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The transport of linearly interacting solutes in porous media is investigated with the help of
residence time distributions, transfer functions, methods of system dynamics, and time-moment
analyses. The classical one-dimensional convection-dispersion equation is extended to two-region
(mobile-immobile water) transport by including diffusional mass transfer limitations characteristic of
aggregated soils. The two-region model is further revised by incorporating the effects of multiple
retention sites (in parallel or in series), multiple porosity levels, and arbitrary but steady flow fields. It
is shown that different physical situations can be represented by a relatively small number of transfer
functions containing only two types of parameters: distribution coefficients to account for equilibrium
properties and characteristic times reflecting kinetic processes. Relevant kinetic processes include
convective transport, hydrodynamic dispersion, adsorption-desorption, and physical or chemical mass
transfer limitations. In most situations, theoretical breakthrough curves are found to be relatively
insensitive to the mathematical structure of the transfer function, irrespective of the physical
interpretation of the distribution coefficients and the characteristic times in the model. This means that
alternative physical and chemical interpretations of model parameters can lead to nearly identical
breakthrough curves. Certain transfer time distributions can lead to quite unusual shapes in the
breakthrough curves; these curves strongly depend on the characteristic times and a few operational
variables. Results of this study show that the transfer time distribution is an extremely useful tool for

explaining some unexpected experimental results in the solute transport literature.

1. INTRODUCTION

Solute transport in soil and groundwater systems is af-
fected by a large number of complicated and often interac-
tive physical, chemical, and microbiological processes. Dur-
ing the past several decades, numerous models have been
developed to evaluate the transport of linearly interacting
solutes in porous media. Most models were initially based on
the classical one-dimensional convection-dispersion equa-
tion, as exemplified by the studies of Lapidus and Amundson
[1952] and Nielsen and Biggar [1962]. Starting with the
historical papers of Coats and Smith [1964] and Villermaux
and van Swaaij [1969], authors later derived one-
dimensional and multidimensional models for increasingly
complicated processes and soil properties. This was done by
extending the models to include different types of sorption
sites, a variety of expressions characterizing physical and
chemical nonequilibrium, and alternative geometries of im-
mobile (stagnant) liquid phases in the medium [Gaudet et al.,
1977; de Smedt and Wierenga, 1979; van Genuchten and
Cleary, 1979; Schultz and Reardon, 1983; Valocchi, 1985;
Brusseau et al., 1989]. Most of these studies focused on the
formulation of appropriate mass balance (partial differential)
equations governing solute transport, the derivation of ap-
propriate analytical or numerical solutions of those equa-
tions, and the ability or inability of the transport equations to
match observed solute distributions versus time or distance.
More recently, moment analysis techniques also appeared in
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the soil and groundwater literature [Valocchi, 1985, 1989,
1990; Sposito et al., 1986; Goltz and Roberts, 1987].

At the same time, the study of reactors in chemical
engineering led to the development of alternative methods
for simulating the transport of reactive solutes during
nonideal flow, particularly dispersed plug flow [Himmelblau
and Bischoff, 1968; Levenspiel, 1972;: Wen and Fan, 1975;
Villermaux, 1982; Nauman and Buffham, 1983]. Many re-
searchers applied principles of linear system dynamics and
ideal reactors to more efficiently model increasingly complex
chemical systems. At present, one of the most powerful
tools in chemical reaction engineering is the concept of
residence time distribution which permits one to describe the
main properties of a transport system with only a few key
parameters, especially when the solute interacts linearly
with the porous medium. This approach was first introduced
in hydrology by Jury and coworkers [Jury, 1982; Jury and
Sposito, 1986; White et al., 1986; Sposito et al., 1986; Jury
and Roth, 1990}].

Although the prediction of water flow in a soil requires a
detailed physical or mechanical approach, the transport of
linearly interacting solutes in a given flow regime requires
only knowledge of the residence time distribution. The
purpose of this paper is to critically review various predic-
tive approaches based on the residence time distribution
concept. After recalling some basic definitions from linear
system dynamics we shall first apply the residence time
distribution concept to classical description of one-
dimensional convective-dispersive solute transport with and
without mass transfer limitations. Next, a relatively simple,
yet very general method will be discussed to gradually build
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increasingly complex solute transport models with compar-
atively little mathematical effort. Special emphasis is placed
on model structure and parameter interpretation. We shall
also show that many nonequilibrium solute transport models
in the literature are essentially identical.

2. SOLUTE TRANSPORT AS A LINEAR
DyNaMic PrRoOCESs

2.1. Soil as a Dynamic System

Conceptually, the soil between two points in the system
(e.g., between two wells or piezometers in the field or
between the inlet and outlet of a soil column in the labora-
tory) can be viewed as a reactor through which water flows
during saturated or unsaturated conditions. Unlike most
chemical reactors, water flow in soil is generally transient
and usually subject to relatively complicated time-dependent
boundary conditions. In spite of this, current approaches
require simplifying assumptions to study the behavior and
transport of linearly interacting solutes, to compare experi-
ments under different flow conditions, and to evaluate the
basic physicochemical processes affecting water and solute
transport. As such, we assume that (1) water flow is steady
and macroscopically deterministic, (2) the soil system con-
sists of an isolated stream tube bounded by one inlet and one
outlet cross section through which water flows solely by
convection, (3) there are no sources or sinks for water inside
the stream tube, and (4) inlet and outlet concentrations are
flux averaged. These assumptions are needed to accurately
define the residence time distribution below and are easily
satisfied when carrying out laboratory soil column displace-
ment experiments. Note that assumption 2 means that there
is no dispersion at the inlet and outlet boundaries, whereas
assumption 4 implies that the inlet and outlet concentrations
are averaged with respect to the velocity field only. The
mathematical formulation of these two assumptions are
discussed in detail in section 3.1.

Any concentration signal y(r) at the inlet as a function of
time 7 is assumed to start at time ¢ = 0 and is taken to be zero
for negative time. This definition can always be made valid
for a linear system by shifting the time or the initial concen-
tration level. The inlet cross section is located at point 0 and
the outlet cross section at point L. Let y(0, ¢) be the
flux-averaged concentration signal of a solute injected at
point 0 and y(L, ) the associated time response at point L.
A system is said to be linear when the response to a linear
combination of y;(0, ¢) is the same linear combination of the
individual responses yi(L, t). The main task of linear system
dynamics is to formulate possible relationships between y(0,
1) and y(L, ). This is done most conveniently with the help
of transfer functions. To derive a transfer function, let us
define the Lapléce transform, y, of the signal y, as follows:

50, 5) = J“ (0, e dr 1)
0

L, 5) = f YL, e di @)
0

where s is the Laplace variable. The transfer function G(L,
s) of the soil system is defined by [Wen and Fan, 1975]:
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Fig. 1. Schematic of a soil system, with input signals, E(t,) anc

F(,).
(L, s)
G(L, s) = 0. 3" (3)

We will show that G(L, s) is independent of the input and
output signals and hence completely characterizes the tran-
sient behavior of the system. For notational convenience we
will omit the variable L in G(L, s) when no confusion is
possible.

Other transfer functions will be presented also. Similarly
as (3), they are defined by the ratio of two concentrations in
the Laplace domain. '

2.2. The Residence Time Distribution

Consider a soil system (Figure 1) with constant volumetric
flow rate Q. The residence time t; of a water molecule is the
time needed for the molecule to travel from the inlet to the
outlet cross section. If we instantaneously inject a given
amount (ny) of a perfect tracer for water (no interaction with
the solid phase) at the inlet of a tracer-free soil system, and
if y(L, 1) is the flux-averaged response at the outlet, then
Oy(L, 1) dt is the amount of tracer which stayed in the soil
system for a small time period dt between times  and ¢ + dr.
The residence time distribution (RTD) [Dankwerts, 1953] of
the tracer is obtained upon normalizing Qy, and substituting
the residence time t, fore,

(L, t;)
E(ty) = - Q =y(L, t,) ng 4)
f O¥(L, 1,) dt ’
0
so that, by definition,
fm E(r) dt, = 1. (5)
0

The right-hand side of equality (4) enables one to estimate Q
from knowledge of C(L, t,) and ny. Since an ideal traceris
assumed to behave as water, E(t,) is the RTD of water. By
definition the RTD is the outlet concentration response of
the system to a Dirac delta input function 8(r) for an ideal
tracer. Using (3) and the Laplace transform of o(1), the
transfer function of the soil system, G(s), i.e., the Laplace
transform of E(t,), gives

G(s) = f " E(e ™ dr. 6)

0
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Fig. 2. Schematic of the ‘‘bundle of parallel tubes’’ model. The
tubes have a length proportional to the residence time. The feed fiow
rates d() to the tubes are chosen such that they give the desired
RTD. Plug flow at the same velocity, u, prevails in the tubes.

The step response F(t;) is the response to a unit step
Heaviside function H(z) such that y(0, t) = H(t). Since H(?)
is the integral of 8(¢) and the tracer behaves linearly, F(¢,)
and E(t,) are related by

Flt,) = f " E() dt. )
0
Hence the Laplace transform of F(t,) is
_ G(s)
F(s) = —S—— 8)

A schematic of the RTD is given by the *‘bundle of parallel
tubes’” model in Figure 2. The flow system is assumed to
consist of a set of parallel tubes of rectangular cross section
of the same width. Piston (or plug) flow occurs in each tube
at the same velocity u. The total height of the bundle is H.
The length and thickness of each tube, as well as its feed flow
rate, are chosen such that their ensemble gives the desired
RTD. Villermaux [1982] has shown that a tube with a
residence time between ¢, and ¢, + dt, has a length L, =
utg, a thickness dh = HE(t,) dt,, and is fed at a flow rate
dQ = QE(t;) dt;. When the height of the bundle is
normalized by H and the length of the tubes by u, the
envelope of the tube outlets is F(¢,). From this simple
picture, E(t,) dt; may be viewed as the fraction dQ/Q of the
flow rate composed of fluid molecules having a residence
time between ¢, and ¢, + dt,.

2.3. Moments of the RTD

Properties of the RTD can be described by time moments.
The kth-order moment is

i =f t*E(1) dt 9)
0
For instance, the first-order moment, or mean residence time

t,, is given by

p,=i}=fx tE(t) dt. (10)

0

Central moments are defined by
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i = f (t = F)*E() dt (1)
0

which, for example, leads to the second central moment, or

variance ¢?,

az=p;',_=,L2—,L,2=f (t—1,)’E(t) dt.  (12a)
0

The reduced variance ¢’ ? is defined as

2

]

0_12 —

(12b)

“Al

[

According to (7), E(t) = dF/dt, and (10) and (12a) give for
a step response

p|=t~s=fw[l—F(t)]dt (13)
0

az=2f°°[1—p(z)]t dt — 12 (14)

0

Regardless of the transport model to be used, the first-order
moment gives an estimate of the volume, V,, of the porous
medium that is accessible to the fluid. When the flow across
the inlet and outlet boundaries occurs by convection only
(see assumption 2, section 2.1), it can be shown that [Viller-
maux, 1982]:

-V,
By =15= 1) (15)
The use of higher-order moments, leading to the ‘‘skew-
ness’’ (third order) and ‘‘kurtosis” (fourth order) of the
RTD, generally does not improve the accuracy of the anal-
ysis because of increased statistical weight of noisy experi-
mental data in the tails of the distribution.

