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Exact solutions for one-dimensional transport
with asymptotic scale-dependent dispersion

Kangle Huang, Martinus T. van Genuchten, and Renduo Zhang *

U.S. Salinity Laboratory, USDA, ARS, Riverside, CA, USA

A general analytical solution is developed for one-dimensional solute transport in heterogeneous porous media
with scale-dependent dispersion. The solution assumes that the dispersiuity, (Y, increases linearly with distance,
x, that is, o(x) = ax, until some distance xv, after which (Y reaches an asymptotic value, oL = ax,. The
parameters a and xv characterize the nature of the scale-dependent dispersion process. The general solution
contains as special cases the solutions of the classical convection-dispersion equation (CDE) assuming a
constant dispersivity, and a recent solution by Yates assuming a linearly increasing dispersivity with distance.
A simplified solution is also derived for cases where diffusion can be neglected. In addition, a solution for
steady-state transport is presented. Results obtained with the proposed solutions demonstrate several features
of scale-dependent dispersion in nonhomogeneous media which differ from those predicted with the CDE model
and the model of Yates.’

1. Introduction

The subsurface transport of chemicals is affected by a
large number of processes and porous media properties
including convective transport with flowing water, molecu-
lar diffusion, hydrodynamic dispersion, equilibrium or
nonequilibrium exchange with the solid phase if reactive
solutes are involved, and possibly production and decay
processes. Most current models for predicting solute trans-
port in soil and groundwater are based on convection-dis-
persion-type transport equations. For one-dimensional
transport of linearly interacting solutes during steady-state
water flow, the transport equation may be written as

where c is the solution concentration, R is a retardation
factor accounting for linear equilibrium sorption, D is the
dispersion coefficient, I, is the average steady-state pore-
water velocity, p is a first-order decay coefficient, t is
time, and x is distance. The dispersion coefficient D in
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equation (1) is generally considered to be a linear function
of the pore-water velocity as follows:

D=D,+av (2)

where D, is the porous medium diffusion coefficient, and
(Y is the dispersivity. For constant cry, equation (1) reduces
to the classical convection-dispersion equation (CDE)2.3:

dc a2c ac
Rdt=DdxZ-uz-pc (3)

The CDE model based on equations (2) and (3) has
been quite successful in describing results from laboratory
displacement studies involving carefully constructed ho-
mogeneous soil columns. The dispersivity, CY,  in such
studies is usually on the order of a few millimeters or
centimeters.3  These results are in contrast to those from
field experiments which indicate that the dispersivity for
transport in natural geologic media can be one or several
orders of magnitude higher as compared with relatively
small laboratory soil columns.3-7  Moreover, results from
field studies suggest that the dispersivity may be scale-de-
pendent, i.e., cx increases with distance, x, from the
pollution source. The growth with distance of the disper-
sion process is a consequence of the heterogeneous nature
of the subsurface environment. Most geological materials
are extremely nonhomogeneous because of the presence of
irregular stratifications, fissures and fractures, and lenses
of high or low permeability. These nonhomogeneities cause
the hydraulic properties to vary spatially, leading to spatial
fluctuations in the fluid velocity, and eventually to a
dispersivity which increases with distance or time.‘.”

Attempts to simulate chemical transport in heteroge-
neous media have been based mostly on stochastic analy-
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ses.6,g-14  Alternatively, several investigators have incorpo-
rated scale-dependent dispersivity functions in numerical
solutions of the transport equation.5,‘5  Recently, Barry and
Sposito l6 developed an analytical solution of the convec-
tion-dispersion equation with time-dependent transport co-
efficients. Yates’ subsequently developed analytical solu-
tions for transport with scale-dependent dispersion by as-
suming that a! increases linearly with distance. According
to this model, the increase of CY with distance will be
unlimited. However, the results from field experiments at
different scales indicate that while the dispersivity initially
increases with travel distance, (Y eventually may approach
a finite asymptotic value.3-5,17~18 These results, in turn, are
consistent with theoretical studies of the dispersion process
in heterogeneous media by Gethar,” Sposito et al.,’
Dagan,” Shapiro and Cvetkovic,” Zhang and Neuman,14
and Tompson,‘g  among others.

