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ABSTRACT
The solution of many field-scale flow and transport problems re-

quires estimates of unsaturated soil hydraulic properties. The objec-
tive of this study was to calibrate neural network models for prediction
of water retention parameters and saturated hydraulic conductivity,
A's, from basic soil properties. Twelve neural network models were
developed to predict water retention parameters using a data set of
1209 samples containing sand, silt, and clay contents, bulk density,
porosity, gravel content, and soil horizon as well as water retention
data. A subset of 620 samples was used to develop 19 neural network
models to predict K,. Prediction of water retention parameters and
A', generally improved if more input data were used. In a more detailed
investigation, four models with the following levels of input data were
selected: (!) soil textural class, (ii) sand, silt, and clay contents, (iii)
sand, silt, and clay contents and bulk density, and (iv) the previous
variables and water content at a pressure head of 33 kPa. For water
retention, the root mean square residuals decreased from 0.107 for
the first to 0.060 m3 nr' for the fourth model while the root mean
square residual K, decreased from 0.627 to 0.451 log(cm d '). The
neural network models performed better on our data set than four
published pedotransfer functions for water retention (by ~ 0.01-0.05
m3 m ') and better than six published functions for K, (by -0.1-0.9
order of magnitude). Use of the developed hierarchical neural network
models is attractive because of improved accuracy and because it
permits a considerable degree of flexibility toward available input
data.

CONCERN ABOUT THE QUALITY of soil and water re-
sources has motivated the development of increas-

ingly sophisticated models for predicting water flow and
solute transport in unsaturated soils. These models gen-
erally require knowledge of the soil water retention,
0(/z), and unsaturated hydraulic conductivity, K(h),
where 0 is the volumetric water content and h is the
pressure head. Direct measurement of these properties
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is often time consuming and expensive, while the results
may not be accurate. An alternative is the use of pedo-
transfer functions (PTFs), which estimate the hydraulic
properties through correlation with more easily mea-
sured or widely available soil parameters (Bouma and
van Lanen, 1987; van Genuchten and Leij, 1992).

A variety of PTFs with different mathematical con-
cepts, predicted properties, and input data requirements
have been developed. Quasi-physical methods by Arya
and Paris (1981), Haverkamp and Parlange (1986), and
Tyler and Wheatcraft (1989) use the concept of shape
similarity between pore- and particle-size distributions.
The vast majority of PTFs, however, are empirically
based on relatively simple linear regression equations.
Although considerable differences exist among PTFs in
terms of the required input data, all of them use at least
some information about the particle-size distribution.
When only the textural classification is known, simple
"class" PTFs can be used to provide average hydraulic
properties for each soil textural class (Carsel and Par-
rish, 1988; Wosten et al., 1995). When the actual particle-
size distribution is known, PTFs that predict continu-
ously changing hydraulic properties across the textural
triangle can be used.

Pedotransfer function predictions may be improved
by extending the input data through addition of basic
soil properties like bulk density, porosity, or organic
matter content (Rawls and Brakensiek, 1985; Ver-
eecken et al., 1989). Additional improvements may be
achieved by including one or more water retention data
points (Rawls et al., 1992; Williams et al., 1992). Ahuja
et al. (1989) and Messing (1989) similarly improved pre-
dictions of saturated hydraulic conductivity, Ks, by using
effective porosity data, which they defined as the total
porosity minus the water content at 10 or 33 kPa pres-

Abbreviations: PTF, pedotransfer function; pb, bulk density; EP10,
effective porosity at 10 kPa; EP33, effective porosity at 33 kPa; EPlsgt>,
effective porosity at 1500 kPa; HOR, horizon; POR, porosity; PTF,
pedotransfer function; RMSR, root mean square residual, Eq. [4] and
[5]; SSC, sand, silt, clay content; TXT, textural class.

847



848 SOIL SCI. SOC. AM. J., VOL. 62, JULY-AUGUST 1998

sure head. Other researchers have predicted soil hydrau-
lic properties using more limited or extended sets of
input variables (Rawls et al., 1992; Schaap and Bouten,
1996; Vereecken et al., 1989, 1990). Such hierarchical
approaches are of great practical use since they permit
more flexibility toward the required input data when
predicting the hydraulic properties.

Neural-network-based PTFs were recently used by
Pachepsky et al. (1996), Schaap and Bouten (1996), and
Tamari et al. (1996). The feed-forward backpropagation
or radial basis functions used by these researchers are
able to approximate any continuous (nonlinear) func-
tion to any desired degree of accuracy (Hecht-Nielsen,
1990; Haykin, 1994). An advantage of neural networks,
compared with traditional PTFs, is that neural networks
require no a priori model concept. The optimal relations
that link input data (basic soil properties) to output data
(hydraulic parameters) are obtained and implemented
in an iterative calibration procedure. For a data set
of 204 sandy soil samples, Schaap and Bouten (1996)
showed that neural networks made predictions with sig-
nificantly smaller errors than more traditional linear
regression approaches. Pachepsky et al. (1996) used a
data set of 230 soil samples. They found that neural
networks predicted water retention points better than
multilinear regression, but that the two methods pro-
duced comparable results when water retention parame-
ters were predicted. Tamari et al. (1996) used synthetic
K(h) data sets and found that neural networks were not
better than multilinear regression models if the uncer-
tainty in the data was large. The neural networks per-
formed better than regression when real soil data
were used.

