36 0.54 21.4 10.4 3.21 1.03 6.41 7.90 12 125 57 2.77 1.50 
18 15 54 31 0.37 34.0 11.3 3.48 1.04 6.41 7.90 12 283 94 2.78 1.43 

19 17 57 26 0.36 32.5 11.4 3.21 1.07 3.20 7.65 2.0 161 82 2.69 1.35 
20 23 56 21 0.64 21.9 10.4 3.21 1.03 3.20 7.65 2.0 102 56 2.78 ... 

21 24 60 16 0.19 30.8 10.4 3.17 1.03 3.20 7.65 2.0 185 67 2.74 1.28 
22 15 50 35 0.79 33.0 12.1 3.21 1.06 3.22 7.25 3.5 273 93 2.62 1.40 
23 12 44 49 2.25 30.8 11.0 3.21 1.03 3.22 7.25 3.5 252 80 2.64 ... 
24 15 47 37 1.29 37.2 11.8 3.21 1.06 3.22 7.25 3.5 321 93 2.62 1.29 
25 10 33 56 1.74 28.7 13.0 3.52 1.05 3.31 7.90 8.0 276 104 2.63 1.40 
26 9 32 59 2.76 29.5 11.5 3.32 1.04 3.31 7.90 8.0 228 84 2.51 ... 
27 11 33 56 1.71 25.4 11.2 3.20 1.04 3.31 7.90 8.0 159 72 2.57 1.38 
28 13 32 55 0.36 26.1 11.8 3.24 1.03 4.17 7.50 5.2 275 98 2.72 1.51 

29 11 29 60 0.73 35.3 12.1 3.40 1.06 4.17 7.50 5.2 219 93 2.61 1.47 
30 9 28 63 0.38 19.4 10.7 3.18 1.03 4.17 7.50 5.2 153 60 2.68 1.48 
31 15 30 55 0.55 23.0 10.8 3.17 1.04 5.40 8.10 7.2 155 69 2.52 1.53 
32 16 44 40 0.44 22.3 11.0 3.16 1.03 5.40 8.10 7.2 202 72 2.71 1.31 

33 17 45 38 0.19 30.0 11.2 3.20 1.05 5.40 8.10 7.2 198 74 2.79 1.53 
34 20 57 30 0.06 35.4 11.5 3.21 1.07 65.8 7.95 260 192 81 2.77 1.41 
35 21 54 25 0.09 30.9 11.2 3.21 1.05 65.8 7.95 260 135 68 2.52 1.31 
36 20 54 25 0.09 28.8 11.8 3.21 1.08 65.8 7.95 260 129 73 2.81 1.28 

The pB values not shown are missing values; for these samples we used the average p• - 1.43 g cm 3. 

wide range in textural composition, we will use the mathemat- 
ical minimum of the histogram to establish the threshold level 
to convert the picture into a binary image. 

3.2. Two-Point Correlation Functions 

A two-point correlation function provides the probability 
that two points at a specific distance are located in the region 
of space occupied by one constituent of a two-phase material. 
These functions have been used extensively to calculate differ- 
ent properties of heterogeneous composites and provide infor- 
mation about the representativeness of the image. In our case 
the function is derived from the binary BE image and provides 
the probability that two pixels separated by a distance k are 
simultaneously in either a pore or a particle. When considering 
pores, if k = 0 (zero lag), the probability is equal to the 
porosity 4•. At large distances and isotropic conditions the 
probability is equal to 4) 2 [Blair et al., 1996]. 

Two-point correlation functions of the binary picture f(i, j) 
with N vertical and M horizontal pixels can be calculated as the 
two-dimensional correlation matrix S2(m, n) expressed as 

1 Mmax Nmax 

S2(m, rt) : mmaxNmax Z Z f(i, j) f(i + m, j + n) (1) 
i=1 j=l 

where n and m are the vertical and horizontal lags and Nmax = 
N- n and Mma x = M- m; f(i, j) = 1 for pixels in pores 
and 0 for pixels in particles. The calculation of S2(m, n) with 
(1) is very inefficient for an image of significant size. A more 
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Figure 3. Histogram of the grey level of a backscattered elec- 
tron image of a soil thin section. 
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effective analysis is to perform a two-dimensional fast Fourier 
transform (FFT) of the matrix f(i, j) as 