2.4. Properties of Transfer Functions

Knowledge of the transfer function G(s) enables one to
calculate the response of a soil system to an arbitrary input
y(0, 1) by making use of (3) and inverting the Laplace
transform of the response using either analytical or numeri-
cal techniques. This means that a dynamic system is com-
pletely characterized by its transfer function. Hence we will
focus our attention primarily on G(s).

Subsystems are considered to be in series when the output
variable of one subsystem is the input variable to the next
subsystem. From (3) it follows that the overall transfer
function of N subsystems in series is the product of the
transfer functions G;(s) of each subsystem, i.e.,

N
6s)=11 Gys) (16)

j=1
Theoretical expressions for the moments may be deduced

from knowledge of G(s). Comparing (6) and (9), one obtains
by differentiation with respect to s
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(17a)
as /s=0

For an arbitrary transfer function G(s), which is not the
Laplace transform of a normalized function, G(0) is the
zeroth-order moment which must be used to normalize the
function. For instance, (1) shows that ¥(0, 0) is the normal-
izing factor of y(0, ). Then, the kth-order moments of the
normalized function are given by

(__])k (akG\

(17b)
ask/

“ = Gy

Equations (17a) and (175) may be used to calculate the time
moments without having to invert the transfer function.

Applying (17b) to ¥(0, s) and y(L, s), and using (3), the
mean and variance of the RTD can be deduced from the
means and variances of the input and output signals, respec-
tively:

ty=1(L) - 1(0) (18a)

ol=ca¥(L) - c(0) (18b)

For systems in series as defined above the mean residence
time and the variance of the overall transport system is equal
to the sum of the mean residence times and variances of each
subsystems, respectively, We emphasize that this last prop-
erty of systems in series, as well as (15), (16), (18a) and
(18b) are valid only if assumptions 2 and 4 of section 2.1 are
fulfilled.

3. SOLUTE TRANSPORT MODELS

Two types of models may be used for predicting solute
transport in porous media. Continuous models, especially
popular in the soil and hydrological sciences, assume con-
tinuous spatial variations in solute concentrations, and often
also in the water flow and solute interaction parameters.
These types of models are expressed in the form of partial
differential equations. Discrete (or lumped) parameter mod-
els, on the other hand, assume that spatial variations can be
represented by a network of suitably connected subsystems,
each one having its own properties. The basic subsystem is
a “‘continuous stirred reactor’ or ‘‘mixing cell”” of uniform
composition. Hence the entire system can be modeled by a
set of ordinary differential equations.

Before presenting a method for building a discrete trans-
port model, we will show the equivalence between the
continuous and discrete approaches using the problem of
one-dimensional convective-dispersive transport of a nonre-
active solute (ideal tracer) in an aggregated soil as an
example. Convective-dispersive solute transport is assumed
to be confined only to the mobile water phase, whereas
solute transfer between mobile and immobile soil-water is
assumed to be diffusion controlled [Coats and Smith, 1964].

3.1.

Let 6, and 6;, be the volume fractions of mobile and
immobile water, respectively. Deviations from ideal piston
(plug) flow are often lumped into a macroscopically defined
dispersive flux obeying Fick's law. This dispersive flux is
superimposed on the convective flux vC m Where v is the

Continuous Models
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pore water velocity and C,, the solute concentration in the
mobile phase. The flow velocity v equals Q/Q8,,, where Q is
the total cross-sectional area. The mass balance equation for
the mobile phase is [Coats and Smith, 1964; van Genuchten
and Wierenga, 1976]):

aCm oim aCim

L _#’C,,  aC,
at 6, o

=p—n_,Ln
ax? ax

(19)

where C,, is the resident concentration in the mobile liquid
phase, C;,, is the concentration in the immobile liquid phase,
and D is the longitudinal hydrodynamic dispersion coeffi-
cient. The mass balance equation for solute in the immobile
phase is

aC;
Oim —— = kpy(Cr = Cin) (20)

at
where k,, is a mass transfer coefficient. Equation (20)
considers solute exchange between the mobile and immobile
regions as a first-order dynamic process. Recalling that

concentrations are assumed to be zero at ¢ = 0, (20)
becomes in the Laplace domain
~ Cn
S T (21a)
9.
ty=— (21b)
km

where t), is a characteristic mass transfer time. A more
general definition of ¢,, will be given in section 4. The
transfer function M(s) relating the amounts of solute in the
two liquid phases is defined by

Bimc_im _ Kim
0,C. 1+sty

M(s) = (22)

where K;, = 6,,/6,,. Combining (22) and the Laplace
transform of (19) yields

d*C,, dcC, _
=v—+ 5[l +

P s[1 + M()1C,,

(23)

Equation (23) may be solved for various boundary condi-
tions. To obtain the RTD, we must assume that convection
prevails at the inlet and outlet and that ¥(0, t) = 8(1) (Dirac
input). Consequently, the boundary conditions in the La-
place domain are [Wen and Fan, 1975; Nauman and
Buffham, 1983]:

dC, (0", s)
D —_—

v¥(0, 5) = vC,,(07, 5) - 24a)
dx

4ol s) 0 24b

. = (24b)

70, 5) =1 (24¢)

YL, 5)=Cpu(L, s) (24d)

Equations (24a) and (24b) are the boundary conditions for
the mass balance equation (23) in terms of the resident
concentration C,,. Equation (24c) and (24d) define the
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flux-averaged concentrations y which are involved in the
transfer function. Equation (24a) implies that the convective
inlet flux, vy(0, ¢), becomes a convective-dispersive flux as
soon as the concentration signal enters the system. On the
other hand, (24b) means that the dispersion flux vanishes at
the outlet. The above equations assume that diffusion and
dispersion in the inlet and outlet reservoirs upstream and
downstream of the column is negligible. Solving (23) with
boundary conditions (24a) and (24b), and using (3), (24c¢)
and (244d) yields

P
4q exp [5 (1- q)}

Ry T ey iy L)
q= {1 + 4r,, TLEMON - (3)]} (25b)

where P = vL/D is the Péclet number and r,, = L/v is the
characteristic convection time in the mobile phase (i.e., the
residence time for mobile water).

The mean residence time 7; and reduced variance o’? are
obtained from (17a), (22), and (254a) and (25b):

I, =1,(1 + K;p) (25¢)
2K; t
_im ;TM (25d)

d (1-e P
a = —_—= — — — - + —_
i . 1+Kim s

Equation (25¢) shows that the mean residence time t, of the
fluid is independent of the mass transfer kinetic and hydro-
dynamic dispersion processes. This feature is a consequence
of assumptions 2 and 4 of section 2.1. The variance of the
RTD is the sum of contributions resulting from hydrody-
namic dispersion (first two terms of (25d)) and mass transfer
Kinetics (third term of (25d)). An increase in the mass
transfer time 7,, relative to the mean residence time t, leads
to additional spreading of the RTD.

Alternative expressions for the transfer function may be
derived when boundary conditions other than (24) are cho-
sen [Wen and Fan, 1975; Villermaux, 1981a, 1982; Nau-
man and Buffham, 1983). Van Genuchten and Parker [1984])
and Van Genuchten and Wierenga [1986] investigated the
effects of different boundary conditions assuming instanta-
neous equilibrium between mobile and immobile water (i.e.,
ky — «). They showed that (25¢) does not hold for some
boundary conditions, especially when dispersion occurs
upstream of the inlet or downstream from the outlet bound-
ary. In these cases the solutions of (23) can be used for
various purposes; however, they do not define the RTD.

For most experimental situations involving Péclet number
greater than five, (25d) can be approximated closely by

(25¢)

3.2. Discrete Models

The soil is now represented by a cascade of J identical
mixing cells of uniform composition. Each cell with volume
V/J contains mobile and immobile water volumes of 8,ViJ
and 8;,,V/J, respectively. The mass balance equations for
the solute in the mobile and immobile water of cell Jj are,
respectively,

2291
0mY dCp; 0V dCi, ;
Cpj-1=0Cp;+ ~ + -
Q m,j—1 Q m,j J dt 7 dt (26)
j: ], 2’ e J
dcim.j

Oim =ku(Cpj— Cim,)) (27

dt

where C,, j» is the solute concentration of the mobile water
phase inside and at the outlet of cell j and Cim,j is the
associated concentration of the immobile water. Taking the
Laplace transform of (26) and (27), and eliminating C
gives the transfer function G (s) for cell j

im,j»

m,j

St |~
Gi(s) = z = {l + a 1+ M(s)]] (28)

m,j~1
Since convection prevails at the inlet and outlet boundaries,
Cmo=y(0,0,and C,, ; = y(L, 1). Hence, substituting (28)
into (16) yields the transfer function for the soil system as a
whole:

L s) Cmy T
66 =S = o = H G(s)

Sty -7
= [l + 7 f1+ M(s)]] (29)

The moments of the RTD are again obtained with (174):

fo= tll + Kyp) (30a)
2
o 1 2K;, t
ol M (30b)
AT

Notice that (30a) and (25¢) are identical and that (30b) and
(25d) are of the same form. The term 1/J in the discrete
model accounts for the effects of dispersion. Matching the
variance of the discrete model (30b) with the variance of the
continuous model (25¢) shows that P = 2J. As long as P is
greater than about 5 or 10, differences between the two
models are generally less than the experimental errors [Vil-
lermaux, 1981a, 1982]. Therefore we will assume that both
models are equivalent.

To compare the relative effects of dispersion (i.e., P or ),
convection in mobile water (r,,), mass transfer limitations
(ty), and immobile/mobile water ratio (K im) on solute
transport, it is convenient to introduce a characteristic
dispersion time ¢, in the reduced variance as follows:

2
a"z=t—(tD+t,’") (3la)
where
Kim (1b)
ty=——1¢
ST PR
Comparing (314a) and (25¢) gives
D 1,
tp= 17 = F (32a)
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Fxg 3. Breakthrough curves calculated with the mixing-cell-in-
series model, assuming J = 10 (P = 20, tp/t,, = 0 05), K;p, = 2,
and several values for ty/t,,. For t,/t,, = 2.2 1073, all curves are
supenmposed All BTCs have the same mean retention time t,
K

For the discrete model, (31a) and (30b) give

Im
tp=—

7 (32b)

It is now possible to define two main transport regimes.
When t)y, >> t,, mass transfer kinetics between the mobile
and immobile regions is the predominant process for broad-
ening the RTD. On the other hand, when 1, > r,,
hydrodynamic dispersion becomes the predominant broad-
ening process. In the latter case the local equilibrium as-
sumption (LEA) holds, since mass transfer resistance is now
effectively blurred by dispersion.