It was the objective of this study to predict van Gen-
uchten (1980) water retention parameters and saturated
hydraulic conductivity for a hierarchical input structure.
The corresponding sequence of neural network PTFs
yields a collection of models of which the most suitable
one can be selected depending on the available basic

soil properties. We also used neural networks to estab-
lish which basic soil properties are the most relevant
for predicting the hydraulic properties. Contrary to pre-
vious work on neural network PTFs, a data set was
employed that covers most of the textural triangle, thus
ensuring broad applicability of the hierarchical ap-
proach. Conventional error criteria and independent
data were used to evaluate the performance of the hier-
archical neural network models, and to test performance
of previously published PTFs. The uncertainty in the
predicted soil hydraulic properties was evaluated by
combining the neural network approach with the boot-
strap method (Efron and Tibshirani, 1993).

MATERIALS AND METHODS
Data Set

The data set for calibration and testing was extracted from
a database consisting of 4515 laboratory samples taken from
about 30 sources in the USA (W.J. Rawls, USDA-ARS Hy-
drology Lab., Beltsville, MD, 1996, personal communication).
We selected 1209 samples for water retention (containing six
to 13 points with different pressure head ranges), soil texture,
and bulk density; a subset of 620 samples had Ks measure-
ments. Figures la and Ib show the distributions of the samples
in the USDA textural triangle for the entire 1209-sample data
set and the /Cs subset. For subsequent analysis, the samples in
the sandy clay, clay, and silty clay classes were grouped into
one class ("clays"); silt and silt loam classes were grouped
into "silts"; 405 samples were from A horizons, 588 from B
horizons, and 216 from C horizons.

Water retention data for each of the 1209 samples were
fitted to the van Genuchten (1980) equation:

e. - er
[1 + (ah)"]" [1]

where 6S and 6r are saturated and residual water contents
respectively; a (cm"1) and n are curve shape parameters, and
following van Genuchten (1980), m = 1 — lln. Fitting was
carried out with the simplex or amoeba algorithm (Nelder
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Fig. 1. Textural distribution of the (a) water retention data set and the (b) saturated hydraulic conductivity (Ks) subset. S: sand, C: clay, Si: silt,

L: loam, s: sandy, c: clayey, si: silty, 1: loamy.
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and Mead, 1965; Press et al., 1988) with the following con-
straints: 0.0 < 6r < 0.3 m3 m~3, 0.6(j>< 6S < <(> m3 m~3 (where
4> is the total porosity), 0.0001 < a < 1.000 cirr1, and 1.001
< « < 10. The parameters a and n were then log-transformed
to obtain approximately normal distributions. The same trans-
formation was also carried out for Ks measurements.

Published Pedotransfer Functions
In this study we used four previously published PTFs to

predict water retention parameters (Rl through R4 in Table
1) and six published PTFs to predict saturated hydraulic con-
ductivity (Kl through K6 in Table 2). Tables 1 and 2 also
show the required input data for each PTF. All PTFs consist
of the same coefficients and variables as in the original publica-
tions. We did not recalibrate the PTFs for our data set because
of their empirical nature. Recalibration would not only require
adaption of the coefficients but also an evaluation of whether
the input variables or expressions used are actually appro-
priate for the current data set. Recalibration might have re-
sulted in completely different PTFs than were published.

The Rl and R3 functions predicted parameters of the
Brooks and Corey (1964) water retention function, given by:

[2]6(70 = er,BC + (es,BC - er,BC)
where hb is the air-entry pressure and X is an empirical parame-
ter. The function Rl (Rawls and Brakensiek, 1985) assumed
that the saturated water content, 6sBC, is equal to the porosity.
The function R3 (Cosby et al., 1984) predicted Brooks-Corey
parameters according to Campbell (1974), i.e., with 6 as the
independent variable and 6rjBC = 0.

The R2 and R4 functions predicted parameters of Eq. [1].
In R2, Rawls and Brakensiek (1985) transformed the Brooks-
Corey parameters as predicted by Rl into the van Genuchten
(1980) parameters using the expressions in Table 1. For R4,
m in Eq. [1] is set to 1 (Vereecken et al., 1989).

Functions Kl, K2, and K4 (Table 2) provide relatively
straightforward expressions between K,, and the listed soil
properties. Function K3 of Saxton et al. (1986) predicts a K(Q)

Table 1. Input and output data of four pedotransfer functions
(PTF) that predict selected soil water retention parameters.

PTF Input Output

Rl Rawls and
Brakensiek (1985)

R2 Rawls and
Brakensiek (1985)

R3 Cosby et al.
(1984)

Eq. [2]

Sand, clay, <(> 0,3C

Sand, clay, <)>
Sand, clay, <t>

e, = e,Bc
a = I/At
n = X + 1

Eq. [1], m = 1 - 1/n

e,
e,
a
n
Eq. [2], e,,BC = 0

NA
NA
NA
NA

NA
NA
NA
NA

R4 Vereecken
et al. (1989)

Sand O^BC
Sand h\,
Clay \

Eq. [1], m = 1

Clay, pb 6,
Clay, Organic C Os
Sand, clay, Pb, a

Organic C
Sand, clay n

0.771
0.809
0.966

0.703
0.848

0.680
0.560

relationship using sand and clay contents. Substitution of the
total porosity, 4>, for 9 yields an estimate for Ks. The coefficient
of determination of this PTF is very high (R2 = 0.95, Saxton
et al., 1986) since it was fitted to predictions of a PTF reported
earlier by Rawls et al. (1982). Function K5 by Ahuja et al.
(1989) expresses Ks as a power function of effective porosity
parameter (EP33, calculated from the total porosity minus the
water content, 633, at 33 kPa). As parameter values in this
power function we used 1015 for the multiplication factor and
4.0 for the exponent as suggested by Rawls et al. (1992).
Finally, K6 is a quasi-physical PTF by Mishra and Parker
(1989, 1992) that calculates Ks based on closed-form expres-
sions by Mualem (1976), Brutsaert (1968), and van Genuch-
ten (1980).