P(a, b) = FFT[f(i,/)] (2) 

where a and b are indices in the complex frequency matrix P. 
For each frequency a, b the correlation is performed as [Press 
et al., 1988] 

C(a, = P(a, (3) 

where P*(a, b) is the complex conjugate of P(a, b). Through 
the inverse FFT of C(a, b) we obtain the two-dimensional 
correlation matrix S2(m, n): 

S2(m, n) = FFT-•[C(a, b)] (4) 

The column $2(m = 1, n) and row $2 (m, n = 1) are the 
vertical and horizontal correlation functions and provide in- 
formation on the isotropy of the sample. The two-dimensional 
correlation matrix is summarized into a one-dimensional 'two- 

point correlation function by using the procedure outlined by 
Berryman [1998]. 

3.3. Determination of Optimal Magnification 

Magnification is the most important factor affecting the 
quantification in the analysis of an image. If we measure the 
same parameter, for example, the hydraulic radius (rn = 
A/P), at the same location of the same sample at different 
magnifications, we observe that the value ofrn varies by >50% 
(Figure 4). The definition of the SEM image determines the 
quality of the measurements, which depends on the pixel size, 
which, in turn, is inversely proportional to the magnification. 
Berryman and Blair [1987] also found that image magnification 
was important in the determination of a surface to volume 
ratio for use in a Kozeny-Carman model. They provide a meth- 
odology, based on a two-point correlation function (4), for 
finding the appropriate pixel size to use when preparing images 
of cross sections to be used to study water flow. The two-point 
correlation function that we use in this study was calculated 
using (2), (3), and (4). From (4) we obtain a characteristic 
length which is an estimate of the mean pore radius r and 
define the range in which this r must be in order to determine 
reasonable porosity measurements. Berryman and Blair [1987] 
recommend that the pixel size be ---1% of the size of an aver- 
age pore radius and that 

2r 

h -> N(1 - •b) (5) 

y= 5.82-1.70 log x 
R 2 =0.98 

101 10 2 10 3 
Magnification 

Figure 4. Hydraulic radius rn as a function of the magnifi- 
cation. 

Table 2. SEM Measurements for Sample 25 at Different 
Magnifications: Pixel Size h, Mean Pore Diameter Din, Area 
A, Perimeter P, and Porosity •SEM 

Magnification, h, Din, A, P, 
x /xm Pixels (I)sE M (I)Tc F p,m 2 

35 2.691 12.87 26.7 29.2 442 131 
50 1.884 8.25 30.3 29.8 415 141 

100 0.942 5.70 30.8 33.4 171 79.5 
200 0.471 4.32 32.7 34.0 64.5 36.0 
500 0.188 2.63 32.4 34.9 26.3 21.3 

1000 0.094 2.05 38.4 50.8 13.8 16.9 

Also given is porosity calculated by the two-point correlation func- 
tion CI)Tc F. 

where h is the pixel size and N is the number of pixels along 
each side of a square image. Berryman and Blair emphasize 
that there is no advantage to increasing magnification if the 
average pore diameter is larger than a quarter of the width of 
the digitized image and recommend having ---100 grains in the 
picture for measurement of porosity. 

Table 2 shows the r, pixel size, magnification, and porosity 
values calculated with (4) for sample 25 in Table 1. Calculating 
the right-hand side of (5) for an image of 1000 pixels, we obtain 
the value h -> 0.1. When this value is combined with the 

requirement of having at least 100 features in the picture, we 
determine that magnifications within the acceptable range are 
200-35 x. A magnification of 50 x was chosen as a compromise 
between a bigger sampling size and a satisfactory detection 
limit. The detection limit is 7 •m at 50x magnification and the 
resolution chosen (1024 x 800 pixels). 

4. Prediction of Saturated 

Hydraulic Conductivity 
4.1. Kozeny-Carman Equation 

There are a number of methods available to relate SEM data 

to saturated hydraulic conductivity. Empirical relationships 
such as fractal analysis or neural network have been used in the 
literature, however, it is more informative to include as many 
physical relationships as possible. The model traditionally used 
to predict Ksa t is the Kozeny-Carman equation, but different 
approaches can be taken; for example, Ahuja et al. [1989], 
using macroscopic measurements, proposed 

Ksat = Oq•e • (6) 

where q• is the effective porosity, defined as the difference 
between the soil water retention at saturation and the water 

retention at 33 kPa. The parameters Q and B are fitting pa- 
rameters, and they depend on the calibration data set [cf. 
Gimenez et al., 1997]. 

