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ABSTRACT 

Kool, J.B., Parker, J.C. and Van Genuchten, M.Th., 1987. Parameter estimation for unsaturated 
flow and transport models - -  A review. J. Hydrol., 91: 255-293. 

This paper reviews the current status of parameter estimation techniques and their utility for 
determining key parameters affecting water flow and solute transport in the unsaturated (vadose) 
zone. Historically, hydraulic and transport properties of the unsaturated zone have been deter- 
mined by imposing rather restrictive initial and boundary conditions so that the governing flow 
and transport equations can be inverted by analytical or semi-analytical methods. Contrary to 
these direct methods, parameter estimation techniques do not impose any constraints on the model, 
on the stipulation of initial and boundary conditions, on the constitutive relationships, or on the 
treatment of inhomogeneities via deterministic or stochastic representations. While parameter 
estimation analyses of subsurface saturated flow are increasingly common, their application to 
unsaturated flow and transport processes is a relatively new endeavor. Nevertheless, a number of 
laboratory and field applications currently exist that show the great potential of parameter 
estimation techniques for improved designs and analyses of vadose zone flow and transport 
experiments. Several practical examples for determining unsaturated soil hydraulic functions and 
various transport parameters are presented, and advantages and limitations of the estimation 
process are discussed. Specific research areas in need of future investigation are outlined. 

INTRODUCTION 

Increasing demands on groundwater resources have greatly accentuated the 
need for accurate predictions of subsurface flow and chemical transport to 
evaluate effects of management practices and alternatives for contaminant  
remediation. Computer simulations based on numerical models have been 
increasingly used for these purposes, a trend that  undoubtedly will continue as 
more sophisticated models are being developed and computer costs keep 
decreasing. However, with greater model sophistication comes a need for more 
intensive data requirements, and real improvements in precision will eventu- 
ally hinge on our ability to accurately determine the required model par- 
ameters. Difficulties in model calibration are nowhere more evident than in 
a n a l y s e s  o f  w a t e r  a n d  c h e m i c a l  t r a n s p o r t  i n  t h e  u n s a t u r a t e d  ( v a d o s e )  z o n e .  

S i n c e  m o s t  g r o u n d w a t e r  c o n t a m i n a n t  s o u r c e s  o r i g i n a t e  i n  t h e  u n s a t u r a t e d  

z o n e ,  p r o p e r  u n d e r s t a n d i n g  a n d  m a n a g e m e n t  o f  t h i s  z o n e  is  e s s e n t i a l  t o  
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protecting or improving the quality of groundwater supplies. Model calibra- 
tion in the vadose zone may be especially difficult because of problems in 
formulating accurate  constitutive relationships for multiphase flow. 

Hydraulic and transport  properties of the unsaturated zone are commonly 
determined by imposing rather  restrictive initial and boundary conditions so 
that  the governing equations can be inverted by analytical or semi-analytical 
methods. Such procedures allow direct computation of the specific functional 
form of deterministic model coefficients. A multitude of laboratory and field 
methods currently exist (Klute, 1972; Bouwer and Jackson, 1974) that have 
found great utility in the study of unsaturated flow and transport  processes. 
Unfortunately,  these direct inversion methods also have a number of limita- 
tions which restrict  their practicality, in particular when used for calibrating 
field-scale models. Experimental analyses based on direct methods are gener- 
ally quite time-consuming and hence costly owing to the need to meet con- 
ditions requisite for the explicit calculation of model coefficients. For example, 
in some procedures it is necessary to repeatedly achieve steady-state or equili- 
brium hydraulic conditions for different boundary conditions. Often the 
governing equations themselves also need to be linearized or otherwise ap- 
proximated to allow their (semi-)analytical inversion. Another limitation re- 
sults from the need to impose relatively simple initial and boundary conditions. 
This is especially problematic for field experiments where accurate control of 
the boundary conditions on a large scale can be difficult and expensive. Given 
the inadequacy of most currently available models to describe field-scale beha- 
vior, options to deal with spatial heterogeneity in more than a superficial 
manner are also severely curtailed by the direct inversion requirement. Fin- 
ally, information concerning parameter uncertainty is not readily obtained 
from direct inversion techniques. 