Neural Network Models
Since several textbooks on neural networks are available

(e.g., Hecht-Nielsen, 1990; Haykin, 1994), we provide only a
brief summary of the neural network approach. In this study
we used a back-propagation neural network with one hidden
layer. This type of neural network is a nonlinear data transfor-
mation structure consisting of input and output nodes con-
nected to a number of hidden nodes by adaptable coefficients.
The number of input and output nodes corresponds to the
number of input and output variables. The number of hidden
nodes depends on the complexity of the underlying problem
and is determined empirically by calibrating neural networks
with different numbers of hidden nodes. After Schaap and
Bouten (1996), we used six hidden nodes. Both the hidden
and output nodes contain sigmoidal transfer functions that
provide the neural network with nonlinear capabilities. The
coefficients were obtained in an iterative calibration proce-
dure based on, in our case, the Levenberg-Marquardt algo-
rithm (Marquardt, 1963). This algorithm minimizes the objec-
tive function:

0(t,t') = 2
i=l 7=1

(t, ,- [3]

where t and t' are the measured and predicted output variables,
NZ is the total number of calibration samples, JV, is the total
number of hydraulic parameters (one for Ks and four for the
retention parameters in Eq. [1]).

A neural network model obtained in the calibration proce-
dure should always be tested on independent data. Usually
this is done by calibrating the neural network on one part of
a data set and subsequently testing the network on the other
part. We followed this approach, and also estimated uncer-
tainty in neural network predictions by combining multiple

Table 2. Input and output data of six pedotransfer functions
(PTFs) that predict the saturated hydraulic conductivity, Ks.

PTF Input data Output

Sand K,

K,

K,

t Published coefficient of determination for calibration; NA
available.

= not

Kl Cosby et al.
(1984)

K2 Brakensiek et al. Sand, clay, <h
(1984)

K3 Saxton et al. Sand, clay, 0
(1986)

K4 Vereecken et al. Sand, clay, pi,. Organic C
(1990)

K5 Ahuja et al. Effective porosity at 33 kPa K,
(1989)

K6 Mishra and Parker ()„ 6,, a K,
(1991)____________________________________

t Published coefficient of determination for calibration; NA = not
available.

± See text for explanation.
§ Ahuja et al., 1989.

0.839

NA

0.95

0.20

0.33-0.71§

NA
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calibration and testing runs with the bootstrap method (Efron
and Tibshirani, 1993).

The bootstrap method is a nonparametric technique for
calculating the probability distribution of any statistic, in our
case hydraulic parameters as predicted by neural networks.
The bootstrap does not make assumptions about the shape
of the distribution of the underlying population, nor does it
matter how complex is the calculation of the statistic (Efron
and Tibshirani, 1993). It is assumed that the data set involved
is a good representation of the original population with the
understanding that this data set is only one particular realiza-
tion of that population. Calibration of a model on another
realization would therefore always lead to slightly different
predictions of 9r, 0S, a, n, and Ks and thus cause uncertainty
about the true value of these parameters. Unfortunately, we
often have only one realization of the population. Bootstrap-
ping simulates different realizations by repeated random re-
sampling with replacement of the original data set of size N
to yield B bootstrap data sets of size N. Each bootstrap data
set contains somewhat different data, which results in B neural
network models, all of which may differ slightly. Efron and
Tibshirani (1993) suggested B to be between 50 and 200; we
used B = 60.

Because resampling is done with replacement, each sample
has a chance of 1 - [(TV - 1)1 N]N (approximately 63%) to be
selected once or multiple times for a bootstrap data set. Each
bootstrap data set thus contains one or more copies of 63%
of the samples. Although formally not part of the bootstrap
method, the remaining 37% of the samples can be used to
carry out an independent test (cf. Efron and Tibshirani, 1993,
p. 252-254). By calculating averages and standard deviations
of B testing results, one obtains robust values of the predicted
hydraulic parameters and associated uncertainty estimates for
independent data.

The combined neural network-bootstrapping analysis was
carried out with a slightly adapted TRAINLM routine of the
neural network toolbox (version 2.0) of the MATLAB1 pack-
age (version 4.0, Math Works Inc., Natick, MA) and default
optimization parameters. By plotting the error evolution vs.
the number of iterations, we found that 50 iterations were
generally enough to find the minimum in O(t,t'). In a limited
number of calibrations, a local minimum was found [O(t,t')
was larger than twice the average minimum value]. In those
cases the neural network calibration procedure was restarted
with a different set of random initial weights. Depending on
the neural network model, about six to 24 h on a P5-166 MHz
PC were required for calibration. Testing the calibrated neural
network models with independent data needed only a few
seconds.

Hierarchical Approach
Two series of 12 water retention and 19 K, neural network

models were developed in a hierarchical approach using input
data listed in the first column of Table 4. The first 12 Ks models
use exactly the same input data as the retention models; the
last seven Ks models use input data that are not considered
for the retention models.

