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Abstract

Characteristics-based particle tracking techniques combined with standard finite
element or finite difference methods have been widely used for solving convection-
dispersion type solute transport equations. The popularly-used single-step backward
tracking technique (SRPT) and a mixed technique (HYBRID), obtained by
combining SRPT with continuous forward tracking, were evaluated by means of a
large number of numerical tests. Solutions obtained with SRPT and HYBRID were
both found to be free of oscillations. Although HYBRID generally worked better
than SRPT, both schemes suffered from numerical dispersion. Numerical dispersion
always increased with increasing grid Peclet number, and usually with decreasing cell
Courant number. The numerical problems were especially evident when sharp
concentration peaks (local maxima) or valleys (local minima) existed. Numerical
dispersion in these cases was found to result mainly from interpolation errors in the
particle tracking techniques. We developed a modified SRPT method which
continuously tracks the local maximum or minimum concentrations for use in the
interpolation of the convective components. The modified SRPT was far more
effective in eliminating numerical dispersion than current particle tracking methods.

Introduction

Convection-dispersion type equations (CDE’s)  are generally solved numerically using
standard finite difference or finite element methods. Such methods are relatively
accurate for dispersion-dominated transport problems, but often face numerical
difficulties when convective transport dominates dispersion and the concentration
fronts are steep. The numerical difficulties are manifested by artificial dispersion of
sharp concentration fronts and/or numerical oscillations at or near the sharp fronts.
Although some of the numerical dispersion and oscillation problems can be avoided
by grid refinement, such an approach may greatly increase the computational effort.

Several alternative methods have been developed to avoid or limit numerical
problems in the standard solution schemes. One of the more popular methods for
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this purpose is the Eulerian-Lagrangian approach which solves separately for the
convective and dispersive components of the transport equation. The convective
transport problem is solved on a moving coordinate system by tracking a moving
particle along a characteristic line, while the dispersion problem is solved on a fixed
Eulerian grid system (Douglas and Russell, 1982; Neuman, 1984). Several
characteristics-based particle tracking techniques currently exist for calculating the
convective component. Among these, the single-step reverse particle tracking
(SRPT) is probably the more popular one because of its simplicity, whereas a mixed
technique (HYBRID), obtained by combining SRPT with continuous forward
tracking, is relatively more robust for handling the convection problem for any value
of the grid Peclet number. Although SRPT effectively eliminates numerical
oscillations, this scheme may still produce serious numerical dispersion for problems
involving large Peclet numbers. Several approaches have been used to reduce
numerical dispersion. For example, Casulli (1987) suggested reducing the spatial
step, Huang et al. (1992) implemented a more precise method for tracking the
concentration front, while Goblet and Cordier (1993) used a spectral element method
to achieve a more accurate interpolation when the SRPT is implemented. Although
some improvements were made, none of these schemes were completely successful
in eliminating numerical dispersion. Whereas the HYBRID scheme at present seems
to produce the most accurate results, its numerical problems (notably numerical
dispersion) have still not been adequately addressed.

In this paper we evaluate the numerical behavior of the SRPT and HYBRID
particle tracking techniques by means of several numerical tests. The SRPT scheme
will be implemented using a modified numerical method which tracks the local
extremes of a concentration profile.

The Eulerian-Lagrangian Approach

For simplicity, we consider here one-dimensional transport in a porous medium with
uniform water flow and constant transport parameters as follows

Rz =D a2c
at ax2

-V+C+y (1)

where c is the solute concentration, t is time, x is distance, R is the retardation factor,
v is the pore-water velocity, D is the dispersion coefficient, and ~1 and y are rate
constants for first-order decay and zero-order production, respectively. Equation (1)
will be solved subject to the initial condition

c(x,  0) = C,(x)

The inlet boundary condition is taken to be

(2)

while at the lower boundary, x = L, a zero-gradient is assumed:
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$I) = 0

where C,(x) and C,,(t) are prescribed functions of x and t, respectively.
Equation (1) may be rewritten in Lagrangian form as

RE SD a2c
Dt s-pc+y

where Dc/Dt is the Lagrangian derivative

DC= ac . ac
D t at+” ax

(5)

(6)

in which v*=v/R,  and where c now describes the concentration of a fluid particle
moving along a characteristic path defined by the equation

%“’
dt

(7)

According to Neuman’s operator splitting approach, the transport problem is
decoupled into two parts, one covering pure convection, and the other dispersion and
all remaining transport processes. The split convection problem is required to satisfy
the homogeneous Lagrangian derivative

along the characteristic line. The “convective component”, ?, of the concentration
c, is solved independently by the method of characteristics, and subsequently
substituted into the discretized Lagrangian derivative of equation (6) as follows

R+)++y

where Af is the time increment. The residual transport problem, Eq. (l0), can be
solved for c using standard fixed-grid methods such as finite elements or finite
differences.

Two different characteristics-based particle tracking methods are considered
in this study. One method is the SRPT single-step reverse particle tracking
(Neuman, 1981; Galeati  et al., 1992) in which the characteristic paths are traced
backward. The other approach is the HYBRID scheme proposed by Neuman (1983)
in which the convective components of steep concentration fronts are tracked
forward with the help of moving particles clustered around each front. The
convection problems away from the fronts are solved using backward particle
tracking. When a front dissipates in time, its forward tracking stops automatically
and the corresponding cloud of particles is eliminated.