The objective of this paper is to develop a set of
alternative analytical solutions of the convection-disper-
sion equation for heterogeneous media assuming scale-de-
pendent dispersion. The solutions assume that the disper-
sivity increases linearly with x until some distance x0,
after which (Y reaches an asymptotic value, (Y,_ = ax,. The
results generalize the earlier solutions by Yates’ which
form a subset of our solutions for the limiting case when
Xa + 00.

2. Transport model

Similarly as in equation (2), we assume that the dispersion
coefficient D(x) in (1) is linearly proportional to the pore
water velocity

D(x) = a(x)v+D, (4)

in which a(x) is now a scale-dependent dispersivity func-
tion. Consistent with previous experimental studies,5,‘8
(Y(X)  is assumed to increase linearly with distance until
some travel distance x0 after which the dispersivity be-
comes constant, i.e.,

a(x)= uxi
XlX,

(YL x>x,

in which (Ye = ax,, and where a and x0 are constants.
Figure 1 compares equation (5) with the dispersivity func-
tions in the CDE model and the formulation of Yates.’
With the above assumptions, equation (1) may be restated
as follows

for 0 5 x I x0 (6a)

a2c, ac,Rf$D,-- u- - pc, for x>x,ax2 ax (6b)

where D, = cyL u + D, is the asympotitic dispersion coef-
ficient, and c1 and c2 are the solution concentrations in
regions 1 (linearly increasing CY) and 2 (constant asymp-
totic aL), respectively.

Figure 1. Schematic of several dispersivity models: (a) con-
stant dispersivity 01~ (representing the classical CDE);  (b) linear
function of distance’; (c) the proposed linear-asymptotic dis-
persivity (LAD) model assuming a linear function of distance
for 0 I x I x0, and a constant dispersivity cq for x > x0.

Equations (6a, 6b) will be solved for a semi-infinite
system (0 5 x < ~a> subject to the initial condition

c,( x, 0) = c2(  x, 0) = ci
where Ci is a constant and a general downgradient (“exit”)
condition given by

?(a, t) =o (8)
Two different boundary condition can be applied at

x = 0: a first- or concentration-type boundary condition of
the form

c1(0,  f) = C,

or a third- or flux-type condition

(9)

-D(x)? + vc, II = vC0x=0 ( 1Oa)

in which Co is a constant. Since D(0) = D,, equation
(lOa> is equivalent to

6
-Donx  + vcl II = vc,x=0

Notice that the flux boundary condition is identical to the
concentration boundary condition when Do = 0, i.e., when
the contribution of diffusion to the dispersion coefficient
can be neglected.

The development above shows that the scale-dependent
dispersion problem, using equation (5) for the dispersivity
CY, is reformulated in terms of a two-layer transport prob-
lem involving separate concentrations c1 and c2 for the
two subregions. The approach requires assumptions about
how the two regions are coupled. Following Leij et al.,”
two different approaches will be used to solve equations
(6a)  and (6b)  analytically. In one approach, we assume that
region 1 (x < x0> is an effectively semi-infinite system and
hence that concentrations in region 1 are not affected by
what happens downstream in region 2. With this assump-
tion, the following exit boundary condition can be imposed
for cl:

ac1
ax x+m= 0 (11)
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After obtaining the solution for c, in this manner, the
solution for transport in region 2 can be derived using the
concentration of region 1 at x =x0 as the inlet condition
for region 2. One may for this purpose assume either
concentration continuity at the interface, i.e.,

q( x0 7 t) = c2( x02 t) (12)
or continuity in the solute flux as follows

i

%
-Q/g + VCI )I ( ac2

X=X0
=  -&jy +  vc2

iIX=X”

(13)
In a second approach, we consider region 1 to be finite

and invoke both concentration continuity and flux continu-
ity at the interface, x =x0, i.e., conditions (12) and (13)
are now imposed simultaneously.

3. Approach 1: Semi-infinite first region

We will use Laplace transform techniques to solve equa-
tions (6a) and (6b) subject to initial condition (7) and
several sets of boundary conditions. Taking the Laplace
transform of the governing equations and incorporating the
initial condition gives

R( PC~
dZ

(axv+D,)< 1 dc I _
- vjy - PC1

for Olxlx, ( 14a)

d2C
R(p~~-C,)=D,--ok-~T?forx>x~,

dx2

( 14b)
where p is the Laplace transform variable.