First, we carried out analyses using minimal input data, i.e.,
only textural class information (TXT in Table 4) similar to
the class RTFs of Carsel and Parrish (1988) and Wosten et al.
(1995). Next, neural networks were developed that used sand,
silt, and clay fractions as input (SSC). Although one of these
fractions always contains redundant information, we used all

three as input to allow the neural network to select the most
relevant variable. In a subsequent model, bulk density (pb)
was added to the input variables (SSCpb). Next, we substituted
porosity (FOR) for pb (SSCPOR). Since bulk density and
porosity are closely related, the change in input variable was
not expected to greatly affect the results. Information was
added about the gravel content (particle size >2 mm) to yield
the SSCpt+Gravel model or the horizon information to give
SSCpb + HOR model. Horizon information was encoded as
one variable (HOR) with A horizons as 0, B horizons as 0.5,
and C horizons as 1.

Subsequent neural network models also considered one or
several input variables derived from retention data. Although
it was the purpose of this study to predict retention parameters
and Ks, limited retention measurements are sometimes avail-
able (cf. Soil Survey Staff, 1995). Assimilation of available
retention data in PTFs may improve the prediction of hydrau-
lic properties (e.g., Rawls et al., 1992). Seven models used the
same input variables as the SSCpb model, but with addition
of one or two retention points (6i0, 633, and 61500 at h = 10, 33,
and 1500 kPa, respectively; see Table 4). The water contents
were obtained by evaluating the fitted retention parameters
of Eq. [1] at the appropriate pressure heads.

Four additional neural network models were developed for
Ks using the same input as the SSCpb model and effective
porosity (i.e., SSCpb + EP10, SSCpb + EP33, and SSCpb + EPi500
models) or estimated retention parameters (SSCpb + 0r0san).
Effective porosity was calculated by subtracting the water
content at the appropriate pressure head (10, 33, or 1500 kPa)
from the total porosity. Following Ahuja et al. (1989) and
Messing (1989), we also tried to predict K, from EP10 or EP33,
exclusively. Finally, we attempted to predict Ks using only
retention parameters (0r, Os, a, n ) so as to allow a comparison
with the PTF of Mishra and Parker (1989, 1992).

We evaluated TXT, SSC, SSCpb, and the SSCpb+033 models
by textural class because they appeared to be the most useful
models for practical applications.

Evaluation Criteria
The neural network predictions were evaluated in terms of

the coefficient of determination (R2) between predicted and
fitted or measured hydraulic parameters (6r, 6S, a, n, and Ks).
We did not evaluate the published water retention PTFs in
this way since most predict parameters for functions other
than Eq. [1]. Additionally, we compared the predictions of
the neural networks and the published PTFs with measured
data as root mean square residuals (RMSRwrc and RMSRKs).
The RMSRwrc was obtained by converting the predicted pa-
rameters to water contents at the appropriate pressure heads
and calculating:

- fl'.V

RMSRwrc = J-J-2
~ «

[4]
par

1 Trade names are provided for the benefit of the reader and do
not imply endorsement by the USDA.

where TV is the number of samples (1209), L the number of
measured retention points for each sample, 0,, and 0,'; are
measured and predicted water retention points, and «par is the
number of parameters (four). The root mean square residual
for log(^s) was similarly calculated as:

[5]

where M is the number of samples (620), while log(/Q and
log(.Ks') denote measured and predicted values, respectively.
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For all models in the hierarchical approach listed in Table
4, we present average R2 and RMSR values of the 60 bootstrap
models. The variability of the bootstrap predictions will be
quantified by standard deviations (the predicted parameters
had approximately normal distributions). The RMSR results
of published PTFs were calculated for the entire data set of
1209 water retention samples or the 620-sample Ks subset
without bootstrapping. Applying the bootstrap to evaluate the
published PTFs is not useful because, contrary to the neural
networks, these models stay the same for all bootstrap data
sets.

RESULTS AND DISCUSSION
The results of the direct fit of Eq. [1] to retention data

for each textural class (Table 3) are generally similar to
those reported by Carsel and Parrish (1988) with the
following exceptions. The average 0S values were lower
for loam (0.356 m3 m~3 for our data vs. 0.43 m3 m~3 for
Carsel and Parrish [1988]) and higher for clays (0.441
vs. 0.38 m3 m^3). Further, the values for log(a) were
generally lower because we calculated the average of
log(a), but Carsel and Parrish (1988) computed the aver-
age of a. For example, for the loam class we found
log(a) to be -2.11 log(cm~]) while Carsel and Parrish
(1988) found -1.29 log^m"1). We also found higher
values for Ks for the silty clay loam class [0.87 vs. 0.22
log(cm d"1)] and the clays [1.10 vs. 0.68 log(cm day"1)].
The average RMSRwrc of the direct fit varies from 0.010
to 0.025 m3 m~3 for sandy clay loam and silts, respec-
tively; for the entire data set it was 0.020 m3 m~3.

The results of the hierarchical approach (Table 4)
show an increase in the R2 and a decrease in RMSRwrc
and RMSR/& if more input variables are used. There
is a substantial variation among the different output
variables. The behavior of R2 is discussed first.