Numerical Experiments

This section presents results of several numerical tests comparing the relative
accuracy of the SRPT and HYBRID particle tracking methods. For the HYBRID
method we initially (at t=0) introduced 60 particles (2 per element) in areas with
large concentration gradients. The analytical solutions of (1) subject to (2), (3) and
(4) were used to verify the numerical results of both particle tracking methods.
Assuming v= 10 and AX = 1.0 (any consistent set of units may be used), a
conservative tracer (R = l), and no production or decay (p=-y=O)  for all examples,
concentration distributions were calculated for a variety of dispersion coefficients, D,
and time steps, &, such that the values of the grid Peclet number, Pe = VAX/D,  and
the grid Courant number, Cu = vAf/Ax,  differed from case to case. Comparisons
with the analytical solutions provide stringent tests on the performance of the
numerical methods, especially their ability to correctly track sharp fronts.

We first simulated concentration distributions for C, = 1 and Ci = 0 assuming
a relatively small Peclet number of 10. Results indicated a fairly good match
between the exact solution and the SRPT and HYBRID particle tracking methods.
However, as shown in Figure 1, both methods suffered from numerical dispersion
when the grid Peclet number, Pe, was increased to 100. The simulations were
obtained with fractional Courant numbers of 1.5 (t = 2) and 0.5 (t = 4). When
integer Courant numbers (e.g., Cu = 2) were used, the numerical results (dots in the
figure) essentially duplicated the exact solution.
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Fig. 1. Simulated single-front concentration distributions
obtained with SRPT and HYBRID.
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The above comparisons pertain to single-front concentration distributions.
Simulations were also carried out for steep, multi-peak initial distributions assuming
solute-free input (C, = 0). Figure 2 shows the simulated distributions using a
fractional Courant number of 1.25 and a relatively large Peclet number of 100.
Calculated concentrations obtained with both SRPT and HYBRID clearly suffered
from numerical dispersion, especially near the concentration peaks and valleys.
Notice that the numerical dispersion in Figure 2, increased with simulation time, or
equivalently, with the number of time steps during which particle tracking was
implemented. The HYBRID method in most cases was found to be more accurate
than SRPT,  especially for relatively high Peclet numbers.

1 .o

0 10 2 0  3 0  4 0  5 0  6 0  70     80

Distance, x
Fig. 2. Simulated multi-peak concentration distributions

obtained with SRPT (dashed lines) and HYBRID (dot-dashed lines).

The grid Peclet number, Pe, is generally viewed as a major factor determining
the extent of numerical dispersion (i.e., increasing Pe leads to more numerical
dispersion). This finding is not necessarily true for transport problems having
moderately steep concentration fronts. As an example, the SRPT was used to
simulate the transport of a multi-peak concentration profile with relatively small
gradients and assuming a value of 1000 for Pe. Such a high value for Pe often leads
to serious numerical instabilities in numerical transport studies. The simulation was
performed using fractional Courant numbers ranging from 0.044 to 1.3 1, values which
usually produce serious numerical dispersion when particle tracking techniques are
implemented. The simulated results (not shown here) were very accurate, even near
the peaks. These results suggest that the performance of a numerical scheme is
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affected not only by the Peclet number, but also by the spatial gradient. Actually,
we found that the spatial gradient is often more important than the value of Pe
because of potentially large interpolation errors near steep fronts.

Implementation

The numerical experiments above indicate that SRPT and HYBRID perform
relatively poorly for transport problems involving steep concentration gradients. In
general, particle tracking techniques become more dissipative when the Peclet
number increases or the Courant number decreases. Our calculations indicate that
the numerical problems, mainly numerical dispersion, in both schemes are likely a
result of interpolation errors near sharp fronts, especially near concentration
extremes. One should expect some errors of this type when simple linear
interpolation schemes are used in SRPT to solve for the convective components near
steep fronts. Figure 4 shows schematically how a steep concentration peak, ABC, is
tracked using SRPT. According to the Lagrangian point of view, i.e., equation (9),
the concentration of a particle moving along its characteristic path remains constant.
Therefore, the shape of the concentration distribution at time tk+i =tk+ At should be
the same as that at rk because only convective transport is considered. However, the
peak ABC has been flattened and smeared into A'B'C' by the SRPT scheme.

Actual convective component
. Calculated convective component

, A

0 2 4 6 8 10

Distance, x

Fig. 3. Schematic illustration of the convective component
as calculated with the SRPT technique.

Higher-order interpolation formula, such as cubic Hermitian equations, could
possibly improve the accuracy. However, higher-order equations often involve spatial
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derivatives which may be difficult to determine accurately. Alternatively, small
spatial steps should also reduce the interpolation errors. The additional forward-
moving particles introduced with the HYBRID scheme then serve primarily to add
extra interpolation points in areas with steep fronts, thus making HYBRID more
accurate than SRPT.  Although the moving particles used in HYBRID help to
reduce artificial damping of the numerical results as compared to SRPT, they are not
useful if they can not trace the exact paths of the local extremes. To reduce the
interpolation errors near the peaks, which are key points dominating the shape of a
concentration distribution, we propose a modified SRPT scheme as described below.