3.1 Constant concentration inlet boundary condition

We first solve equations (14a,  14b)  subject to equations
(8), (9), (ll), and (12). The boundary conditions in the
Laplace domain are

%(O> P) = Co/P (15)

q x0 3 PI = C2( x0 9 PI (16)

d?
-&m>  P> = 0

dZ
$5 P) = 0 (17a,b)

Equation (14a)  may be rewritten as

dY
axv+D,)z 1 - vg-R(p+p,R)Y=O

(18)
where

Y=C,-
‘i

P+E.L/R
(19)

The solution of equation (18) can be written in terms of
fractional order Bessel function? :

Y=Xy’2[  A1Z,(2fi)  +B1Ky(2E)] (20)

where

y= l / a x=x+6 (21a,b)

K= Y( P +RP)/~ S = yD,/u (21c,d)

and A, and B, are constants to be determined from the
boundary conditions. Because of (17a),  A, is set to zero.
Hence the general solution for the physical system x I x0
is

C~(X,  P) =4Xy’2Ky(2fi)  + p +c;,R (22)

Using boundary condition (15), equation (22) becomes

?I( x, P> =
'i

p+lJu/R

Similarly the Laplace transform solution of ~2 for
x > x0, based on equations (14b),  (16), and (17b),  becomes

52(x,  P> =
ci er(x-x,)

p f p/R

y/2 K, [ 2vI;Ko]

Ky(2JK6)

where

(25)

u - iv" t 40, R( p + /J/R)
r =

2DL
(25a)

Following procedures similar to those used by Carslaw
and Jaeger2’  (pp. 334-339) and Yates,’ the inverse trans-
form of equation (22) is (see the Appendix for details)

c,( x, t) = co ty’* KY(2di@)  2
Ky(mq - -$(6. t7 P>

1

+ ZCi y/2 eCpL’/RZc(  5, t, 0) (26)rr

where

&(5> 7, P)

m=
/
fi

e-““[ J,( &)r,( 6) -Jy( E)Y,( 5e)]  d*

x[J,(e)2+Y,(e)2]

(27a)

P = @o/v2 5=1+x/s (27b,c)

T= Rv2t/D0 E=2y(*2-Py2 (27d,e)
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Using the convolution and shifting properties of the Laplace
transform, we obtain the following solution for x > x0
(details are given in the Appendix)

%(X7 t)
= Q-M

co Pu5o”2 t+
/R o

e-wT/RA(  x -x0, T)

where

50 = 1 +x0/s (29a)

1
A( x, T) = yerfc

1 Rx+ v7
+ -evxiDL  erfc

2 i 12&K (29b)

The solutions above assume concentration continuity across
the interface at x = x0. This condition is probably the most
realistic if the concentration is viewed as a flux-averaged
variable.20  Alternatively one could also impose a continu-
ity in the solute flux across the interface. In that case,
interface condition (12) at x = x0 is replaced by (13) and
the Laplace solution for c2 becomes

22(x, PI

CL CO Cl+ --
=~ft-@  Pi ~fpu/R i

&/2

x D,@?K,-  1(2-) + vKy(2@%)

K,(26q

er(x-x”)

X
v-D,r (30)

where

x,=x,+6 (31)

No exact inverse Laplace solution for c2 could be ob-
tained, and hence the equation should be inverted numeri-
cally.

3.2 Constant f lux inlet boundary condition

Following the same techniques as before, the Laplace
transform solutions for the constant flux boundary condi-
tion (l0b), i.e., the solutions of equations (14a) and (14b)
subject to equations (l0b), (16) and (17a,  17b),  are

C,( x, P> =

qx, P) =

ci

P+CL/R

K,[2&qz-F)]

Ky+ l(2JK6)
(32)

'i

)
e’(x-xO)

p+E.L/R

(33)

These solutions were obtained by making use of the
expression23 (p. 460)

dK,( 2)
z- = Y&(Z) -zK,+dz)

dz
(34)

Following methods outlined by Yates’ and Chrysikopou-
los, 24 the inverse Laplace transforms were found to be

c,(x, t)

5 Y/2

+ 2C,-e --zf( 5, t, 0)
Tr

c*(x, t)

= Cie-p’/R +
co PW2

/
t
emC”‘lRA

R o ( x-x0,  T)

K,(Qm)
my+ l( ad?)