All neural network models show a low R2 for 0r; this
indicates that 0r could not be predicted well from the
available input data. A reason for this poor performance
is probably the asymptotic nature of 0r, which is an
extrapolated water content at infinite suction while the
highest suction available in most cases was not more
than 1500 kPa. The mean and standard deviation of the
fitted 0r in Table 3 suggest a large coefficient of variation
in each soil textural class. Table 4 shows that when
Oisoo was included in the input, the correlation remained
poor: the maximum R2 was 0.41 (SSCpb+0330i5oo)- Schaap

and Bouten (1996) also found poor correlations between
predicted and fitted 0r values. Vereecken et al. (1989)
found much higher ,R2 values (0.70) for 0r for a range
of Belgian soils while the predicted 0r values tended to
be higher than our class averages because of a somewhat
different retention function by setting m = 1 in Eq. [1].

A comparison of R2 for 0S of the TXT and SSC models
with those of the SSCpb and SSCPOR models shows
that information about the soil bulk density is important
for accurately predicting 0S. If only basic soil properties
were used to predict 0S, the maximum R2 was 0.63
(SSCpb + Gravel). If water contents were used as addi-
tional input, R2 increased to 0.68 for the SSCpb + 0io
neural network model, and to 0.77 for the SSCpb +
0io033 model.

The results for log(a) and log(n) were rather similar.
A slight increase in R2 is noticeable for the SSC model,
compared with the TXT model. Correlations were be-
tween 0.35 and 0.40 if only basic soil properties were
used. The addition of horizon information or gravel to
the input did not improve the prediction, nor did the
replacement of pb with porosity (POR). Addition of 010
or 033 to the input improved the correlations to 0.58 for
both log(a) and log(rc) (SSCpb + 033 model) and to 0.65
for log(ot) and 0.70 for log(n) if both 0i0 and 033 were
used (SSCpb + 010033 model). The 0i500 variable did not
provide useful information for predicting log(a) or
log(n).

The correlation for log(/Q improved if the SSC model
was used instead of TXT; further improvement was
achieved with the SSCpb model (Table 4). Addition of
gravel or horizon information or replacing pb with POR
did not significantly improve the correlation. The maxi-
mum correlation that could be obtained with basic soil
properties alone was 0.58. Including information de-
rived from the water retention data improved the corre-
lation to as much as 0.72 (SSCpb + EPio). Information
contained in 0150o was apparently not as useful as adding
0io and 033 or EP10 and EP33. Notice that the results for
the SSCpb + 0io and SSCpb + 033 models were very
similar to those for the SSCpb + EPi0 and SSCpb + EP33
models. This finding is not surprising since the input
data were essentially the same (porosity can be derived
from bulk density while effective porosity can be calcu-
lated from porosity and water content). Using only EPi0
or EP33 as input, as was done by Ahuja et al. (1989)

Table 3. Average values and standard deviations (<r, in parentheses) of fitted hydraulic parameters, root mean square residuals (RMSR),
and the number of samples for nine textural classes.

Class A'.rct log(a) log(n) RMSR,.

Sand
Loamy sand
Sandy loam
Loam
Silts*
Sandy clay loam
Clay loam
Silty clay loam
CIays§

97
135
337
137
220
104
77
47
55

———————— m3 r--3

0.044 (0.019)
0.039 (0.037)
0.031 (0.049)
0.054 (0.067)
0.065 (0.062)
0.076 (0.074)
0.091 (0.067)
0.111 (0.062)
0.081 (0.088)

111 —————————————————

0.413 (0.057)
0.395 (0.072)
0.389 (0.094)
0.356 (0.082)
0.441 (0.103)
0.379 (0.066)
0.439 (0.077)
0.460 (0.056)
0.441 (0.068)

log(cm ')
-1.57 (0.21)
-1.49 (0.53)
-1.57 (0.58)
-2.11 (0.82)
-2.51 (0.49)
-1.80 (0.66)
-1.95 (0.60)
-2.36 (0.38)
-1.89 (0.55)

0.462 (0.200)
0.194 (0.108)
0.150 (0.094)
0.195 (0.140)
0.260 (0.131)
0.132 (0.100)
0.188 (0.128)
0.240 (0.110)
0.107 (0.059)

m3m 3

0.019
0.018
0.021
0.017
0.025
0.010
0.016
0.015
0.014

97
117
199
32
62
80

6
10
17

log (cm d ')
2.71 (0.51)
1.92 (0.61)
1.53 (0.65)
0.99 (0.63)
1.04 (0.54)
1.29 (0.70)
0.67 (0.58)
0.87 (0.55)
1.10 (0.43)

t Total 1209 samples for water retention and 620 for A,.
t Silt and silty loam.
§ Clay, silty clay, and sandy day.
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Table 4. Average values and standard deviations (a, in parentheses) of coefficients of determination (R2) and root mean square residuals
(RMSR,,TC for water retention and RMSRKs for Ks) for 12 models that predict retention parameters and 19 models that predict Ks.
These results are evaluations of the models on independent data.

Model inputt

TXT
ssc
SSCpb
SSCPOR
SSCpb + Gravel
SSCpb + HOR
sscpb + 0,,,
SSCpb + 633
sscp,, + e™
sscpb + eMe33sscpb + e,0e15oo
SSCpb + 6336™
SSCpb + EPio
SSCpb + EPjj
SSCpb + EP15M
SSCpb + 0,«,an
EPIO
EP,,ere,an

o.