An alternative and more flexible approach to solving the inverse problem is 
to employ parameter estimation techniques. In this approach, the direct prob- 
lem is posed for prescribed but arbitrary initial and boundary conditions, while 
the physical problem itself can be solved with any appropriate analytical or 
numerical method. The constitutive relations thought to be applicable to the 
system are parameterized based on a-priori knowledge, and the coefficients 
determined by means of an optimization algorithm that extremizes some obj ec- 
tive function (e.g., to minimize deviations between observed and model- 
predicted output). Contrary to direct inversion methods, the optimization 
approach does not put any inherent constraint on the form or complexity of the 
model, on the stipulation of the initial and boundary conditions, on the 
constitutive relationships, or on the treatment of inhomogeneities via deter- 
ministic or stochastic representations. Thus, a major advantage is that  experi- 
mental conditions can be selected on the basis of convenience and expeditious- 
ness, rather  than by a need to simplify the mathematics of the direct inversion 
process. Also, if information concerning parameter uncertainty and effects or 
model accuracy is desired, it can be obtained from the parameter estimation 
analysis with little additional effort. 



257 

What one sacrifices for the flexibility of the parameter estimation method is 
an ability to determine the specific form of the constitutive properties of the 
system. One must assume some model formulation which is presumed to hold 
to a sufficient degree of approximation. If more than one possible parameteriza- 
tion is deemed feasible, the problem of parameter identification arises which 
involves performing the estimation analyses for many possible models, and 
selecting from those models the most accurate or precise one in terms of some 
objective criterion. Here, we will deal primarily with the parameter estimation 
problem and only peripherally with the problem of parameter identification. 
Clearly, if the adopted parametric model does not accurately represent the 
behavior of the system, then results of the parameter estimation analysis will 
be of dubious utility. 

Other sources of parameter uncertainty are related to the ill-posedness of 
many inverse problems. A problem is ill-posed when it has either no solution 
at all, no unique solution, or the solution is unstable (Isaacson and Keller, 
1966). In practice, ill-posedness is characterized by non-uniqueness and in- 
stability (Yeh, 1986). Non-uniqueness occurs when there are multiple par- 
ameter vectors that  correspond to extrema of roughly equal magnitude in the 
objective function, making it impossible to determine the correct solution. As 
Yeh (1986) points out, the uniqueness problem is closely related to the notion 
of parameter identifiability, i.e. whether or not it is possible to obtain accurate 
estimates of the parameters in the mathematical model from available data. 
Identifiability thus depends on both the assumed model and the experimental 
data used. A frequent cause for ill-determined parameters is correlation among 
them. When parameters are highly correlated, a change in one parameter is 
balanced by a corresponding change in the correlated parameter, with the 
result that  neither can be determined accurately. On the other hand, even 
when the parameters in a model are completely independent, the available 
experimental data may lead to an objective function that  lacks sensitivity to 
one or more of the parameters, again with the result that  these parameters will 
have large estimation variances. Instability, on the other hand, occurs when 
the estimated parameters are excessively sensitive to changes in data. Rela- 
tively small measurement errors can then lead to significant errors in 
estimated parameter values. 

The main purpose of this paper is to illustrate the application of parameter 
estimation techniques to the determination of key parameters affecting flow 
and transport in the unsaturated zone. Before doing so, a brief review of 
relevant l i terature dealing with the parameter estimation process in general 
will be given, followed with specific applications to the analysis of water flow 
and solute transport  in the vadose zone. A few areas in need of further investi- 
gation are outlined at the end of this paper. 

PARAMETER ESTIMATION METHODS 

This section briefly reviews the general formulation and solution of the 
parameter estimation problem. The discussion is by no means exhaustive. With 



258 

the exception of the penalty function method, only unconstrained parameter 
estimation is considered. The discussion is further limited to Newton-type 
optimization techniques. Other methods, such as steepest descent and con- 
jugate gradient methods are left out. 

G e n e r a l  f o r m u l a t i o n  o f  t he  e s t i m a t i o n  p r o b l e m  

Many parameter estimation problems can be formulated as a weighted 
least-squares minimization problem: 

minO(b) = ~[q* - q ( b ) ] T W [ q  * -- q(b)] + ½(b* - b ) T V ( b  * - b)  (1) 
b 

where the objective function (or performance index), O(b) ,  is a function of the 
model parameters b, b = {bl . . . . .  bin}T; q*  = { q * , . . . ,  q*}Tis the observation 
vector whose elements represent measured heads, water contents, concentra- 
tions or fluxes; q ( b )  = {ql (b) . . . . .  q ,  (b)} T represents the predicted response for 
a given parameter vector b; b* represents direct estimates or measurements of 
the parameters b; and W and V are symmetric weighting matrices. The coef- 
ficient ½ in eqn. (1) is purely for notational convenience. The objective is to find 
the parameter vector b f that  minimizes eqn. (1) or, in other words, results in a 
best fit between the model and available data. Provided the problem has a 
unique solution, the final parameter values b f are also the best estimates for the 
unknown model parameters b. 