-Lzf(to,  t- 7, P) &-
7T 1

co - ci
+-

2 J
--& (x-x0)

L

1
- -  (36)
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in which

4(5, 79 P)

/

cc

= ye -x=r
fi

x [yy< WJy+l(4 -Jy(Gy+1( w]
X{~x[~y+*(~)2+Yyil(~)*])-1  dx (37)

If continuity in the solute flux, equation (13), is as-
sumed at x = x0, the solution for c2 in the Laplace domain
becomes

22(x, P)

ci

P+P/R ) 5NY2

x amJKy-1(2~)  + VKy(2pJ
&way+ l(2JK6)

e’(x-xo)

X
1 - D,r/v (38)

3.3 Solutions for special cases

In the case when molecular diffusion can be neglected,
i.e., when D, = 0 and hence D(x) = (Y(x>v,  the Laplace
domain solutions for the constant concentration and con-
stant flux inlet boundary conditions reduce to the same
equations since D(0) = 0:

qx, P) =
‘i co

+  - -
i

c,
P+P/R P P+P/R

x2(Kx)y’2 K,(2JKjc)

T(Y)

qx, P> =
'i

P+P/R

X 2e'(n-xo)(  Kxo)y’2 KY(2S)
r(y)

(39)

(40)

Equations (39) and (40) can be readily obtained from
equations (23) and (24) by making use of the following
asymptotic approximation of K,(z) for small zz3 (p. 400)

27-Q  y)
KY(Z> = 2y z - t o (41)

The inverse Laplace transforms of equations (39) and (40)
are (see Appendix)

co
cl( x, t) = C,e-pLf/R  + -

T(Y)

X
/

AT;~m1  exp[ -(r+ z)] dr

‘i
_ _e-~t/R

r(Y)
rYple-’ dr.

c2( X, t) = C,e-PLf/R

e-Ao/(r- 7)

x /‘A(x-x,,,  7) dr
0 ( t -  #+I

co 4T
+ r(Y) ()I (‘I? x-x”, T)

X
exp[ - (WT+ PT/R)l d7

TY+l

where

(42)

(43)

l
B( x, t) = Zerfc

(2:&G)  exp[ %;)“]

+ ierfc( 2yG) exp[ “i;‘”

(44a)

(44b)

A = Ryx/v A, = Ryx,/v (44c)

Without decay (p = 0), the solutions further simplify to

cl( x, t) = c, + ci 1 -I r(Y, w
T(Y) 1

GAY_-
/

1/t y_,

r(Y)  u ’
e-A7  dr (45)

Ai
c*(x, t) =Ci+(C,-Ci)-

T(Y)

1/t
/ (

e--Ao/(f-  7)

X A x-x0,  T)
0 (t _  #+I dr

(46)

We can similarly derive a solution for c2 when D, = 0
for the continuous flux interface condition at x = x0 (note

302 Appl. Math. Modelling, 1996, Vol. 20, April



Exact solutions for one-dimensional transport: K. Huang et al.

again that c1 is the same as in equation (42)). The follow-
ing results were obtained:

(47)

c2( x, t) = Cie-pL’/R

e-k?/T
x
/
&-x0, t-T)- dr

0
TY+2

I

c, A;+ 1

+ T(Y) 0/ (
‘E x-q), t-T)

X
exp[ - (4,/T+ w/R)]

7Y+2 dr (48)

where”  (equations (A2)  and (C6))

E(x, t)

(49a)

4. Approach 2: Finite first region

Approach 1 assumed that region 1 can be treated as an
effectively semi-infinite system, and hence that transport in
region 1 is not affected by what happens in region 2.
Alternatively one can also derive analytical solutions by
assuming that both the concentration and the solute flux

are continuous across the interface at x = x,,. The general
solutions of equations (14a)  and (14b)  subject to initial
condition (7) and interface conditions, (12)  and (13), are

i

C”
C1( x, p) = - - ‘i

P P+F/R
C$ Y’2BZ

- ~Iy(2v%z)  + K,(2vzF) 1
?2(x, P) =

'i +
p+CL/R i

co 'i--
P PfPL/R

(50)

x 5cpe’(~-~d (51)
respectively, in which the coefficients a, and b, are

al = /VGI,-1(2@G)  - $(2\j;yx,j (52a)