0.12 (0.03)
0.16 (0.05)
0.18 (0.04)
0.19 (0.04)
0.21 (0.05)
0.17 (0.06)
0.23 (0.05)
0.26 (0.06)
0.35 (0.07)
0.27 (0.05)
0.38 (0.06)
0.41 (0.07)

-
-
-
-
-
-
-

0,

0.11 (0.02)
0.10 (0.02)
0.54 (0.04)
0.53 (0.04)
0.63 (0.03)
0.53 (0.04)
0.68 (0.03)
0.56 (0.03)
0.52 (0.04)
0.77 (0.02)
0.68 (0.03)
0.55 (0.03)

-
-
-
-
-
-
-

R2

log(a)

0.29 (0.03)
0.35 (0.04)
0.38 (0.04)
0.37 (0.04)
0.39 (0.04)
0.36 (0.03)
0.55 (0.03)
0.58 (0.03)
0.37 (0.04)
0.65 (0.03)
0.57 (0.04)
0.63 (0.03)

-
-
-
-
-
-
-

log(n)

0.32 (0.05)
0.37 (0.05)
0.38 (0.05)
0.39 (0.04)
0.40 (0.04)
0.38 (0.04)
0.55 (0.04)
0.58 (0.04)
0.39 (0.05)
0.70 (0.04)
0.57 (0.04)
0.64 (0.03)

-
-
-
-
-
-
-

iog<*y

0.42 (0.04)
0.47 (0.04)
0.57 (0.04)
0.57 (0.04)
0.58 (0.04)
0.57 (0.04)
0.70 (0.03)
0.70 (0.03)
0.59 (0.04)
0.70 (0.03)
0.70 (0.03)
0.68 (0.04)
0.72 (0.03)
0.70 (0.03)
0.60 (0.03)
0.68 (0.03)
0.67 (0.03)
0.65 (0.04)
0.62 (0.03)

RMSR,™

rn'rn 3

0.107 (0.004)
0.104 (0.006)
0.087 (0.005)
0.087 (0.004)
0.087 (0.006)
0.087 (0.004)
0.065 (0.003)
0.060 (0.005)
0.081 (0.004)
0.058 (0.006)
0.064 (0.005)
0.061 (0.004)

-
-
-
-
-
-
-

RMSRKs

log(cm d~*)
0.627 (0.025)
0.602 (0.026)
0.533 (0.024)
0.536 (0.025)
0.539 (0.024)
0.537 (0.028)
0.448 (0.023)
0.451 (0.019)
0.529 (0.024)
0.448 (0.019)
0.447 (0.022)
0.463 (0.027)
0.435 (0.019)
0.452 (0.019)
0.523 (0.024)
0.467 (0.024)
0.479 (0.021)
0.494 (0.025)
0.504 (0.022)

t TXT = textural class; SSC = sand, silt, clay contents; pb = bnlk density; HOR = horizon; H,,,, 033, 0IHH, = water content at 10 kPa, 33 kPa, and 1500
kPa; EPio, EP33, EP1500 = effective porosity at 10 kPa, 33 kPa, and 1500 kPa; 0,, 0,, a, n = retention parameters in Eq. [2].

and Messing (1989), reduced the effectiveness of the
predictions somewhat compared with the SSCpb + EPi0
or SSCpb + EP33 Ks models. The same was true if only
van Genuchten (1980) parameters were used (cf. 6r0sa«
and SSCpb + 0r6san models), similar to the work of
Mishra and Parker (1989,1992). These results show that
SSCpb and effective porosity data or fitted van Genuch-
ten (1980) parameters do not convey exactly the same
information. Combining basic soil properties with reten-
tion data will lead to more accurate predictions.

The RMSR results for the retention models and
log(/Q models show similar but decreasing trends to the
correlations for the individual parameters. The RMSRwrc
values were relatively high for the TXT input data; indi-
vidual water retention data points were predicted with
a standard deviation of 0.107 m3 m~3 while log(Ks) was
predicted with a RMSR& of 0.627 log(cm d~'). As ob-
served by Williams et al. (1992) and Rawls et al. (1992),
inclusion of a retention point improved the prediction.
The use of two retention points did not improve the
prediction much (RMSRwrc was 0.060 m3 m~3 for
SSCpb+e33 compared with 0.058 m3 m~3 for SSCpb +
610653). Although the RMSRwrc values decreased when
more input data were used, they remained high at 0.058
m3 m~3 (SSCpb + 610633), which is well above the RMSRwrc
of the direct fit of Eq. [1] to the retention data (0.020
m3 m~3). The RMSR& values decreased to 0.447 log(cm
d"1) for the SSCpb + 6i0615oo model. Notice that R2 and
RMSR values do not necessarily provide similar infor-
mation: a comparison of the SSCpb + 633 and SSCpb +
610633 models shows that the R2 values of most retention
parameters increased substantially while the RMSRwrc
decreased only modestly. The latter error measure is
probably of most direct interest.

The standard deviations in Table 4 provide informa-
tion about the variability of the R2 and RMSR among
the predictions of the 60 bootstrap models. The standard
deviations were in most cases about 5 to 10% of the

average R2 and RMSR values. This implies that models
with different performances are obtained when slightly
different calibration data sets are used. A single calibra-
tion, typical for most or all previously published PTFs,
would have had a chance of about 95% to be within
two standard deviations of the reported average R2 and
RMSR values. This result indicates that there is appar-
ently a substantial uncertainty in the predicted hydrau-
lic properties.