A different approach is that followed by Blair et al. [1996], 
who used the Kozeny-Carman relation to interpret data de- 
rived from SEM images of sandstones. They used the expression: 

Ksat--- Cqbr• (7) 

where •b is the porosity and r• is the hydraulic radius. The 
constant C can be defined by using the Poiseuille equation: 

C = vGr2 (8) 
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where C incorporates effects of acceleration of gravity !7, pore 
geometry G, pore tortuosity r, and the kinematic viscosity of 
the pore water v. C has the largest value for parallel, circular 
pores (G - 8, r = 1). However, for real soils it is most likely 
that the assumption of parallel, circular pores will lead to a 
considerable overestimation of the saturated hydraulic conduc- 
tivity. Furthermore, pore connectivity is an additional factor 
that may play a role in soils. 

In this study we will calculate the hydraulic radius r/_/from 
total pore area A and total pore perimeter P 

rH=A/P (9) 

This definition will include noncircularity and roughness of the 
pores with both A and P measured directly with the SEM. For 
equal areas the hydraulic radius will become smaller when the 
noncircularity or pore roughness increases. The porosity 4> in 
(7) is also measured from the SEM image analysis (rkSEM)' The 
constant C in (7) is split into a constant part C• = 17/v (equal 
to 8.46 x 109) and a nonconstant part F that lumps effects of 
pore tortuosity, geometry, and connectivity. This factor F is a 
soil-specific reduction factor and is analogous to the "forma- 
tion factor" that is used in many hydrological studies of rock 
strata [e.g.,Adler et al., 1992; Berryman and Blair, 1987; Blair et 
al., 1996]. To remove a bias toward high hydraulic conductiv- 
ities, we express (7) in a logarithmic form: 

log (Ksat) = log (C,) + log (F) + log [(kS•M(A/P) 2] (•0) 

Equation (10) will be used in two different ways. First, we 
assume that the concept of straight cylindrical pores applies to 
our samples and predict gsa t with (10) using measured rkSEM, 
A, and P with C = 8.46 x 109 and F = • (G = 8 and t - 
1). Second, we will use measured gsa t and solve (10) for F. 
This approach is necessary because we cannot account for the 
individual contributions of pore tortuosity, geometry, and con- 
nectivity. Subsequently, we will investigate the relationship of 
F with microscopic properties ((DSEM, •4, P, pore roughness, 
and circularity), macroscopic properties (clay and sand per- 
centage and bulk density), and soil chemical properties (pH, 
EC, and SAR). We will use a combination of a neural network 
and the bootstrap method to find a predictive model for F. 

4.2. Neural Network and Bootstrap Analysis 

A big advantage of neural networks over traditional regres- 
sion techniques is that they do not need an a priori selection of 
the underlying model expressions (linear, exponential, etc). 
The term "neural network" represents a large collection of 
numerical techniques that resemble biological neural systems. 
Many different types of neural network exist, each with a 
particular range of applications [Hecht-Nielsen, 1991; Haykin, 
1994]. 

In this study we used the most common type of three-layer 
feed-forward networks as also used by Pachepsky et al. [1996], 
Schaap and Bouten [1996], and others. This type of neural 
network can be seen as a "universal function approximator" 
because it can estimate any continuous nonlinear function with 
a desired degree of accuracy. Because they need no a priori 
model specifications, neural networks are capable of finding 
complex relationships between input data (in our case, for 
example, clay percentage, bulk density, pore roughness, and 
pH) and output data (the factor F). An iterative calibration 
procedure based on the Levenberg-Marquardt algorithm [Mar- 
quardt, 1963; Demuth and Beale, 1992] was used to find these 

relationships through minimization of the following objective 
function: 

36 

Ob = • (F- F') 2 (11) 
i=1 

where the number of samples is 36 and F and F' are calculated 
with (10) and the neural network-predicted F factors. 

Typically, usage of neural networks leads to black box mod- 
els in which the flow of information can be difficult to track. 