The influence of mass transfer kinetics is illustrated in
Figure 3 which shows breakthrough curves (BTCs) for a
Dirac injection of a tracer with J = 10 (i.e., P = 20 or
tplt, = 0.05) and K;,, = 2. The BTCs in the real time
domain were computed using a fast Fourier transform algo-
rithm to invert G(s) [Brigham, 1974]. As long as t; < 1p,
RTDs are superimposed and remain almost symmetrical,
The larger the Péclet number, the more symmetrical the
RTD. When t), = tp, the RTD broadens and also loses its
symmetrical shape. When t); >> 1, the RTD is even
broader than before and becomes quite asymmetrical. Fi-
nally, when t), >> t,,, the RTD is extremely asymmetrical
and composed of a solute peak located at t = t,, and a long
skewed tail. This shows that lumping both hydrodynamic
dispersion and mass transfer processes into a *“‘limiting
dispersion coefficient’”’ can be a dangerous simplifying ap-
proach. Similar results were obtained earlier by van Genu-
chten and Wierenga [1976]. We conclude that a comparison
of the characteristic times z,,, t);, and 7, is a powerful
method for isolating the predominant processes responsible
for the shape of the RTD.

Having established the equivalence of the continuous and
discrete models, we will now use only the discrete model to
simulate the convective-dispersive transport of solutes with
mass transfer kinetics. The discrete model is much easier to
work with than the continuous model, avoids boundary
condition problems and, as shown below, can also simulate
any flow pattern by making a suitable choice of cell volumes
and connections between cells.
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4. A GENERAL METHOD FOR BUILDING
SOLUTE TRANSPORT MODELS

We now present a powerful method for modeling transpor
in more complex systems which involve also adsorption o
the solute by the solid phase. The method is based or
progressively building up G(s) from knowledge of transfe
functions that describe solute behavior at the local (micro-
scopic) level. Because adsorption of the solute on the solic
matrix causes the mean residence times of water and the
solute to be different, the mean residence time of the solute
will be called the mean retention time and denoted t,.

First, we decouple transport in the mobile water phase
from mass transfer toward the stationary phase using &
theorem presented by Villermaux [1973]. If G, (s) is the
Laplace transform of the RTD, E (), of a nonreactive
solute in the mobile phase, and if M(s) is the transfei
function relating the local amounts of solute in the mobile
and stationary phases (the latter consisting of immobile
water and the adsorbing soil matrix), then the overall trans-
fer function G(s) describing the simultaneous contributions
of transport, mass transfer, and adsorption, is given by

G(s) = G, (sy) (33a)
51=s[1+ M(s)] (33b)
where (see also (22)):
_im + —a
M(s) = "8 als) (34)

7 ()

in which 7, (s), ii,(s), and 71,(s) denote the solute masses
(in the Laplace domain) in the immobile water phase, the
mobile water phase, and adsorbed on the solid phase,
respectively. These amounts are defined for an elementary
volume 4V in the continuous model and for the volume of a
cell in the discrete model. Equations (33) suggest that mass
transport in the mobile phase, i.e., G, (s), and the adsorp-
tion and mass transfer processes, i.e., M(s), can be studied
independently. Also, notice that (254) and (25b), and 29)
are special cases of (33). In (29), G,,(s) is of the form

st ™
G,,,(S) = (1 -+ T)

The decoupling property (33) is based on the bundle-of-
parallel-tubes model of Figure 2, and assumes that the mass
transfer coefficient and the sorbing capacity of the stationary
phase are constant, and independent of the tube length.
Recent studies of gaseous diffusion in porous catalysts
suggest that this may not always be true [Cui ef al., 1990].
We nevertheless assume for now that (33) is valid.

Applying (17a) to (33) yields an expression for the mean
retention time of the retarded solute:

(35)

pal =t = 1,01+ M0)]=1,[1+K] (36)

We show in the appendix that the substitution s = 0 in a
transfer function yields a ratio of two variables at steady
state (# — «). In this case, M(0) is the ratio of the amounts
of solute in the stagnant and mobile regions at steady state.
Provided there are no chemical reactions, this ratio depends
on the equitibrium properties of the medium and is indepen-
dent of any kinetic or dispersion parameter. Thus (36)
implies that the first-order moment does not depend on any
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dispersion and mass transfer parameters. Below we shall use
K’ for M(0). In chromatography, K’ is often called the
capacity factor.

The second derivative of G(s) gives the expression for the
reduced variance,

ol ., 2M'(0) 1
I1+K' ¢,

=o,, 37)
where a';,,z is the variance of E,,(¢) normalized by t,z, and
M'(0) = [dM(s)/ds],.. Introducing the first-order moment
ty of M(s) given by (17b), one obtains

ty = ~M'(0)/M(0) = —M'(0)/K’ (38)
o'l=ol2+ ok (39a)
2Kt 2K' 1 t
oin= - s 2=2 M (399
1+K" ¢t (1+K')1t, tm
; all 39
ty = 1+ K)2 ty (39¢)

where o2 is the reduced variance for the stationary phase.
Equations (39a) and (39b) indicate that the contributions of
transport in the mobile water phase (i.e., o;,,z) and mass
transfer kinetics (i.e., a-},%,) are additive in the total variance,
irrespective of the type of process responsible for mass
transfer and deviations from piston flow in the mobile water
phase. Notice that no assumptions are made concerning
E,(t) or G,(s), and hence that o/,2 can account for
band-spreading processes due to flow patterns other than
hydrodynamic dispersion. Equations (305), (254), and
(25e) are simple cases of the more general equations (39a),
whereas (38) generalizes the characteristic mass transfer
time 1, defined by (215). In the next two sections we shall
decompose K’, 1), and G, (s) into several elementary
contributions. In section 5 we focus on the description of
mass transfer at the local level, i.e., on methods to obtain
M(s). In section 6 we discuss a method for building the
overall transfer function G,,(s) for an arbitrary network
representing transport in mobile and immobile water.

5. Mass TRANSFER KINETICS AND INTERACTIONS
AT THE LocAaL LEVEL

Consider an aggregate as an elementary entity composed
of a porous solid matrix containing immobile water, and
around which water flows. For the discrete model above we
considered only two description levels: the mobile region
characterized by G,,(s) and the immobile region character-
ized by a first-order system M(s). In general, it is possible to
distinguish several sublevels with multiple interactions re-
sponsible for the transient behavior of the immobile region.
For instance, mass transfer to a porous aggregate has
traditionally been described by two different processes in
series: external diffusion in the viscous boundary layer
around the aggregate, and internal diffusion inside the aggre-
gate (Figure 4a). Moreover, when solute adsorbs, internal
diffusion is coupled with adsorption Kinetics. The question is
hence how to combine these two individual processes? By
using a linearly adsorbing solute as an example, we will
illustrate the method for progressively building the function
* M(s) and discuss limitations and advantages of some simpli-
fied approaches.
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Fig. 4. Schematic of an aggregate (a) showing possible solute
distributions (b) for a two-phase model in which concentrations
depend upon the position, (c) in an aggregated, equivalent homoge-
neous medium with nonuniform composition, and (d) in an equiva-
lent homogeneous medium with uniform solute distribution where
concentrations are averaged over the aggregate volume. The coef-
ficient & is the thickness of the viscous boundary layer.

At least three approaches are possible for describing the
physicochemical composition of the aggregate conceptually
(Figure 4). One approach (Figure 4b) could consider the
aggregate as a continuous two-phase porous medium with a
uniform physical composition and a nonuniform composition
with respect to the solute. The local solute concentration of
the pore liquid of the aggregate (the immobile region), C im>
is defined as the mass of solute per unit volume of pore
water. The concentration of solute adsorbed on the solid
matrix § is defined as the mass of solute per unit mass of solid.
The solution and adsorbed concentrations are dependent on
the position in the aggregate. Examples of this approach are
given by Rasmuson [1985], and Tang et al. [1981].

One may also consider the aggregate as an equivalent
homogeneous medium with nonuniform composition (Figure
4c). The interior of the aggregate is considered a single
phase for which the local concentration of solute, C,, is
given by

Cp = ﬂimcim + pas (40)

where B,,, is the volume of immobile water per unit volume
of aggregate and p,, is the bulk density of the aggregate. If
linear and instantaneous liquid/solid equilibrium prevails,
§ = K,C,,, and (40) becomes

Cp = Cim(Bim + ana) = acim

At equilibrium, C,, C,,, which shows that « is a
distribution coefficient between mobile water and the aggre-
gate.

A third approach (Figure 4d) results when the aggregate is
viewed as an equivalent medium of uniform composition in
which the concentrations (C,,,), (§), and (Cp) are defined
by averaging the local concentrations C;,,, S, and C, over
the aggregate volume. Equation (40) then becomes

<Cp) = Bim(Cim) + pa<s)

(41)

(42a)
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If adsorption is instantaneous and recalling that the physical
composition of the aggregate is uniform, (42a) reduces to

(Cp) = a(C;yp) (42b)

The aggregate may now be viewed as a dynamic system
characterized by a transfer function M(s) defined by (34).
Let 1 - &, be the volumetric fraction of aggregates relative
to the whole soil system. M(s) is given by

1-¢,
M(s) = L(s) (43a)
(C,)
L(s) = %ﬁ% (43b)

At equilibrium, C,, = C;,, = (C;,,), and L(0) becomes the
ratio of (C,) to C,, in the real time domain (see appendix).
From (42b) it follows that L(0) is equal to the distribution
coefficient a.