6, = - 1/‘~-&,(2$%)  - rK,(2$%)

(52b)

and where B, depends on the inlet boundary conditions.
Solving equations (50)  and (51)  for concentration bound-
ary condition (9) yields

a1

Bz = alK,(2v?%)  - b,I,,(2JK6) (53)

whereas for flux boundary condition (l0b) B, becomes

B2 = m,K,,,(Z&%;:+  b,l,+,(2JK6)]

(54)
Equations (53) and (54) for the first- and third-type inlet
boundary conditions, respectively, become identical when
D, + 0. In this case we have

coF1(x,p)=  - -
i

'i

P P+P/R i
2( fi)y’2

T(Y)

x [ A2Zy(2&) + K,(2&)

+ CL
P+I-~R

'i 2( fi,)Y’2

P+P/R T(Y)

x er(x-%) + ‘i

P+I@

(55a)

(55b)

Appl. Math. Modelling, 1996, Vol. 20, April 303





Exact solutions for one-dimensional transport: K. Huang et al.

- This model (LAD)
----.  Linear (Yates,  1990)
---. CDE

100 150 200 250 300 0 400 800 1200 1600 2000

Time, t (day) Distance. x (m)

Figure 2. Comparison of breakthrough curves at x=300 m
for a= 0.5 and x,, = 200 m.

Figure 4. Concentration distributions versus distance at t=
200 day for a = 0.2, and x,, = 100, 200, 300, 500, 800 m, and ~0,
the later case represents Yates’ linear model.’

For approach 2, in which both the concentration and the
solute flux are continuous across the interface at x0, the
steady-state solution with D, = 0 becomes similarly

c*(x)  =2C”‘F;;;”

x [A&%) + %(%I)]
Xexp (x-x0>

[
2D (v-u)

1
(64b)

L

where

/272-1(26)  +
A, =

$m-,(2@0)  -

(65)

6. Illustrative examples

The examples discussed below serve to illustrate several
features of the derived analytical solutions. The values of

Distance, x (m)

Figure 3. Concentration distributions versus distance at t=
100 day for various values of a and fixed (Ye  = 100 m.

D,, p, Ci, C,, v, and R were rather arbitrarily fixed at
0.0, 0.0, 0.0, 1.0, 5 m/day and 1.0, respectively. Since D,
is taken to be zero, the solutions for a flux condition at the
inlet boundary will be the same as those obtained using a
concentration condition. Values of the model parameters a
and x0 for each example are shown in the figures. Solu-
tions were obtained by either directly evaluating the ana-
lytical expressions or using numerical inversion techniques
to evaluate the Laplace domain solutions when no closed-
form analytical solution could be obtained. Numerical
inversion was accomplished with the method of Stehfest.“j
Integrals in equation (27) and similar expressions were
evaluated numerically using 96 Gaussian quadrature points
over a finite integration subinterval.’ Except where men-
tioned otherwise, all simulations were based on equations
(26) and (28), i.e., for an infinite first region subject to
concentration conditions at both the inlet and interface
locations.

Figure 2 shows calculated breakthrough curves at x =
300 m obtained using the proposed linear-asymptotic dis-
persivity model given by equation (5), further simply
referred to as the LAD model. Results are compared with
the CDE model (constant dispersivity) and the linear model
of Yates.’ Notice that the LAD results in Figure 2 are
initially (at small times) very close to the linear model but
later increasingly deviate from this model. Results ob-
tained with the LAD model are much lower than the CDE
predictions using a constant asymptotic dispersivity value
consistent with equation (5), i.e., D, = cxL v.

i
100 150 200 250 300

Distance, x (m)

Figure 5. Calculated concentration distributions for a pulse
input of solute (to = 10 day) obtained with equations (42)  and
(43)  (LAD), the CDE assuming aL = 20 m, and the solutions of
Yates’ which assume that the dispersivity increases linearly
with travel distance, respectively.