Furthermore, neural networks tend to be sensitive to nonlinear 
instability and overfitting [Hsieh and Tang, 1998]. Nonlinear 
instability stems from the possibility that many local minima 
may exist on the surface of the objective function. Overfitting 
results from the function approximation of the neural net- 
works, which, without further precaution, may lead to the un- 
desired inclusion of noise and artifacts into the model. A 

model that is overfitted will give very good predictions for its 
calibration data set but poor predictions for independent data. 
These problems can largely be overcome by repeatedly restart- 
ing the neural network calibration with different initial coeffi- 
cients, by limiting the number of iterations [Schaap et al., 
1999], and by validating the neural network model on inde- 
pendent data. 

The bootstrap method [Efron and Tibshirani, 1993] was used 
to generate uncertainty estimates of predicted F and to gen- 
erate independent calibration and validation data sets for the 
neural network calibration. Bootstrap theory assumes that 
multiple alternative realizations of the population can be sim- 
ulated from the single data set that is available. By calibrating 
the model on these alternative data sets, different predictions 
result, leading to uncertainty about the true model. The alter- 
native data sets have the same size as the original data set and 
are created by random resampling with replacement. There- 
fore, in a data set of n samples, each sample has a chance of 
1 - [(n - 1)/n] n of being selected once or multiple times. 
Because some samples are selected more than once, each al- 
ternative data set contains -64% (for n - 36) of the original 
data. Neural networks were calibrated on each of these data 

, 

sets. The bootstrap method was combined with the TRAINLM 
routine of the neural network toolbox [Demuth and Beale, 
1992] of the MATLAB © package (version 4.0, MathWorks 
Inc., Natick, Massachusetts). The neural network code was 
modified to avoid local minima in the objective function. We 
used 60 alternative data sets, leading to 60 neural network 
models; the average of the 60 predictions was the true F, and 
the corresponding standard deviation gave the uncertainty in 
F. 

5. Results and Discussion 

5.1. Microscopic Method 

The use of microscopic techniques to describe the pore 
space in a soil has the advantage that we can consider pore 
properties that are otherwise unavailable. However, special 
precautions need to be taken if the objective is to relate those 
properties with macroscopic events. As a preliminary evalua- 
tion of the consistency of our microscopic technique, we com- 
pared the porosity of our samples obtained by the image anal- 
ysis from the micrographs ((DSEM) with the porosity calculated 
using 
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iOB 
45= 1 (12) 

pa 

where PB is the bulk density and Pa is the soil particle density. 
Figure 5 shows that the porosity measured with SEM system- 
atically underestimates the total calculated porosity (12) by 
-0.15 cm3/cm 3. Most likely this underestimation is due to 
unresolved pores <7/xm. To explain the difference between 
qbSE M and calculated porosities, we derived the pore volume 
contained in pores <7 /xm using a pedotransfer function 
[Schaap et al., 1998]. By using the capillary law it follows that 
a pore of 7/xm in diameter is equivalent to a pressure head of 
43 kPa. After adding the porosity associated with the water 
content at 43 kPa pressure head to qbSE M we found a much 
better agreement with the calculated values (Figure 5). Even 
though the pedotransfer function provides predictions with an 
implicit error, we estimate that our porosity measurements are 
comparable to those obtained conventionally. 

The two-point correlation function calculations for all our 
samples indicated that the magnification used (50x) provides 
acceptable resolution. As mentioned earlier, the resolution of 
the images is related to the clay content of the sample. Figure 
6 shows the micrographs and the correlation functions for 
samples 5 and 9 (Table 2), whose clay content covers the range 
of our samples. The correlation functions show that the char- 
aateristic length (where the function crosses the (/:)•EM) is much 
smaller than the size of the micrograph (1880/•m). The accu- 
mulation of 10 mici'ographs per sample ensures a good repre- 
sentation of the microfeatures. 

From these results we conclude that a magnification of 50x 
leads to a sufficient resolution of relevant small pores, as well 
as a good spatial coverage. Furthermore, the magnification will 
also lead to an exclusion of features that are too small to have 

an effect on saturated hydraulic conductivity [Ahuja et al., 
1989; Berryman and Blair, 1987]. 