5.1. External Mass Transfer Resistance
With Instantaneous Adsorption

The rate of external mass transfer is determined by the
manner in which laminar flow in the viscous boundary layer
is coupled with the transverse diffusive mass transfer pro-
cess. A detailed description of this coupling at the micro-
scopic level is extremely complicated, and some approxi-
mate approach is required in practice. In the *‘film model”’
[Levenspiel, 1972; Froment and Bischoff, 1979; Villermaux,
1982; Aris, 1975], the specific flux of solute, q,, across the
boundary layer is given by

Cn—Cps
T ke(cm - Cm.s)

3 (44)

qs = Dol
where C,, ; is the concentration of the mobile water at the
aggregate boundary, D is the ionic or molecular diffusion
coefficient in the liquid phase, & is the thickness of the
viscous boundary layer, and k, = D_/8 is the external
mass transfer coefficient. Note that k, (or §) is generally
obtained from empirical correlations [Levenspiel, 1972;
Froment and Bischoff, 1979; Villermaux, 1982; Crittenden et
al., 1986]. Although (44) is theoretically valid only at steady
state, many experiments suggest that the equation also holds
for transient conditions. As with most authors, we assume
that (44) also holds for transient conditions, even though the
assumption itself remains debatable. Finally, we mention that
Cp,s is still an undefined concentration which eventually de-
pends on the processes taking place inside the particle.
Matching the solute flux through the external aggregate
surface with the total solute accumulation in the aggregate
leads to the following balance equation:

Dmol d(Cp)
3 S$,(Cp — Chns) = v, —dt—

(45)

where §, is the external surface area of the aggregate and vV,
the volume of the aggregate. Using (42b), (45) can be
rearranged as

&l d(C;,)
Chnsta -

Cn,=
’ Doa dt

(46)
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where [ = V /S, is the characteristic length of the aggre-
gate. Let us introduce the characteristic external mass
transfer time ¢,:

8l “7)
te =« .
Dmol
The Laplace transform of (46) is
Con=Chps+ t,5(Cip). (48)

Let us also introduce the transfer function H(s) defined by

C:

(49)

where C,,, ; is the concentration of solute in the immobile
water phase at the aggregate boundary. H(s) relates, in the
Laplace domain, the average concentration of the immobile
fluid with the concentration at the aggregate boundary. This
transfer function, which depends exclusively on the internal
mass transfer process and adsorption equilibrium processes
inside the aggregate, will be discussed in more detail in the
next two sections. At the aggregate boundary the solute
concentrations in the pore water (C,,, ,) and in the external
fluid (C,, ;) must be related in some fashion. This relation-
ship will implicitly define the concentration C .5 in the film
model. For the sake of simplicity we assume continuity of
the concentration in the internal and external liquid phases,
i.e.,

Cm,.\' = Cim,_\‘ (50)

Other assumptions could also be made. For instance, when
the solute is an anion in an aggregated fine-textured soil,
Cim.s may becomes smaller than C m,s because of anion
exclusion, in which case there is no longer concentration
continuity.

Combination of (41), (43a), (43b), (48), (49), and (50)
gives finally the transfer function for exchange between the
mobile phase and the aggregate, i.e.,

1 = K’ + Sle l 51
t

Equation (51) shows M(s) consists of contributions from the
viscous boundary layer (i.e., ¢,) and the internal Kkinetic
mass transfer process (i.e., H(s)). Using (41), the capacity
factor K’ is given by

a(l - ¢,,) 1—-¢
K=——"=K, + " K,  (52a)

0 0m

Bim(1—¢€,) 6
Kipp=—"—"-_1 (52b)

0 6 m

which clearly shows the contributions by immobile water in
the aggregate (K ,,;) and adsorbed solute on the solid phase
(K,).

Assuming equality (50) holds, (51) is the most general
transfer function independent of the type of internal diffusion
process that may occur in the aggregate when adsorption is
at equilibrium. This means that any internal diffusion model
(i.e., H(s)) can now be used in conjunction with (51). Next
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TABLE 1. Expressions for H*(s,) for Several Aggregate Shapes in Terms of the Modified
Laplace Transform Parameter 5, = I(s/D’,)"?
Characteristic
Aggregate Shape Length { H*(s,) Shape Factor u
tanh
Slab, thickness 2! ! s 113
52
1,2 a
Infinite cylinder, radius r r/2 12s) 172
5:49(257)
otanh (3 1
Sphere, radius r r/3 M - 3/5
52 332
. 1
Equivalent first order system ] —_— m
1+ us;
Iy and I are zero- and first-order modified Bessel functions for the first kind.
we will describe the most classical case of internal and tim = ul*alD, = pI*D; ey))

external diffusion with instantaneous adsorption in the ag-
gregate.

5.2. Internal and External Diffusion
With Instantaneous Adsorption

Assuming that adsorbed ions or molecules are motionless,
the specific flux of internal mass transfer per unit area of
aggregate surface g, is given by Fick’s law [Aris, 1975]:

q;=-D,VC,, (53)

where V is the gradient operator and D, an effective diffu-
sion coefficient given by

ﬂ‘
D,= l D 1
T

(54)

where 7 is the tortuosity factor for the aggregate (1 < r< §
according to Sarrerfield [1970]). The local mass balance

equations for the solute in the aggregate in the real time and

Laplace domains are

aC;
—f=a —==D,VC,;, = aDV?C,,

55
at a1 5@

sC, = asC;,, =D ,V?C,, = aD.V*C,, (55b)
respectively, where V2 is the Laplace operator and D', =
D, /e is an apparent effective diffusion coefficient. Equation
(55b) can be solved in the Laplace domain to obtain the
transfer function H(s). Analytical solutions are also readily
available from the literature for simple aggregate shapes both
in the time domain [Crank, 1956) and the Laplace domain
[Villermaux, 1981a]. The solutions are summarized in Table
1 in terms of a modified Laplace parameter s,:

1 as\ 1?2 s\ 12 S5
S22 = De = Dé a
and standard functions H* such that
H(s) = H*(s,) (56b)

Whatever the aggregate shape, H(s) has a first-order mo-
ment ¢t;, given by (17a):

where w is a shape factor (see Table 1) depending on the
aggregate geometry. Villermaux [1981a, 1987] and van
Genuchten [1985] have shown that the complex function
H(s) can often be approximated accurately by a first-order
system:

H(s) ~ (58)

1+ lim$S

The apparent effective diffusion coefficient D’, is given by

,=&=Dmol ﬂim (59)
a T Bimtp.K,

Equation (59) shows that the stronger the solute is adsorbed
(K, increases), the slower the internal diffusion process
becomes. This situation will be completely different when
the adsorbed solute is free to diffuse on the solid matrix
surface. Equation (55) must then be replaced by

—L=g —t =D,VC;, + p,D,V?S

= (D, + D,p,K)V?C;py = aDVC;,,  (60)

where D, is an effective surface diffusion coefficient of the

adsorbed ion or molecule. Equation (60) shows that D), is

now given by

D, + De:paKa _ D,+ (a - Bim)De:
Bimtp aKa a

’

(61)

Equation (61) indicates that D' approaches the nonzero
limiting value D,, when K, increases, whereas (59) results
in a zero limiting value when K, becomes large. We note
that ion exchange at trace levels is generally a fairly linear
adsorption process. Since adsorbed ions are only ‘‘trapped”’
in the electrical double layer of the liquid phase, Nicoud and
Schweich [1989] suggested that they are still free to diffuse
with D,; = D, /7. In that case, (61) reduces to

D mol
T

D,=

=D, (62)
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The importance of the mobility assumption becomes ob-
vious when comparing (62) and (59). Even though the
physical interpretation of D, depends on the mobility of the
adsorbed solute, the final expression for H(s) is fixed as
soon as the aggregate shape is defined. For simplicity we
shall assume below that adsorbed molecules are motionless;
additional experimental evidence is necessary to validate
this assumption.

Substituting one of the expressions for H(s) in Table 1 in
(51) gives the transfer function M(s) for equilibrium adsorp-
tion.

5.3. Internal and External Diffusion
With Adsorption Kinetics

Relatively little is known about the kinetics of adsorption
in the liquid phase. Therefore we will adopt the simplest case
of first-order kinetics. The local mass balance for the ad-
sorbed phase is then

das
e kdes(KaCim - $)

dt 63)

where ky. is a desorption rate constant. In the Laplace
domain, (63) becomes

.ST(S + kges) = kdesK-aC_im

(64)
Let us define the desorption time 14, by
a—Bin
ldes = - (65)
akges

Combining (40) in the Laplace domain, (64) and (65) gives

— 24 _
C,=— ¢ 6
PT T AE) O (66a)
Stes
Als) = — B"" — (66b)
1+ —"
o« — Bim Sldes

Equation (664) is similar to (41), except that (66a) is in the
Laplace domain and that «/{1 + A(s)] is a transfer function
which generalizes the distribution coefficient « by including
first-order kinetics. The mass balance equations for the
solute in the time and Laplace domain are now

aC
—f=p v3C,, = «DV?C,,

o (67a)

Cp=a 1+ A0) Cim (67b)
respectively. Assuming that A(s) does not depend on posi-
tion inside the aggregate, a comparison of (67b) and (55b)
indicates that H(s) can now be derived in the same manner
as in the previous section, except that s must be replaced by
s/[1 + A(s)]. From (56a) it is thus sufficient to substitute
s/[1 + A(s)] for s to obtain:

(Cim)
Cim,x = H(s) = H*(s,)

(68a)

SARDIN ET AL.: A REVIEW OF THE NONEQUILIBRIUM TRANSPORT IN POROUS MEDiA

s 12
=— 68b
93 {D,’,[l + A(s)]} (686)
where H*(s,) is one of the functions given in Table 1, after
substitution of s, for s3. Similarly as for (51), M(s) results
from combining equations (43a), (43b), (48), (50), (67),
(68a), (68b) to yield

1+ A(s) -1
—_H*(s3) + st,

Equation (69) is the most general transfer function and
accounts for external diffusion (i.e., ¢,), internal diffusion
(i.e., H*(s3)), and first-order sorption kinetics (i.e., A(s)).
When one of these processes is negligible or absent, the
particular transfer function M(s) is obtained by setting the
associated characteristic time to zero. For instance, (69)
reduces to (51) when 14, = 0 (i.e., A(s) = 0 and 53 = s,).

The overall characteristic mass transfer time f,, is ob-
tained by applying (17b) to (69):

M(s) =K’ (69)

lete+tim+tdes (70)

which shows that the characteristic times are additive, even
though external diffusion, internal diffusion, and adsorption
kinetics are coupled.

Generally, M(s) has a rather complex mathematical struc-
ture owing to the form of H(s). Equation (70) allows one to
approximate M(s) by a simple first-order transfer function
N(s) with the same zero and first-order moments:

’

N(s) =

1+ sty an
Notice that when internal diffusion is not a limiting process,
t;m = 0 and H(s) = 1, and hence M(s) = N(s). Villermaux
[1981a, 19871, Rao et al. [1980], and van Genuchten [1985]
have shown that N(s) is generally a good approximation for
M(s), except when ¢, is the main contributor to ,,, and £,
is greater than ¢,,. This explains the popularity of the Coats
and Smith model for which M(s) reduces to N(s) ((22)
without adsorption). The development above shows that the
characteristic time f,, in the Coats and Smith model is a
lumped parameter which accounts for several different phys-
ical processes. Attempts to correlate the overall mass trans-
fer time ry, to certain experimental parameters, such as
aggregate size [ or volumetric flow rate Q, will be extremely
difficult and likely fail as pointed out by Nkedi-Kizza et al.
[1983]. The same authors [Nkedi-Kizza et al., 1984] also
showed the equivalence of two models describing physical
and chemical nonequilibrium. The controlling step was dif-
fusional mass transfer (described by a first-order system) in
the one model and kinetic adsorption in another model.
Although their models accounted for parallel sorption sites
in terms of a ‘‘two-site’’ model (to be discussed in section
5.6.), the equivalence resulted from the fact that both models
involved the same transfer function M(s) = N(s). The
models differed only in the physical interpretation of 7,,. In
a different approach, Crittenden et al. [1986] studied the
parameter sensitivity of a detailed model for linear solute
transport. Most of their conclusions about the interdepen-
dence of various kinetic processes and associated parame-
ters must be attributed to the fact that a given ), may
account for conceptually different transfer processes.
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Fig. 5. Possible models for aggregates having nonuniform struc-
ture in a mixing cell: (a) retention sites in series, (b) two porosity
levels, and (c) retention sites in parallel.