Appl. Math. Modelling, 1996, Vol. 20, April 305



Exact solutions for one-dimensional transport: K. Huang et al.

Figure 3 shows the effect of changes in the parameter a
in equation (5) on calculated concentration distributions
versus distance. The calculations were conducted with a
fixed asymptotic dispersivity CX~  of 100 m; hence, the
scale-dependence length x0 changed according to x0 =
aJa. The results in Figure 3 indicate a much higher
concentration near the inlet and less overall dispersion
when a was made smaller. Notice also the relatively large
differences between the LAD results and the CDE calcula-
tions assuming a constant dispersivity, (Ye. The influence
of the scale-dependent length x0 on computed concentra-
tion distributions versus distance at t = 200 day is shown
in Figure 4 for a = 0.2. As expected, the distributions
became more dispersed when x0 increased because of the
higher asymptotic dispersivity value, (Ye = ax”. Notice that
all curves with finite x0 go through approximately the
same point at x = 1,080 m which is roughly equal to the
convective transport distance, vt = 1,000 m. The predicted
concentrations obtained with Yates’ linear model (infinite
x,) are lower than those calculated using the LAD model
within the convective transport distance but become higher
after this distance.

Figure 5 compares concentration predictions using the
LAD model with CDE results as well as with calculations
obtained with the linear model of Yates.’ The example
involves the application of a solute pulse of duration
t, = 10 days to an initially solute-free medium. As ex-
pected the LAD results duplicated the concentration distri-
butions obtained with Yates’ linear model’ at t = 11 and
20 days when the travel distance was still less than x,,,
while some relatively small differences become apparent
for x > 100 m after 40 days. Relatively large deviations
occur between the CDE ((Ye = 20 m) predictions and the
proposed LAD model results at early times (t = 11 and 20
days); the CDE peaks at those times are ahead of those
obtained with LAD. Differences between the CDE and our
model LAD models, however, are less pronounced at later
times. This fact indicates that it is important also to
monitor concentrations at relatively early times if the
measured concentration data are to be used for identifying
scale-dependent dispersion parameters.

To examine the error introduced by assuming a semi-in-
finite region 1 using boundary condition (ll), we com-
pared the solution for D, = 0, i.e., equations (42), (43),

Figure 6. Calculated concentration distributions assuming ei-
ther concentration or flux continuity at x0 (Approach 1) or
those assuming both flux and concentration continuity at the
interface (Approach 2).

and (48), with equations (55a,  55b)  based on the presum-
ably more “exact” boundary conditions (12) and (13). The
inverse transforms of (55a,  55b)  were for this purpose
evaluated numerically using the algorithm of Stehfest.26
Figure 6 shows that the different approaches lead to very
similar curves for relatively small a values. For a = 0.5,
the results assuming an infinite region 1 with flux continu-
ity at x0 also agree well with those obtained with the
“exact” boundary conditions except for some deviations
when x <x0. Overall boundary condition (11) seems to
have relatively little effect on the results, especially when
the more realistic (and mass-conserving) flux condition at
the interface x,, is adopted. However, notice from Figure
6 that the distributions for an infinite region 1 assuming
solute flux continuity at x = x,, show an obvious disconti-
nuity at the interface.

Finally we note that the LAD dispersion model dis-
cussed in this paper contains two parameters, a and x0,
which characterize the scale-dependent dispersion process.
The effects of these two parameters are more clearly
visible when equation (6a) is rewritten in the form

for x4 x0 (66)

We first notice that when a > 1, the convective transport
term of equation (66) becomes negative. As pointed out by
Yates,’ it seems improbable that the dispersivity will grow
so strongly with distance that this increase in (Y would
cause an apparent negative convective transport process.
Moreover, field evidence5,17,‘8  suggests that the slope of
the dispersivity-distance relationship (i.e., the scale-propor-
tional factor, a) should be less than unity. These two
factors would indicate that the parameters range 0 I a I 1
is physically more realistic rather than the wider range
0 I a I 2 advocated by Yates.’