5.2. Prediction of Saturated Hydraulic Conductivity 

As we reviewed in section 4.1, there are different possible 
expressions of the Kozeny-Carman equation. We tested the 
relationship proposed by Ahuja et al. [1989] to predict gsa t in 
Our soils samples. When we substituted qbSE M in (6) and used 
linear regression based on log (gsat) values, we obtained Q = 
304 and B = 4.07 for our data set. However, the prediction 
of Ksa t versus measured Ksa t had a very low correlation coef- 
ficient (0.17, Table 3). The lack of correlation between mea- 
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Figure 5. Porosity of the 36 samples measured with the scan- 
ning electron microscope before and after the correction for 
the detection limit versus the calculated porosity. 
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Figure 6. Binary micrographs for (a) sample 5, (b) sample 9, 
and (c) two-point correlation function for samples 5 and 9. 

sured and predicted Ksa t indicates that the version of the 
Kozeny-Carman equation by Ahuja et al. [1989] cannot be 
reliably used for our data. The use of a higher effective poros- 
ity (the cutoff pore size in our case corresponds to 43 kPa 
instead of the 33 kPa proposed by Ahuja et al. [1989]) does not 
justify the poor prediction and indicates that fitting parameters 
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Table 3. Correlation Coefficient R 2 of the Regression 
Between the Measured Ksa t and the Predicted Ksat Using 
Different Models 

Model Ksa t Predictions (R 2) 

0.17 Ksa t = A 0sBEM 
Neural network 

Input SSC 
Input SSC + PB 
Input SSC + pB + SAR + pH + EC 

Ksat = FCCbsE•ar• (F obtained with neural 
network and input C + po + pH + R) 

0.71 

0.75 
0.77 
0.91 

The first model is the Kozeny-Carman equation used by Ahuja et al. 
[1989] and Gimenez et al. [1999], the second model is direct regressions 
of different variables with measured Ksa t using neural network analysis, 
and the third model is the Kozeny-Carman equation used in the 
present study, for which the factor F was predicted using neural net- 
work analysis. SSC, sand, silt, and clay; p•, bulk density; SAR, sodium 
absorption ratio; EC, electrical conductivity; and R, roughness. 

without a physically based conceptual model is not adequate 
for our soil samples. 

The conceptual model needs to account for the difference 
between an ideal system of an array of parallel cylindrical 
pores and the intricate distribution of pores in a natural soil. 
The pore space is the result of the rearrangement of particles 
in structural units called aggregates. These aggregates are the 
result of a series of attractive and repulsive forces of electro- 
static and physical origin. We introduced the factor F, which is 
a combination of tortuosity, connectivity, and microscopic pa- 
rameters. F was best predicted when clay percentage, 
roughness, and pH were used as predictors using neural net- 
work analysis. Clay percentage was the single variable with the 
highest contribution (R 2 = 0.60 alone) to the prediction ofF. 

The prediction of the formation factor did not require sa- 
linity or sodicity parameters. However, it is well known, from 
dispersion or aggregate stability tests, that salinity and sodicity 
have an important role in the dispersion and flocculation of 
clay particles [Goldberg and Forster, 1990; Hesterberg and Page, 
1993; Lebron and Suarez, 1992; Kretzschmar et al., 1993], in the 
hydraulic conductivity [Suarez et al., 1984], and, consequently, 
in the rearrangement of the clay domains [Shainberg and Otho, 
1968; Quirk and Aylmore, 1971; Lebron et al., 1993]. 

However, when EC or SAR were incorporated into the 
neural network analysis to predict F, there was no significant 
increase in the correlation coefficient. From Table 1 we ob- 

serve that in this particular sample population, EC and SAR 
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Figure 7. Predicted values of the log of the formation factor 
F at different pH values in the range of 5-25% clay content. 

are not independent variables and show a strong linear corre- 
lation. It is known that EC and SAR have opposite effects in 
the development of the double layer and, consequently, in the 
flocculate/dispersed state of the clay particles; while increases 
of EC favor flocculation, increases of SAR promote dispersion. 
This direct relation of sodicity and salinity is common in arid 
zones where the majority of the salts are sodic. 