Evaluation of Selected Models by Textural Class
The RMSRwrc values for the TXT, SSC, SSCpb and

the SSCpb + 633 models were generally the lowest for
the sandy loam and sandy clay loam classes (Table 5).
Notice that the RMSRwrc for the clay loam class showed
a significant improvement from the SSCpb to the
SSCpb + 633 model, whereas the RMSRwrc for the sand
class decreased little even when 633 was included. For
this class much of the information about the particle-size
distribution is lost in the sand fraction. The prediction of
retention parameters for sandy soils probably could be
improved if more fractions within the sand particle-size
class were available (Vereecken et al., 1989; Schaap and
Bouten, 1996).

A direct comparison of the hierarchical models and
published PTFs is not easy. First, the published PTFs
were calibrated on different data sets with possibly dif-
ferent distributions of data. Formally, we can only evalu-
ate how well they perform on our, independent, data
set. But if we assume that our data set is a fairly good
representation of soils in the USA (cf., Fig. la and Ib),
some degree of comparison is still possible, especially
because we used the bootstrap to evaluate our neural
networks on independent data. A second reason that
complicates comparison is that neural networks and
published PTFs use somewhat different input data. By
approximation, the input data for function R3 (Cosby
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Table 5. Root mean square residuals for water retention data (RMSRwrc) obtained on .
four published pedotransfer functions (PTFs) for nine textural classes.

, samples with four hierarchical models and

Hierarchical models Published PTFsf

Class TXT SSC SSCp,, SSCp^s Rl R2 R3 R4

Sand
Loamy sand
Sandy loam
Loam
Siltsi
Sandy clay loam
Clay loam
Silty clay loam
Clays§
Data set average

0.096
0.102
0.102
0.105
0.123
0.095
0.112
0.105
0.105
0.107

————— nr m
0.092
0.107
0.095
0.100
0.124
0.096
0.101
0.107
0.110
0.104

0.092
0.100
0.072
0.081
0.096
0.078
0.096
0.106
0.094
0.087

0.080
0.054
0.050
0.057
0.071
0.052
0.050
0.065
0.073
0.060

36
49

124
52
82
38
28
17
20

0.104
0.114
0.091
0.086
0.114
0.084
0.109
0.099
0.109
0.101

————— m' m
0.107
0.126
0.115
0.097
0.105
0.195
0.145
0.132
0.159
0.126

0.113
0.112
0.097
0.104
0.134
0.090
0.120
0.126
0.112
0.111

0.087
0.091
0089
0.086
0.111
0.071
0.130
0.112
0.136
0.098

99
136
335
135
218
106
78
47
56

t R1-R4: published water retention PTFs, see Table 1 for references. PTF R3 uses approximately the same input as the SSC neural network model while
PTFs Rl, R2, and R4 are comparable with the SSCpb model. Underlined values denote cases where the published PTFs provide better predictions than
corresponding neural networks.

I Silt and silt) loam.
§ Clay, silty clay, and sandy clay.

et al., 1984) model is comparable to the SSC model
while the input data for Rl and R2 (Rawls and Brak-
ensiek, 1985) models and R4 (Vereecken et al., 1989)
are similar to the SSCpb model. The TXT and SSCpb +
633 models do not have published PTFs with correspond-
ing input data.

Based on average RMSRwrc values (bottom of Table
5), the hierarchical neural network models provided
better estimates than the published PTFs by about 0.01
to 0.02 m3 m~3 for the SSC and SSCpb models. The results
in Table 5 also show that, because of an additional
transformation step in its derivation (cf., Table 3), func-
tion R2 of Rawls and Brakensiek (1985) did not predict
van Genuchten (1980) parameters as well as function
Rl predicted the Brooks and Corey (1964) parameters.
Coincidentally, function R2 was used by Carsel and
Parrish (1988) to calculate class-average van Genuchten
(1980) parameters. A few (underlined) cases are shown
in Table 5 where the previously published PTFs pro-
vided better estimates than corresponding hierarchical
neural network models. For example, function Rl pre-
dicted water retention slightly better for the silty clay
loam class than the comparable SSCpb neural network
model. Function R4 was somewhat better for the sand,
loamy sand, and sandy clay loam classes. Following

Tietje and Tapkenhinrichs (1993) and Kern (1995), we
note that the function R4 (Vereecken et al., 1989) per-
formed relatively well in comparison with other pub-
lished PTFs. However, the neural network models yield
better results for our data set, both on average and for
most textural classes.

Table 6 shows similar results for log(/Q predicted
with four hierarchical neural network models and six
published PTFs (K1-K6; Table 1). With respect to input
data use, function Kl (Cosby et al., 1984) is comparable
to the SSC model, while functions K2 (Brakensiek et
al., 1984), K3 (Saxton et al., 1986), and K4 (Vereecken
et al., 1990) are similar to the SSCpb model. The PTFs
K5 (Ahuja et al., 1989) and K6 (Mishra and Parker,
1992) are comparable to the models using EP33 and the
9r6san, respectively (Table 4).

The results in Table 6 indicate that, for most textural
classes, the RMSRXs decreased by about 0.2 log(cm d"1)
from the TXT models to the SSCpb + 633 model. The
RMSR of the sandy clay loam, clays, and clay loam
classes showed less pronounced decreases. All pre-
viously published PTFs had higher RMSRs and lower
R2 than the neural network models. In terms of average
RMSRfo, the best published PTF for predicting Ks was
Kl (Cosby et al., 1984). In terms of R2, the best published

Table 6. Root mean square residuals for data including saturated hydraulic conductivity (RMSRKs) obtained for Ntcst samples for four
hierarchical models and six published saturated hydraulic conductivity pedotransfer functions (PTFs).