7. Summary and conclusions

A scale-dependent LAD was developed to characterize
dispersion in a heterogeneous porous medium. The model
assumes that the dispersivity increases linearly with dis-
tance within a scale-dependent length x0, and then retains
an asymptotic value (Ye = a.~~.  Several solutions based on
this model were developed assuming one-dimensional
transport in a uniform flow field. The solutions were
compared with the CDE assuming a constant dispersivity
and solutions by Yates’ assuming that the dispersivity
increases linearly with distance.

A much stronger scale-dependent effect exists when the
parameters a and x0 increase in value. However, for the
same asymptotic dispersivity (Ye value, the effect of a on
the calculated concentration distribution is relatively small
at large distances. The predicted concentration distribu-
tions were always the same as those obtained with Yates’
linear dispersivity model’ when 0 5 x I x,, while gener-
ally deviating substantially from that model for x > x,,.
Predicted concentrations obtained with the CDE model in
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most cases differed greatly from those calculated with the
proposed LAD model as well as the linear model of Yates’
except at larger times when an asymptotic dispersivity
value was considered.

Appendix: Derivation of inverse Laplace transforms

According to Carslaw and Jaeger” (p. 335, equation (6))
and Yates,’ we have

K,[2{K(x+ YD,/V)

PKT(2&W) 1
= KY(2nfw - Sc( 5, t, P)

Ky(2r@)  7i-
(A1)

where L -’ indicates the inverse Laplace transform, and K,
Y, 5, P, and 4(5, 4 P) are defined in the text. Using
asymptotic expansions of K,(z)  for small z (e.g., equa-
tion (41)),  one can show that

Ky(2ra)Ky(2r~)  = tey12 as P + 0 ( A2)

Thus, when p + 0 and hence p + 0 equation (Al) be-
comes

= p2 - 3 ( 5, t, 0)rrc (A3)

Application of the shifting property of the Laplace trans-
form to equation (A3)  leads to

L-’
Ky[@(x+ ~Do/d]

(P+ dW,(~~~) 1

=e -pt/R p2- 3 (6, t, 0)
7Tc 1

(A4)

Equations (Al) and (A4) are needed to invert the Bessel
function terms in equation (23) to yield equation (26) in
the main text.

Applying the convolution theorem to equation (A4) and
taking the inverse transform of exp[r(x  -x0)]  from
Carslaw and Jaeger22 (p. 494), we obtain the following
result

L-l
K,[2\IK(xo + YDO/V) ]

r”“-xo’(P+~/R)K1[Z~~] 1

X ‘exp  -
/ i

R(x-Xo)2  V27
- -

0 40,~ 4W_ 1
x 5p y’2 - 21,( 50, t- 7, 0)/r d7

T3/2 (A5)

Using equation (A3)  and equation (Al) of van Genuchten
and Alves2’  (p. 9), we obtain similarly

L-’
&(x-x0) K,[2 K( x0 + yD,/v)  ]

P+- P./R PK,[2@iGF] 1
/

t= emwTIRA(  x - x0, T)
0

dr

(A6)

where A(x, T) is defined by equation (29b).  Equations
(A5)  and (A6) are needed in equation (24) to yield the
solution for c,(x, t) given by equation (28).

The inverse Laplace transform of equation (39) was
derived by making use of the equationsz2

L-’ [ g12Ky( J&)1

Y2 YY
==P

i I- - ~4t (2t)y+l

L_,[ PY/'K,dYJ;) ]

= I;:exp( - 2) (2;);+I d7

(A7)

and again applying the shifting property of the Laplace
transform.

The inverse transform of equation (40) can be obtained
using the convolution theorem and the following equations
of van Genuchten and Alves25

er(x-xo)

L-l I I~ = e-@‘RA( x, t)
p+rU

(A9)

er(x-x”)

L_’ I I___ =B(x,  t) (A10)
P

where A and B are given by equations (29b) and (44a),
respectively.
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Nomenclature

Ii
D
1,

P
t
X

;

X0

DO

solution concentration
retardation factor
dispersion coefficient
average steady-state pore-water velocity
first-order decay coefficient
time
distance
asymptotic dispersivity
initial concentration
distance where the asymptotic dispersivity value
reaches
diffusion coefficient of a porous medium
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