Until now, we have assumed that the aggregates are
identical and have a uniform structure. This assumption is
not always necessary. Models for M(s) are also available for
the following situations: (1) the aggregates are identical and
composed of several layers in series, with each layer having
its own properties (retention sites in series), (2) the aggre-
gates are identical and have two embedded porosity levels,
and (3) the aggregates are uniform and of the same geometry
but with different properties which are distributed either
continuously or discontinuously (retention sites in parallel).
Villermaux [1981a, 1987] treated these three situations with
considerable detail. We shall briefly discuss here the main
results.

5.4. Retention Sites in Series

The aggregates consist of a series of n ‘‘concentric”’ layers
with volume fraction &; relative to the volume of the aggre-
gates and the mobile water phase, such that 3¢; = 1 — Em-
We consider each layer as an equivalent medium with
uniform composition and subject to instantaneous sorption.
Figure 5a schematically shows the position of the layers in a
mixing cell. The distribution coefficient, a;, of the solute in
layer i is defined as the ratio of the average total concentra-
tions (C,;_,) and {C,;) of solute in layer i — 1 and i,

respectively,
(Cp,i)
;= —_—
! <Cp,i - 1) eq

where the subscript eq indicates equilibrium. For i = 0,
(Cp,o) = C,,. Equation (72) generalizes (42b) which relates
the concentration at a certain sublevel to the concentration
at the immediately higher level. The mass transfer flux from
layer i — 1 to layer i is given by ki((Cpi-1) ~ (Cp.i)ay)
which, as before, assumes that mass transfer kinetics can be
modeled as a first-order process.

Let us introduce the characteristic mass transfer times T
as follows:

= — (73)

where /; is the ratio of the volume of the entire aggregate to
the exchanging surface area between layers i and i — 1.
Equation (73) is similar to (57) and (47) if D e/land D /8 in
these two equations are considered to be mass transfer rate
constants. The mass balance equation for the solute in layer
iis

dCp)  alCphi-y)—(Cp)) _@is (€ ) = (Cpiv)
Ei dt B T

Ti+ )

(74)

(72)
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A straightforward but tedious derivation based on the mass
balance equations for each layer leads to the following
relationships:

0, -
M(s) = <ST| —_+ A,(s)) (75a)
ay
1 a;E; . EiTi+1 A, i(s) - (75b)
= + s+ A (s
As) &, ;) !
1 a,e, 75
An B €n-1 (7¢)
0,,= €g (75d)
(Cpi-1) se;qm; 1
=— +— (75¢)
(Cpd  aiAls) a;
For an aggregate consisting of one single layer (n = 1 and
g =1 — g,), M(s) reduces to
a,(l—¢,) 1 K’
M(s) = —" = (76)
0, L+sti(l—€,) 1+sty

which is identical to (71) representing the Coats and Smith
model. For two layers the expressions for K’ and t,, are
[Villermaux, 1981a}:

K'=(ae;+ a,a,e,)/0,, (77a)

azsg
’M= _M’(O)/M(O) = 7'1(51 + azsz) + Ty
£, + £ty

(77b)

A relatively simple expression for K’ of the type given by
(77a) can also be derived for n layers [Villermaux, 1981a].
Unfortunately, no simple relationship for t) exists for n
layers.

Although attractive in concept the model of layers in
series is relatively impractical for two reasons. First, the
model involves too many parameters (i.e., a;, ¢;, 7; for each
layer) which are not easily measured. Second, when «;, &,
7; become independent of the index i, the model is a discrete
form of the internal diffusion model as can be seen by
comparing (74) and (55a). Consequently, the models behave
similarly when the number of layers becomes greater than 3
or 4. Nevertheless, layers in series can account for a
nonuniform distribution of the adsorption capacity (i.e., a;)
or of the diffusion coefficient (i.e., ;) inside the aggregate,
provided enough experimental data can be obtained to define
those distributions.

5.5.

The previous model for two layers in series can be refined
to account for two porosity levels (Figure 554). This situation
is encountered in structured soils when a macroaggregates
(or primary ped) is made of microaggregate (or secondary
peds) [Brewer, 1964; Hillel, 1980]. To model this situation,
let us first rewrite (43b) as

Two Porosity Levels

_(€p
L(s) = Ce

(78)
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where C, is the concentration of the external fluid in contact
with the aggregate. For the microaggregate, C, is the local
concentration in the pore fluid of the macroaggregate. Let us
assume that mass transfer is controlled by external and
internal diffusion, as well as adsorption kinetics. Using (69),
(43a), (43b), (52a), and (52b), one obtains

(79)

Let us use the subscripts mi and ma to denote variables at
the microaggregate and macroaggregate levels, respectively.
Knowing that solute concentration in the immobile water
phase at the macroporosity level is the external concentra-
tion for the microaggregate, the transfer function for the
microaggregate is

Cp mi
me=£““=am

Cim,ma

1+ Ap(s)
- H7(ss)

-1
+ ste,,,,,] (80a)

s 172
s3 =l \———————— (80b)
" De,mi[] + Ami(s)]]
Using a recurrent method and ignoring adsorption at the
macroporosity level, Authelin [1988a)] showed that L,.(s)
is given by

(Cp‘,,,a) _ Qg

Lma(s) - C—m = ] (81(1)

Slema* oo —————

' H7.(s4)B(s)

ma t 1 - ma.Lmi
B(s)=B (1 = B gL mils) 815)
X ma
sB(s)]'"?

s4=1,w[m} (81c)
amazﬁma‘+(l—ﬁma)ami (8]d)

In these equations, B, is the volume fraction of water in the
aggregate macropores relative to the total volume of the
macroaggregate, a,,; is the equilibrium solute distribution
coefficient between the microaggregate and water in the
macropores, and «,,, is the overall distribution coefficient
between the macroaggregate and the mobile water phase. If
immobile water is only present in the macropores, then Buma
= Bim- In (80) and (81) the transfer functions A and H*,
irrespective of the indices, are as defined previously by
(66b) and Table 1. Notice that the substitution of s, for $51in
H7,, (equation (81a)) is similar to the substitution of s3 for
s, made in (68a) to account for adsorption kinetics. This
means that transfer to the microaggregate can be seen as an
adsorption process from the macrolevel and as such forms
the basis of the recurrent method for obtaining L,.(s).
Whereas ¢, ,, is given by (47), ¢, ,,; is different because of
the presumed absence of a viscous boundary layer inside the
macroaggregate. The parameter ¢, ,,; may be interpreted as
the characteristic time of a possible mass transfer resistance
at the boundary of the microaggregate. For example, Lo mi
could account for noninstantaneous sorption at the surface
of a clay crystal before solute penetrates the bulk of the
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crystal by internal diffusion. Also, the surfaces of microag-
gregates (or secondary peds) in structured soils are often
covered by a variety of constituents (sometimes referred to
as ped cutans) such as clay coatings, iron oxides, and
organic matter. The physical and chemical properties of
these surface coatings can be radically different from those
of the soil matrix inside the microaggregates. Excellent
discussions of the physical and chemical makeup of struc-
tured soils are given by Brewer [1964] and Baver et al.
[1972]. Similar situations also apply to saturated and unsat-
urated fractured rocks. These examples indicate that appro-
priate physical and chemical interpretations are necessary in
order to express ¢, ,,; in terms of underlying transfer pro-
cesses and soil properties. They also suggest, as noted
before, that a certain characteristic time can have several
interpretations depending upon the physical and chemical
processes involved, i.e., external diffusion, internal diffu-
sion, kinetic or equilibrium sorption, sorption or diffusion in
series, or a combination of some or all of these properties.

Finally, M(s) is obtained by simply inserting L,,, in
(43a). This shows that the process of building and refining
M(s) or L(s) can be viewed as the progressive embedding of
a limited number of elementary transfer functions in one
overall transfer function. As before, (81), (17a), and (17b)
give

K'=ea,,1-¢,)8, (82a)
_ Xy = Boma
M= te,ma + tim,ma (te.mi + lim.mi + tdes,mi)
. & g

(82b)

which again shows that the characteristic transfer times are
additive. Notice that the last term of (82b) acts as the
desorption time 4., in (70). This means that a desorption
time at a macroscopic level can always be interpreted as an
equivalent mass transfer time (i.e., te.mi and t,, ., Or even
14es.mi) at a lower level. In other words, a desorption time is
not necessarily the characteristic time of a true chemical
adsorption process in the model but rather the characteristic
time of a process at a more microscopic scale.

If we approximate H%,,(s4) and H%,(s;) by first-order
equations which have the same zero and first-order mo-
ments, one obtains

(1 - ﬁma)Lmi(S) + Bma
(1 - Bma)Lmi(S) + Bma

a

Lma(s) =

I+ s(te,ma + tim,ma)
ma

(83a)

& i

1+ (te,mi + tim.mi + tdes.mi)s

Lmi(s) = (83b)
Finally, we can further reduce M(s) to N(s) by making use
of (82a) and (82b). Note that (83a) is the correct form of
(24) of Villermaux [1987].

5.6. Discrete Parallel Retention Sites

This case is encountered when a population of aggregates
with different physical or chemical properties is locally in
contact with mobile water (Figure 5¢). There are N aggre-
gate classes, each of which is composed of identical aggre-
gates. A complete model is at present only available in terms
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of average concentrations {C, ), which are defined as the
ratio of the mass of solute in the ith aggregate class to the
volume of the entire aggregate population. Let w; be the
fraction of sorbed solute in the ith aggregate class at equi-
librium. Let us further consider mass transfer from mobile
water to the ith aggregate class as a first-order process with
a mass transfer coefficient ;. The mass balance equation for
the ith aggregate class is

d(C,, -
< Pv’> = kiSp.i(Cm - S&L))

Podr (84)

!

where S, ; and a; = aw; are the external surface area and
the distribution coefficient of the ith aggregate class respec-
tively. Applying Laplace transforms and summing over the
aggregate population leads to

N
z (Cp,i)

|

(Cpy =1 w;
(s) C,. C,, a',; 1+ s7; (85a)
a,-V
Ti=—2 (85b)
kisp,i

The transfer function M(s) for this system is deduced from
(43a). A straightforward derivation shows that ty is given
by

N
ty= Z w;T;

i=1

(86)

For a single class of aggregates, M(s) again reduces to N(s).
With two classes, (85) enables one to model mass transfer
toward equilibrium sites (1, = 0, sorption sites in direct
contact with mobile water) which are in competition with
slowly adsorbing sites (m, >> r,, sorption sites in contact
with immobile water). This situation was considered by
Nkedi-Kizza et al. [1983].