Hierarchical models Published PTFsf

Class TXT SSC SSCp. Kl K2 K3 K4 K5 K6

Sand
Loamy sand
Sandy loam
Loam
Siltsl
Sandy clay loam
Clay loam
Silty clay loam
Clays§
Dataset average
R1

• , J K

0.510
0.622
0.652
0.643
0.546
0.724
0.684
0.637
0.491
0.627
0.42

•«5 I*-1

0.433
0.620
0.638
0.667
0.487
0.711
0.642
0.468
0.453
0.602
0.47

0.408
0.604
0.521
0.488
0.369
0.668
0.573
0.423
0.506
0.533
0.57

0.319
0.416
0.466
0.470
0.372
0.598
0.586
0.363
0.459
0.451
0.70

36
45
74
12
23
30
2
3
6

0.613
0.666
0.795
0.860
0.550
0.957
0.980
0.624
0.545
0.746
0.30

——— log (c- J~n ——————————————
0.519
0.877
0.777
0.530
0.569
0.868
0.624
1.003
1.704
0.791
0.42

0.421
0.670
0.625
0.611
0.462
1.344
0.630
0.526
1.441
0.761
0.43

0.883
1.090
0.815
0.587
0.862
1.178
0.678
0.960
0.914
0.934
0.22

0.362
0.511
0.627
0.847
1.153
1.155
0.790
1.852
0.674
0.822
0.54

0.525
1.208
1.615
1.317
0.891
1.660
0.726
0.749
1.707
1.332
0.21

97
117
199
32
62
80
6

10
17

f K1-K6: published saturated hydraulic conductivity PTFs, see Table 2 for references. PTF Kl is approximately comparable to the SSC neural network
model. PTFs K2, K3, and K4 are comparable to the SSCpb model. K5 and K6 are comparable to the EP33 and 6resan models in Table 4, respectively.

$ Silt and silty loam.
§ Clay, silty clay, and sandy clay.
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PTF was K5 (Ahuja et al., 1989). The overall R2 for this
PTF was 0.54, which is lower than the R2 values of 0.65
and 0.67 obtained for the EP10 and EP33 neural network
models (Table 4). The low R2 in Table 6 for K4 was
consistent with the low calibration R2 listed in Table 2.
The results for the PTFs of Cosby et al. (1984) and
Saxton et al. (1986) were not as good as those reported
by the researchers (0.839 and 0.95, respectively; cf., Ta-
ble 2). Finally, we note that K6 performed relatively
poorly, with an RMSR/fs that exceeded one order of
magnitude.

CONCLUSIONS
In this study we used a hierarchical neural network

approach to predict hydraulic parameters. The basis of
the analysis was a data set of 1209 samples, of which,
horizon, sand, silt, and clay content, bulk density, poros-
ity, and six to 13 retention points were known. A total
of 620 samples also had measured Ks data. We tested
12 different configurations of input data to predict water
retention parameters of van Genuchten (1980), and we
tried 19 different input configurations to predict Ks. The
results show that 6r was difficult to predict: R2 never
exceeded 0.41, even with the most relevant input. The
correlation for the other parameters [6S, log(a), log(«),
and log(Ks)] increased from relatively low levels for an
input configuration that used only textural classes, to
about 0.70 for configurations that used sand, silt, and
clay contents, bulk density, and one or two water content
points. Root mean square residual water contents de-
creased from 0.107 m3 m~3 for a model that used only
information about the soil textural class, to about 0.058
m3 m~3 for the best neural network model. However,
even with the addition of a measured water content to
the input, the RMSRwrc always stayed well above the
RMSRwrc obtained for direct fits (=0.020 m3 m~3). Mea-
sured water retention curves appear to contain informa-
tion that cannot be predicted from macroscopic vari-
ables like sand, silt, and clay contents, bulk density, and
water retention. The RMSRfc results decreased from
about 0.627 log(cm d~') for a model that used only
information about the soil textural class, to about 0.450
log(cm d"1) for the best neural network models.

Uncertainty estimates for the predicted hydraulic
properties were generated by combining the hierarchi-
cal models with the bootstrap method. Results of this
approach showed that there can be a considerable un-
certainty in predicted hydraulic properties. These uncer-
tainties can be used in conjunction with the Richards
equation to generate uncertainty estimates in simulated
unsaturated flow processes.

Four selected neural network models were found to
be better than four previously published PTFs for water
retention parameters. Only the PTF of Vereecken et al.
(1989) performed nearly as good as the neural network
model with similar input requirements. None of the
investigated existing PTFs for Ks were found to be better
than our neural network models.

We think that using the models from our hierarchical
approach is not only attractive because of improved

accuracy, but also because a neural network model can
be chosen to match a particular availability of data.
Because all neural network models were calibrated on
the same data set, predictions of different models will be
consistent. A final note may be that the neural network
models are probably somewhat more difficult to imple-
ment than more traditional regression models. How-
ever, because the neural networks used in this study are
basically simple matrix-vector operations, these limita-
tions can be overcome. Currently, work is underway to
implement some of the neural network models in user-
friendly software.
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