The values of pH were not lineally correlated with the chem- 
ical parameters, and the prediction of F was improved after the 
incorporation of pH in the neural network analysis. The pH 
has been widely neglected in transport modeling efforts, but 
Suarez et al. [1984] showed that at high pH an increase in 1 unit 
of pH can cause a decrease in Ksa t of 1 order of magnitude; this 
decrease is equivalent to an increase of 20 SAR units. The 
importance of the pH is related to the sign of the variable 
charges, generally located at the edges of the clays, in the iron 
and aluminum oxides, and in the organic matter. Above the 
point of zero charge (PZC) the variable charges are negative; 
consequently, the net electrostatic charges in the soil particles 
are negative, and repulsive forces occur among the particles. 
When the pH of the soil is below the PZC, the edges are 
positively charged, providing the possibility for the electro- 
static forces to form bonds. There is a considerable variability 
of PZC values for the different components of a soil, but in 
general, we can consider that there is a surface charge reversal 
around pH 7-9. When the predicted F values were calculated 
in the range of 5-25 % clay at constant bulk density and rough- 
ness and variable pH (Figure 7), the F factor decreased when 
the pH increased and decreased when the clay content in- 
creased, in agreement with our previous observations. 

If we keep pH and pB constant and change roughness, we 
predict a decrease in F values when the roughness increases 
(Figure 8); this agrees with the results of Berryman and Blair 
[1987]. Berryman and Blair found that for the Kozeny-Carman 
model for fluid flow in porous media it is not the absolute 
specific surface area but rather the roughness of the pore walls 
relative to the mean pore size that influences the permeability. 
When roughness and pH were constant, the F factor decreased 
when the p• increased (Figure 9); this may due to the fact that 
increases in p• are associated with an increase in tortuosity, 
which is known to reduce the Ksa t. 

The predicted Ksat, taking into account the F factor in the 
Kozeny-Carman equation, shows a very good agreement with 
the measured Ksa t (Figure 10) with a regression coefficient of 
0.91. The predictions were highly improved by the use of rH, 
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Figure 8. Predicted values of the log of the formation factor 
F at different roughness values R in the range of 5-25% clay 
content. 
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which includes area and perimeter of the pores directly mea- 
sured in the image. This information cannot be obtained by any 
other methodology (that is not image based); rH is traditionally 
inferred through indirect methods with a series of assumptions 
such as the absence of coulombic forces among particles and 
specific geometry. As a corroboration of the need for a phys- 
ically based model we applied neural network analysis directly 
to our data in an attempt to empirically predict Ksa t without 
using the Kozeny-Carman equation or microscopic parame- 
ters. We used different variables with relative success; Table 3 
shows that we were able to predict Ksa t with a correlation 
coefficient range of 0.71-0.77, but we did not reach the quality 
of the predictions made with (10). 

Despite the excellent correlation between the calculated and 
measured Ksa t there are many unresolved problems that pre- 
vent the use of the F values predicted in this study for soils 
from nonarid regions. It is for that reason that more studies are 
needed to quantify the effects of EC and sodicity on pore 
geometry and pore distribution. The individual contribution of 
each one of the chemical parameters will provide the essential 
information to develop a conceptual model for the prediction 
of hydraulic properties. Also, measurements of tortuosity and 
connectivity with independent methodologies, such as time 
domain reflectometry or acoustic techniques, will provide the 
necessary information for a more physically based model. The 
results of such measurements will be addressed in future ex- 

periments. 

6. Conclusions 

The proposed methodology provides a quantification of pa- 
rameters of the pores at a scale not possible to measure with 
macroscopic techniques. Microscopic measurements of the 
pore space have been shown to be in good agreement with the 
bulk porosity of the soils calculated with traditional methods. 

The use of macroscopic parameters in the Kozeny-Carman 
equation yielded poor predictions of Ksat; however, when mi- 
croscopic information of the pores was included, we were able 
to predict Ksa t with R 2 - 0.91 for the same soil population. 
Roughness and pH have been shown to be effective for the 
prediction of the formation factor F of the soils examined. 

The methodology proposed in the present study shows very 
promising results for improving prediction of hydraulic prop- 
erties by incorporating a more realistic quantification of the 
porous media, but more studies are needed to develop a con- 
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Figure 9. Predicted values of the log of the formation factor 
F at different bulk density values PB in the range of 5-25% clay 
content. 
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Figure 10. Predicted Ksa t using the Kozeny-Carman equa- 
tion with (circles) and without (squares) the formation factor 
versus the measured Ksa t. 

ceptual model of the effect of the chemical properties on the 
pore space and pore distribution in the soil. 
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