Assume that the concentration r? at time t, is known. Equation (6) subject to
auxiliary conditions (2) through (4) will be used to solve for ti+’ at time step tk+, =
t,+& using the following consecutive steps:

1. Determine  the Local Maximum/Minimum Concentrations. At the beginning of the
simulation, determine the local maximum and minimum concentrations, @ at Xp
@= l,...,P), from the initial concentration distribution and the inlet boundary
condition at x =0 (P represents the number of the selected concentration extremes).
The inlet boundary must also be viewed as an extreme if the inlet concentration
differs significantly from the first nodal concentration.

2. Continuous Forward Tracking. Once determined, the local minimum and
maximum concentration points are considered to be moving particles and tracked
continuously forward along the characteristic path. Assume xp”  is the position of
particle p at t, Position xpL+’  of this particle at t,+,=ik+ At can then be calculated
from equation (8) as follows

xk*’ Exp” +
P I Jr.* ” . dt

4
(p=1,2,...,P) (10)

3. Single-Step Reverse Tracking (Modified Method of Characteristics). Consider a
fictitious particle that moves during time step & from location x,’ at t to a new
location x, which is the fixed Eulerian  coordinate of the finite element node n.
Based on equation (8), the initial particle location x,’ can be tracked backward as
(Neuman, 1 9 8 4 )  . .

x’ zx _
” n

“*ly  l dt (11)
4

Once the backward position x,’ has been determined, the corresponding
concentration, i.e., the convective component c, for node n, can be computed by
interpolating between nodal values using the finite element formulation

7” =$ c,(t)p,(x,‘) (N, =N+P)

i-1

(12)

where the u,(x) are the usual finite element basis functions. The c,(t) in equation
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(13) represent concentrations of all nodes (N) and moving particles (P). The
concentrations of the moving particles are used in (13) to increase the number of
interpolation points in areas having high concentration gradients, thus improving the
accuracy of the interpolations in these areas. Concentrations of the moving particles,
cp, are generally more accurate than those of the nodes, c,, , since they are calculated
independently from the characteristics approach as will be discussed later.

4. Finite Element Approximation. Solutions for c”+t  are subsequently obtained by
applying the Galerkin finite element method with linear basis functions to (6). Since
the Galerkin method is relatively standard, we do not further review here its
application to the solution of equation (6). However, we emphasize that the
Lagrangian derivative should be approximated by

(13)

This discretization is based on the view that node n is a fictitious particle reaching
x” at tk+l-

5. Dispersion Correction for Moving Particles. Finally, the concentration of moving
particle p at time tk+, is corrected by the dispersive component which is estimated
from the finite element interpolation as follows

ck*‘=cpk+~ (c,““-y.)$oi(xp)P
i-l

Note that the term (c:+’ - ci) is the dispersive component of the concentration at
node i. Repeating steps 2 to 5 yields the complete solution at the next time step.

Examples

The modified SRPT scheme was found to produce encouraging results which agreed
well with the analytical solution for several test cases. Figure 4 shows simulated
results for a steep-peak initial distribution assuming Pe = 1000 and Cu = 0.9. The
proposed modified scheme yielded accurate solutions, whereas SRPT and HYBRID
produced considerable numerical dispersion.

Figure 5 shows that the modified SRPT scheme generated also more accurate
results than either SRPT or HYBRID for a multi-peak initial distribution. In
particular, the sharp concentration peaks and valleys were more accurately simulated
with the modified scheme. Accurate simulation of local concentration minima or
maxima is sometimes important when predicting contaminant transport in the
subsurface. As opposed to the modified SRPT scheme, SRPT and HYBRID both
generated serious numerical dispersion. For this simulation we assumed a Peclet
number of 100, and a Courant number of 1.25.
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Conclusions

The SRPT and HYBRID particle tracking methods were both found to be free of
numerical oscillations. HYBRID generally gave somewhat better results than SRPT,
especially for relatively high Pe values. Both particle tracking techniques suffered
from numerical dispersion when Pe was relatively large and sharp concentration
fronts existed. Numerical dispersion produced with SRPT and HYBRID increased
when smaller time steps (relatively small fractional Courant numbers) were used.
Still, SRPT and HYBRID both gave satisfactory results for transport problems
involving moderate gradients in the concentration distributions, even for relatively
high Pe values (e.g., Pe as high as 1000). This fact indicates that the Peclet number
is not the only factor determining the performance of a numerical scheme; the
results are also affected by the concentration gradient.

Our results indicate that numerical dispersion is caused primarily by
inaccurate determination of the convective components because of interpolation
errors, especially in areas having large concentration gradients. The proposed
modified SRPT virtually eliminated these interpolation errors. Preliminary tests
showed that the modified SRPT scheme is accurate and very robust for solving
transport problems involving sharp multi-peak concentration distributions and
relatively high Peclet numbers.
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