Depending upon the physical nature of the transfer resis-
tance, different expressions can be derived for r;. We only
consider here the case where internal diffusion dominates
and assume that the soil aggregate population is composed of
a discrete set of aggregate size classes. The distribution
coefficient 8;,, + p,K, (i.e., a), the shape factor u, and the
bulk density p, are assumed to be identical for all size
classes. Consequently, w; is the volume or weight fraction of
the ith aggregate class. Assuming that the first-order approx-
imation holds for aggregates of any size, and using equation
(57), we obtain

12
Ti= M [T; (87 )
N 12
=2, Moo (87b)
i= L4
: w;V V,,
= —2E P! (87¢)
' sp.l p.i
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where /; is the ratio of the volume V,.i» to the surface area,
S,.i» of the ith aggregate class.

5.7. Continuous Distribution of Parallel
Retention Sites

The above model is easily extended to any continuous
distribution of parallel retention sites. Let J(7) dr be the
fraction of sorbed solute at equilibrium on sites having mass
transfer times within rand 7 + d7. L(s) is now given by

- f(7) d
L(s)=afﬂ‘r) T

g 1+7s

(88)

where f(7) is referred to as the transfer time distribution
(TTD) after Villermaux [1973, 19814, 1987]. Discrete
retention sites in parallel are accounted for by a sum of
delayed Dirac functions &t — 7;). From (17b) it follows
immediately that

thy= Jm f(7) dr (89)

0

If we view ras an internal diffusion time parameter and make
the same assumptions as in the previous section, (89) be-

comes
f I%g,(1) dI
0

D, (50)

Iy =np
where g,.(/) is the aggregate size distribution by weight.
Equation (90) is the continuous formulation of (87b).

We note that when 7is a combination of several charac-
teristic times of the same order of magnitude, the above
approach becomes meaningless since the TTD would then
depend on several independent and distributed parameters
(e.g., I, 8, and kq) instead of a single parameter (e.g., 7).

A TTD can also be approximated by an equivalent first-
order transfer function (i.e., N(s) instead of (88)). Such a
substitution will always preserve the zero- and first-order
moments of M(s). However, we shall show below that such
a substitution can be very misleading.

An alternative approach to this problem is given by
Rasmuson [1985] who focused especially on aggregate size
distributions. In another study, Authelin [1988a, b] inves-
tigated mass transfer to zeolite crystals of distributed size
(gas phase experiments). He showed that the TTD approach
was necessary to describe the observed BTCs.

5.8. Effect of First-Order Decay

In addition to mass transfer and sorption kinetics, solutes
may also be subject to chemical reactions during the trans-
port process. To preserve linearity of the problem, we
restrict ourselves to first-order kinetics. This case occurs
during radioactive decay, certain microbial degradation pro-
cesses, or when the solute is a reactant at trace levels with
respect to other possible coreactants or catalytic sites in the
soil. We further assume that the reaction takes place in both
the mobile and immobile water phases, and in the adsorbed
phase, and that wherever the solute is, it is subject to same
first-order decay coefficient k. This situation may not nec-
essarily be correct [van Genuchten and Wagenet, 1989).
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The transfer function is easily modified for decay by
making use of the results from the previous sections. First,
note that the net rate of decay, R, of solute in a volume V is
given by

R =kCV on
The net rate R’ of solute accumulation is
dc
R =V — 92)
dt

The mass balance equation for solute in any given region of
the soil (e.g., mobile water, immobile water, adsorbed
phase) involves the sum R + R’. In the Laplace domain, R
+ R’ becomes

R+R =V(s+kC (93)

which shows that s + k must be substituted for s in M(s) and
G,,(s) to account for the first-order decay.

Until now, the mean retention time has been independent
of any mass transfer or dispersion process. This situation
becomes different when decay takes place. Equation (36)
does not hold any more, since the effects of decay were not
included in G, (s). A complete derivation of the mean
retention time requires one to go back to (17a) and (175).
Assuming that M(s) = N(s) for the first-order approxima-
tion, the transfer function Gg(s) for the decay in a cascade
of mixing cells can be readily obtained from (33), (35), and
(71) by substituting s + k for s:

Gr(s) =G, {(s + K)[1 + M(s + k)]}

(s + k)t K’ -
=41+ 1+ (94)
J 1+ (s + k)ty
Applying (17a) and (17b) to Gz(s) leads to
Gr0) = |1+ (1 K N (95a)
=|lt+—[1+—
&) Jtg 1+ tyltg N
+ K
(1 + 144/1g)?
=1, MR © (95b)
ty K’
1+—[1+—
Jig ( 1+ IM/IR)
tg=1/k (95¢)

where tg is a characteristic reaction time. Equation (95b)
shows that ¢, is affected by kinetic processes as soon as a
decay reaction occurs. Comparing tg, ¢,,, and t,, allows one
to assess the relative importance of the different processes.
For example, when ¢z is much greater than t,, and t,,,
decay may be neglected and (95b) reduces to (36). Viller-
maux [1981b] has given a more detailed approach to ac-
count for reversible reactions and different kinetic rate
constants depending upon the phase where reactions take
place. Using Villermaux’s results in the discrete parallel site
model of section 5.6 would lead to the two-site transport and
degradation model of van Genuchten and Wagenet [1989].

5.9. A Comparison of the Transfer
Function Models

To conclude this section, we present some simulation
results to assess the validity and limitations of first-order

SARDIN ET AL.: A REVIEW OF THE NONEQUILIBRIUM TRANSPORT IN POROUS MEDIA

E(t) 4

(d)

osp ¢ —

04

03

o2p

031 4

o 2 4 & & 0 tfin

Fig. 6. Effects of internal and external mass transfer kinetics on
calculated breakthrough curves for a weakly dispersive system,
assuming spherical aggregates, J = 100 (P = 200, t,/t,,, = 5 1073),
K' =5, and ty/t,, = 2.4 for all curves. Curve a was obtained with
Lim/ty, = 1.8, t,1t,, = 0.6, curve bwith t,,,/t,, = 1.2, t,/t,, = 1.2,
curve ¢ with ¢;,,/t,,, = 0.6, t,/1,, = 1.8, and curve d with 1,,/t,, =
0, 7./t,, = 2.4. Figure 6d represents the first-order approximation.

approximations given by (58), (83a), or (83b) and to study
the properties of sites in parallel. As in section 3, we
consider the example of one-dimensional convective-
dispersive transport in a single porosity soil system with
equilibrium sorption. The residence time distribution for the
mobile water phase E () is then given by the mixing cell in
series model. For a single retention site the transfer function
for the detailed model with internal diffusion is

! ' N -J
Gaels) = il PR (96)
det ) 7 1

H(s)

+ st,

With the first-order approximation (71) a simplified transfer
function is obtained

)
Gim(s)=[1+— 11 + ——

97

where 1, is givenby“tf® dum Bf the characteristic mass
transfer times (equation (70)). Note that the simplified trans-
fer function is obtained by setting ¢;,, = 0 and r, = t,, in the
detailed model.

Figures 6 and 7 illustrate the effects of external and
internal mass transfer kinetics on BTCs obtained in a weakly
dispersive system (i.e., t% >> tp). The aggregates are
assumed to be spherical. In Figure 6, f),/t,, = 2.4 for all
cases, leading to BTCs which are quite asymmetrical since
ty > t, (compare with Figure 3). When external mass
transfer dominates (Figures 6¢ and 6d), there is a sharp
leading peak located around ¢ = r,,. On the other hand,
when internal diffusion is dominant (Figure 6a), the sharp
peak disappears and the simplified model (Figure 6d) be-
comes questionable. In Figure 7, z)/t,, = 0.6, causing all
BTCs to become more symmetrical than in Figure 6. Irre-
spective of the contributions of external and internal mass
transfer, the BTCs are almost identical which shows that the
simplified model is now a good approximation. We conclude
that the simplified model, i.e., Ggy(s), will yield accurate
results in most situations, except when ¢,,, >> ¢, and ¢, >
t,,. If experiments are performed under conditions where
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Fig. 7. Effects of internal and external mass transfer kinetics on
calculated breakthrough curves for a weakly dispersive system with
J =100(P =200, tp/t,, =51073), K’ =5, and tylt,, = 0.6 for
all curves. Curve a was obtained with t,,,/1,,, = 0.6, te/t, =0, and
curve b with #;,,/t,, = 0, 1,/1,, = 0.6. Curve b also represents the
first-order approximation.

the simplification holds, discrimination among the different
models and the contributions to ¢, will be extremely difficult
if not meaningless.

Figure 8 compares the simplified model (first-order ap-
proximation) with the detailed model in the absence of
external mass transfer limitations, assuming that the aggre-
gate is ecither a sphere or a slab. Result show that the
aggregate shape is of little importance in the detailed model.
Here again, the first-order approximation does not hold
because 1y, = t;,, > 1t,.

Figure 9 illustrates the effect of different transfer time
distributions (TTDs) for identical 1,,, K', J, and t, on
calculated BTCs. In other words, the mean retention time
and variance of all BTCs are independent of the TTD (see
equation (90)). The figure shows that different TTDs with the
same mean time t), can lead to different BTCs. This means
that the variance of the TTD is a crucial parameter affecting
the shape of a BTC. To our knowledge, only the TTD is
ultimately responsible for the very different shapes of BTCs
having the same mean and variance. Classical models ex-
cluding TTD will always give similar BTCs as soon as the
means and variances are matched, especially when ¢, is

E()4
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o First -order
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0t

OO 2 4 3 8 10
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Fig. 8. Comparison of calculated breakthrough curves showing
the effects of aggregate shape, and first-order approximation for
predominantly internal diffusion (J = 100, K’ = 5, 1;,,/t,,, = 2.4).
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Fig. 9. Effects of different transfer time distributions on calcu-
lated breakthrough curves assuming J = 100, X' = 5, and tylt, =
2. Curve a is for a single site with 7/t,, = 2; curve b is for two sites
with w) = 0.2, 71/t,, = 0, w; = 0.8, and Talt,, = 2.5; curve c is
for three sites with w; = 0.2, 7//t,, = 0, w, = 0.4, Tty =1,
w3 = 0.4, and 73/t,, = 4, and curve d is for a uniform distribution
varying from 7/t,, = 0 to 7/t,, = 4. All transfer time distributions
have the same mean time t,, = 2¢,,,.

smaller than ¢,, (Figure 7). This is due to the fact that M(s)
is well approximated by the first-order function N(s) in these
models, whereas M(s) as defined by (88) is not (except again
when f{7) reduces to a single delayed Dirac & function). This
point will be discussed in detail in section 7.

When no TTD is involved, asymmetrical BTCs have
their maximum located close to ¢t = r,, (see Figure 3 with
ty/t, = 0.44 and Figures 6a~6d and 8). When a TTD is
involved, Figures 95-9d show that the maximum can be
delayed with respect to ¢,,. This property indicates that a
TTD involving a fast exchanging site is necessary to account
for the observed BTC.

6. SIMULATING G,,(s) WITH A CELL
NETWORK MODEL

In addition to needing a model, M(s), for transfer at the
local level a second model is necessary for G,,(s), the
Laplace transform of the RTD of the solute in the mobile
water phase (section 4). We again assume steady flow and
show that system dynamics is a powerful tool for generaliz-
ing the mixing cell in series model. Moreover, we will give a
description for mobile water transport in more general terms
than only the RTD, E, (1).

The porous medium is assumed to be a one-dimensional or
multidimensional network of mixing cells [Rao and Hatha-
way, 1989] as shown in Figure 10. Each cell, j, has a total
volume V7;, a mobile water content 6,,;, and a volume of
mobile water V; = 8,,; V;. The volumetric flow rate from
cell i to cell j is denoted by q;;. We assume that the indices
i and j are properly ordered and that q;; = 0. Since we are
modeling convective transport in the mobile water phase
only, the mass balance equation for cell j is

dCpy 1 [ &

PR 2 9iCmi * GCmej + 41iCmtj — QjC mj
I

(98)
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Fig. 10. Schematic of a cell environment in a flow network.

where gq,; and qg; are flow rates coming from an external
source (artificial injection in cell j) and from the natural
groundwater environment, respectively. Cpyj and C,; are
the respective solute concentrations in these two fluxes. We
assume that C,p; is time independent, at least for the
duration of an experiment. The total flow rate Q; through
cell j is defined by

J
hl
Oj=qgi+q;+ 24 qij

i=1

(99)

The flow rate g5, leaving cell j toward the groundwater
environment or an external sink, is

J
as =0~ > i (100)

i=1

Let Cj ¢, Cgjss = Cgj, Cjjss be the concentrations at
steady state. Equation (98) gives
J
2 45Cius + AEChrss + ayCriss ~ 0,Cje =0 (101)
i=1
Subtracting (101) from (98) gives
J
dChi 1 :
dm ==\ 9Ch — QiCpy + 2 qiiCrmi (102)
t V;

i=1

where C', are concentration deviations from the steady state
values. Equation (102) is identical to (98) except that exter-
nal solute fluxes from the environment have been canceled.
This shows that constant fluxes from the environment can
always be canceled by appropriately shifting the zero con-
centration level of each cell. Below we will use (102) without
primes on the concentration variables. In the Laplace do-
main, (102) reduces to

J
= qij ~ qdij -
(l +stmj)cmj=_JCm[j+ E ——"iC,,,,» (103)
Q; 9
where 1,,; = V,/Q; is the mean convection time of mobile
water in cell j. Using matrix notation, (103) may be written
in the form

[F(s)]l,l[ém]J,l = [)7]1,1 (104)
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where [X], , is a matrix with p rows and g columns. A
comparison of (103) and (104) gives the elements of [['] and
[7]’

r,--(s) = - "'/ ; i#j
ij q;/9Q; J (105)
FU(s) =1+ L1y i=j
= C_mqulj
Y, = (106)
J QJ

The concentration response of any cell to an arbitrary
injection vector [¥] is thus given by

(Colsy = [T UL, (107)

where [T'(s)}] Jf} is the inverse of a transfer matrix generaliz-
ing the transfer function concept. When ¢;;C,;; = 1 and
Couk = 0 (k # D), q;sC ; is the flux response of cell j toa
Dirac input of nonreactive solute in cell i. In general, this is
not the RTD as defined in section 2.2. It is a RTD when q5
and g5 are the only fluxes between the environment and the
cell network. This situation represents an isolated stream-
tube with only one inlet and one outlet. When there are
several inlet and outlet fluxes toward the environment, & mj
defines a partial RTD upon normalization. Presently, the
properties of these partial RTDs have not been investigated
in detail, even in chemical engineering.

If we want the overall system response in the presence of
solute transfer, (33) shows that s{1 + M(s)] should be
substituted for s in (107). If necessary, different transfer
functions M ;(s) can be inserted in the expressions for Ti(s)
(equation 105)) to account for different physicochemical
properties of the different mixing cells. This approach allows
us to relax the assumption that all mass transfer coefficients
and sorption capacities must be independent of the location in
the soil system as it has been assumed by Villermaux [1973]
when he demonstrated the uncoupling relationship (33).

The above theoretical approach permits the description of
many situations when networks are chosen in accordance
with the prevailing soil structures or of the shape of the
observed partial RTD. For instance, a soil consisting of two
layers with different hydraulic properties, or a partial RTD
exhibiting two successive maxima, can be modeled by two
parallel series of mixing cells, thus characterizing two par-
allel convective-dispersive flows.

7. DiscussioN AND CONCLUSIONS

We have shown that system dynamics and the concept of
residence time distribution are powerful tools for modeling
the transport of linearly interacting solutes. The method
consists of first modeling the process at the smaller local
level and then progressively incorporating transfer functions
of various sublevels into the transfer function of an immedi-
ately higher level. The uncoupling theorem (equation (33)) is
an illustration of this method which enables one to sepa-
rately study solute transfer to a stationary phase and solute
transport in mobile water. The intermediate variables s, and
s4 illustrate the incorporation of adsorption kinetics in FH(s)
and the incorporation of the microaggregate dynamics in the
macroaggregate transfer function, respectively.

Solute transfer is described by a transfer function M(s),
which involves two types of parameters: distribution coeffi-
cients, a, and characteristic kinetic times, ¢ with various
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indices. First, we note that all characteristic times incorpo-
rate distribution coefficients reflecting equilibrium properties
of the soil system. This suggests that any interpretation or
estimation of a Kinetic parameter requires an accurate de-
scription of the equilibrium properties. Second, the charac-
teristic times can have different physical interpretations,
although their occurrence in M(s) needs to be established
only once. This problem is illustrated by the possibility of
having different interpretations for a desorption time at the
macrolevel in terms of mass transfer times at the microlevel,
by different assumptions about diffusion of adsorbed solutes,
or by different interpretations of te.me and t, ... Thus the
few generalized transfer functions described in this paper
can cover a large number of conceptually different physical
and chemical situations. This is the principle of system dynam-
ics which enables one to describe transient processes more or
less independently of possible physical interpretations.

Unfortunately, the possibility of having multiple interpre-
tations of the transport process also suggests that solving the
inverse probiem to recover the basic physical mechanisms
from a BTC is an inherently ill-posed problem. Except for
retention sites in parallel, all models for M(s) are repre-
sented accurately by the first-order approximation, N(s). This
means that several models can yield the same good fit of an
experimental BTC, and hence will result in the same value of
the overall characteristic time 1,,. Consequently, the question
arises of how to interpret an experimental BTC if the theoret-
ical curve is relatively insensitive to model structure?

One possible approach may be to first analyze the physical
meaning of the most reliable parameters such as the overall
characteristic time ¢,,. For instance, if ty is found to be
independent of the aggregate size I, the dominant process is
probably desorption (equation 65)). On the cther hand, when
ty depends on the square of I, internal diffusion (equation
(57)) should be the dominant process. Unfortunately, it is not
easy to vary [ in soil systems.

Another and more original approach would be to take
advantage of the relative insensitivity of BTCs to model
structure. When a detailed model is fitted to an experimental
BTC the resulting parameters are likely quite unreliable.
However, if the curve fit is good, the model is at least able to
accurately reproduce the BTC and hence also its time
moments. The possibly unreliable parameters can then still
be used to accurately calculate numerical values for the time
moments of any order and, for instance, the reduced vari-
ance. The different theoretical expressions for the variance,
depending upon the physical interpretations, could suggest
which operating or physical variables could be varied to test
the interpretation against new experiments. Authelin et al.
(19884, b] showed that this method can lead more accurate
variances, especially in comparison to direct calculation
from the experimental curves using (9) or (11). In a second
step, these authors used the accurate numerical variance to
investigate diffusion in a zeolite-based catalyst with two
porosity levels. The procedure was called the ‘‘moment
fitting method.””

A third possible approach would be to estimate some of
the characteristic times on the basis of physical and struc-
tural data in order to reduce the number of independent
fitting parameters. For instance, the thickness of the viscous
boundary layer is easily estimated from chemical engineer-
ing correlations [Froment and Bischoff, 1979; Levenspiel,
1972; Villermaux, 1982). In some cases, studies have claimed
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that these a priori estimates do not work very well. A likely
reason for this failure is that the estimated parameters often
have no relevance to the processes being studied. Hutzler et
al. [1986], Crittenden et al. [1986], Roberts et al. [1987],
Nicoud and Schweich [1989], and Brusseau et al. [1989] have
shown that independent estimates can be quite reliable,
provided that the physical processes responsible for the
observed BTCs are well understood.

Whatever approach is followed, fitting of kinetic parame-
ters to BTCs can at most be indicative of the most relevant
underlying mass transfer processes. Validation of the inter-
pretation can only be made by suitable experimental proce-
dures (not only breakthrough experiments) which must be
tailored to the assumed mass transfer process. The obvious
consequence is that understanding the underlying processes
is more a problem of physics and chemistry than one of
curve fitting.

Another question is what to do when the classical models
are unable to reproduce the experimental BTCs or when
proper interpretation of t,, seems impossible or question-
able? This question is implicitly raised by Hutzler et al.
[1986] who studied mass transfer in a laboratory column
packed with soil particles with sizes ranging from 0.05 to
about 0.5 mm. On the basis of least squares fitting of the
observed BTCs they concluded that internal diffusion was
the controlling mass transfer process. The aggregate size
was considered as the single unknown parameter in the
fitting procedure. They observed that the best descriptions
were obtained with an aggregate size which was about 10
times larger than the mean particle size. The aggregate size
was also found to vary with solute and pore water velocity.
Although ‘‘aggregate’” is an ill-defined entity, these and
other anomalous results can be explained readily by the TTD
concept. First, note that a tenfold range in the particle-size
distribution results in a 100-fold range in the associated
internal mass transfer times (equation (57)). As was shown in
Figure 9, different TTDs with the same mean ¢ Mm can lead to
radically different BTCs. Consequently, when the transfer
function M(s) of a relatively broad TTD (equation (88)) is
approximated by a first-order model, N(s), the results can
become very misleading even though the fit seems good.
Moreover, (90) shows that the mean mass transfer time ¢ m of
an equivalent single adsorption site depends on the second
order moment of the aggregate size distribution by weight.
For a broad distribution the second-order moment can be
much larger than the square of the first-order moment. This
property could potentially explain the large value of the
fitted aggregate size found by Hutzler et al.

The variation of the mean aggregate size with pore water
velocity and the injected solute tracer as reported by Hurzler
et al. [1986] can also be explained by the TTD concept.
Assuming that o’,> = 2/Pand using (39a), (39b), and (86),
one obtains

2 kX

(108)

Let us use the term “‘fast site subpopulation’’ (FSSP) for the
largest set of sites & which satisfies

(1 +K")?
Z WTy =—————1p

: (109)
p K
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in which 7, can be either a transfer time which is much
smaller than 7, or a larger transfer time of small weight w,.
As illustrated in Figure 3, BTCs are affected by internal mass
transfer when the contribution of this mass transfer process
to the overall variance is larger than the contribution of the
dispersion process (t}, > 1,,). Equation (109) suggests that
sites of the FSSP do not significantly affect BTCs. Conse-
quently, least squares fitting of a BTC will ignore these sites
and results in an apparent mean transfer time t'y given by

= > w,T;

i & FSSP

(110)

Although 7; is assumed to be independent of the pore water
velocity, ¢5, should in general depend on the flow rate.
Hence the FSSP and ¢, should also depend on flow rate.
Finally, (109) indicates that the FSSP and t"y depend on the
solute tracer through K’. Consequently, when ¢, is inter-
preted in terms of the apparent aggregate size, the fitted size
will depend on the pore water velocity and the injected
solute as well. From a qualitative point of view, all obser-
vations reported by Hutzler et al. can be explained with the
above FSSP and the fact that these authors used an equiv-
alent first-order system to account for a broad transfer time
distribution. Notice however, that other explanations are
possible. For instance, Cui et al. [1990] showed that a flow
rate dependent mass transfer time can be due to a radially
non uniform fluid velocity.

Even if the model for M(s) is fundamentally sound, one
still must determine G,,(s). Although the uncoupling theo-
rem provides a basis of our modeling method, (33) is merely
a theoretical relationship which eventually defines G,,(s).
Since any solute is transferred to immobile water, E, (1)
cannot be measured. E,,(¢) can only be approximated using
solutes for which M(s) is presumably known. Consequently,
a good model for E, () should result more from a proper
physical understanding of the flow structure, than from the
inclusion of many fitting parameters. We strongly emphasize
that determining kinetic parameters by least squares curve
fitting on experimental BTCs requires an accurate model for
E, (1) [Cul et al., 1990].

As a general conclusion, we believe little is gained by
using overly sophisticated transport models without a con-
comitant understanding of the fundamental physical and
chemical processes involved. Working with transport mod-
els as such adds little to our understanding of the assumed
processes. On the other hand, the interpretation of model
parameters, and a study of their sensitivity to selected
physical, chemical, and other parameters adds much more to
our understanding of underlying transport processes. We
also believe that the TTD concept should be recommended
for modeling soil systems with distributed properties such as
aggregate size, or fracture width in fractured media. How-
ever, the distribution must be determined independently of
any fit to observed BTCs. Although our conclusions are
drawn from transport studies involving linearly interacting
solutes, they apply equally well or more to nonlinear sorp-
tion. In the latter case, BTCs broadening is not only due to
dispersion and various Kinetic processes but also to nonlin-
ear equilibrium sorption. Evaluation of the contributions to
transport of these three often simultaneous processes re-
mains an overwhelming challenge in soil science and hydrol-
ogy and even chemical engineering.
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APPENDIX

Consider a linear dynamic system relating x(r) and y(?).
The transfer function is

(Al)

Using the Laplace transform theory, it can be shown that

Lim sy(s) = Lim y(r) = y() (A2)
s—0 t— o
Assume that x(z) is a step change given by
a
x(t) = aH(1), x(s) = ; (A3)
Combining (A1), (A2), and (A3) gives
6 =22 2 (Ad)
a  x(»)

where y(=) and x(e) are constant since a linear system
asymptotically reaches a steady state upon a step change of
the input. Moreover, any steady state can be considered as
the asymptotic state of an earlier step change. Consequently,
(A4) shows that G(0) is the ratio y/x at steady state in the
real time domain.

NoTATION

Definition or first use of a symbol is indicated between
parentheses.

A(s) adsorption transfer function

(equation (665)).

transfer function coupling

macropores and micropores

(equation (815)).

C(1), C(L, 1), C(0, 1) concentration signals [ML 73].

C, concentration of solute in contact
with an aggregate [ML ~3]

(equation (78)).

concentration of solute in mobile

water, at aggregate boundary (M

of solute/L* of mobile water)

(equations (19) and (45)).

concentration in immobile water

(M of solute/L> of immobile

water) (equation (19)).

concentration of solute in an

aggregate (M of solute/L> of

aggregate) (equation (40)).

D, effective internal diffusion
coefficient [L2T '] (equation
(54)).

D, apparent effective internal

diffusion coefficient [L?T }]

(equation (55), (59), (61), and

(62)).

effective surface diffusion

coefficient [L2T '] (equation

(60)).

D longitudinal dispersion [L2T ']

B(s)
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4 mol

E(t))

E, (1)

Ep (D

F(1)

f(7)

G(L, s}, G(s), Gj(s)

Gn(s)

Gr(s)

g.(1)

H
H(s)

H(n)

K’

L(s)

M(s)

N(s)

ny
Rims Nps Ny

(equation (19)).

ionic or molecular diffusion
coefficient in free water [L3T 1]
(equation (44) and (54)).
residence time distribution (RTD)
[T™'] (equation (4)).

residence time distribution of
mobile water [T '].

partial residence time distribution
from cell i to cell j{T!].
cumulative residence time
distribution (equation (7)).
transfer time distribution [T™!]
(equation (88)).

transfer functions excluding
chemical reaction decay.
transfer function of a nonreactive
solute in the mobile phase
(equations (334) and (35)).
transfer function including
chemical reaction decay
(equation (94)).

aggregate size distribution by
weight [L ~'] (equation (90)).
height of the bundle of tubes.
transfer function accounting for
internal diffusion (equation (49)).
Heaviside function.

number of mixing cells.

capacity factor (equations (36)
and (52)).

adsorption constant (L> of liquid/
M of solid) (equation (41)).
0.,,/8,, (equation (22)).

rate constant of a first-order
chemical reaction [T 7]
(equation (91)).

desorption rate constant [T ']
(equation (63)).

external mass transfer coefficient
[LT™'] (equation (44)).

mass transfer coefficient for site i
[LT™"] (equations (73) and (84)).
overall mass transfer coefficient
[T~'] (equation (20) and (27)).
length [L].

length of a tube [L].

transfer function for the mass
transfer process relating solute
concentrations (equation (434)).
characteristic length of an
aggregate (V,/S,)[L] (equation
(46)).

transfer function for the mass
transfer process relating solute
amounts (equations (22), (335),
(34), and (43a)).

first-order approximation for
M(s) (equation (71)).

amount of tracer injected [M].
amount of solute in immobile,
mobile water, adsorbed [M].
Péclet number (equation (25)).

0
o

qEj

qij
qij

djs

ds

R
1, 82, 53, 54
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volumetric flow rate [L3T '],
total flow rate through cell j
[L3T '] (equation (99)).
volumetric flow rate from
groundwater to cell j [L3T7']
(equation (98)).

volumetric flow rate from cell i
tocell j{L3T™ 1 (equation (98)).
volumetric flow rate of injection
tocellj[L3T™"] (equation 98)).
volumetric flow rate from cell j
to environment or outlet
piezometer [L3T '] (equation
(100)).

specific flux [ML 2T7']
(equations (44) and (53)).

net rate of reaction [MT ']
(equation (91)).

net rate of accumulation [M7 ™!}
(equation (92)).

concentration of adsorbed solute
(M of solute/M of solid).
Laplace parameter [T}).
modified Laplace parameters
(equations (33b), (56a), (68b),
and (81c)).

external surface area of an
aggregate [L?] (equation (45)).
time {7T].

characteristic dispersion time [7T]
(equations (32a) and (32b)).
characteristic desorption time [7]
(equation (63)).

characteristic external mass
transfer time [T] (equation (47)).
characteristic internal diffusion

‘time [T] (equation (57)).

overall characteristic transfer
time [T] (equations (38)).
modified overall characteristic
transfer time [T] (equations (315)
and (39¢)).

apparent overall characteristic
transfer time [T} (equations
(109)).

characteristic convection time in
mobile water [T] (equations
(25b)).

characteristic reaction time [7]
(equation (95¢)).

mean retention time [T]
(equations (36) and (955)).
residence time [T]).

mean residence time [T]
(equations (10), (13), and (15)).
mean time of the input signal [T}
(equation (18a)).

mean time of the output signal
[T] (equation (18a)).

pore water velocity [LT ']
(equation (19)).

fluid velocity in the bundle of
parallel tube model.
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Vv
vj

Vv

a

Ve

VTj
X
Y

y(), y(L, 1), y(0, 1)

Greek symbols

Bim

I'(s)
0,,, » eim

Subscripts

des

total volume [L3].

volume of mobile water in cell
JIL?] (equation (98)).

volume accessible to the fluid
[L3] (equation (15)).

volume of an aggregate [L3]
(equation (43)).

total volume of cell j{L?].
abscissa [L].

defined by equation (106).
concentration signal [ML ~3].

distribution coefficient (equation
“4n).

volume fraction of immobile
water relative to aggregate
volume (equation (40)).

viscous boundary layer thickness
[L] (equation (44)).

volume fraction of aggregates
relative to the whole volume
(equation (43a)).

volume fraction of layer i relative
to aggregate volume (equation
(75)).

defined by equation (104).
volume fraction of mobile and
immobile water relative to the
whole volume.

transfer function defined by
equation (755b).

shape factor (equation (57)).
kth-order time moment of the
RTD [T*] (equation (9)).
kth-order time moment of the
RTD centered about the mean
[T*] (equation (11)).

bulk density of aggregates
[ML73].

variance of the RTD [T?]
(equation (12a) and (14)).
reduced variance (equation
(12b)).

variance of E,,(r) reduced by ¢2
(equation (37)).

mass transfer contribution to the
reduced variance (equation
(39b)).

variance of the input signal [7?]
(equation (185)).

variance of the output signal [T?]
(equation (185)).

tortuosity factor (equation (54)).
characteristic transfer time for
layer or site {[T] (equations (73)
and (8554)).

cross-section area [L?].

fraction of solute in ith aggregate
at equilibrium (equation (85a)).

desorption.
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det detailed.
E environmental groundwater.
I injection.
i,k layer of retention site i, k.
im immobile water,
J cellj.
m mobile water.
ma macropores.

mi micropores.
p total on the aggregate.
s at aggregate boundary.
ss steady state.
simplified.

Superscripts

x"  just downstream location x.

Other

f(s) Laplace transform of fn)
(equation (1)).

averaged value of X over
aggregate volume.

V gradient operator.

X

[A] matrix A.
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