The second term of eqn. (1) is sometimes called a plausibility criterion (e.g., 
Carrera, 1984). As Townley (1983) remarks, inclusion of this term in eqn. (1) is 
equivalent to the penalty function approach for constraining parameters to 
remain in some feasible region around b*. When the parameter estimates b 
move away from b*, the contribution of the second term of eqn. (1) to the total 
weighted sum of squares will increase quadratically and minimization of O(b)  

can only be achieved if b remains close to b*. The weighting matrices W and 
V contain information about measurement accuracy, as well as possible cor- 
relations between measurement errors and between parameters. In the absence 
of any additional information besides the observations q*, the simplest and 
recommended (Beck and Arnold, 1977) approach is to set W equal to the 
identity matrix and V to zero: 

W = 1, V = 0 (2) 

In this case, eqn. (1) reduces to the well-known ordinary least-squares (OLS) 
problem: 

minO(b) = 1 , 1 ~[q - q ( b ) ] r [ q  * - q(b)] = ~ [q* - q(b)] 2 (3) 
b i - 1  

The OLS formulation has probably been the most popular one for parameter 
estimation problems. Its at tract ion is due to its simplicity and because it 
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requires a minimum amount of information. When observation errors are 
normally distributed, are uncorrelated and have a constant variance, the OLS 
estimates possess optimal statistical properties (Bard, 1974). When these con- 
ditions are not met, the OLS method will no longer yield optimal parameter 
estimates in terms of precision and minimum variance. When the normality 
assumption alone is violated, OLS can still be used with good results (Beck and 
Arnold, 1977). 

More serious difficulties arise due to violation of the constant variance and 
uncorrelated errors assumptions. These situations often occur in practical 
problems. For instance, error variances are commonly found to increase with 
the magnitude of the property being measured. Unequal error variances also 
result when the observation vector q* contains different types of measurements 
(e.g., pressure heads and water contents) that  are expressed in different units. 
In some cases the remedy is quite simple. In the case of correlated mean and 
variance, a suitable transformation (e.g., logarithmic) of the measurements 
may be sufficient to stabilize variances. In general, the weighting is achieved 
through the matrices W and V. In what is generally called the weighted 
least-squares (WLS) method, W is a diagonal matrix which corrects for unequal 
error variances, and V is taken as zero. The elements o f  W are chosen such that  
the most accurate measurements receive the most weight. The elements of W 
and V may be chosen by the modeler based on knowledge and understanding 
of the physical system. Since subjective procedures may lead to biased par- 
ameter estimates, a preferred method is to base the weighting on statistical 
considerations. This leads to selection of the inverse of the error covariance 
matrix as the weighting matrix: 

w =  C~ ~ 

Cq = E[(q* - ~)(q* - ~ ) T ]  (4) 

4 = E(q*)  

where E denotes expectation. The diagonal elements of W account for unequal 
error variances, and off-diagonal elements for correlated errors. In case the 
off-diagonal elements of W are also taken into account, the method is classified 
as generalized least-squares (GLS). Often, when a method is described as WLS 
or GLS, no prior information on the parameters themselves is presumed and the 
objective function consists of only the first term of eqn. (1). 

Although the formulation of the parameter estimation problem as a 
weighted least-squares problem can be arrived at by heuristic arguments, 
casting the problem in the framework of either maximum likelihood or 
Bayesian estimation in practice also leads to objective function (1) (Townley, 
1983; Carrera, 1984). Whereas the underlying concepts are quite different, each 
of the latter two methods leads to the same estimator. The maximum likelihood 
(ML) interpretation is more commonly used, because the ideas it involves are 
more straightforward (Beck and Arnold, 1977; Townley, 1983). In the ML 
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method, model parameters are viewed as unknown but deterministic and the 
objective is to find the parameters that  maximize the likelihood of obtaining 
the measured data, given the joint probability density function of all measure- 
ments. A common approach is again to assume errors are normally distributed. 
This leads to the convenient form of eqn. (1) for the objective function with W 
and V given by: 

W = C ;  1, V = C ;  1 (5) 

where Cq was defined previously and Cb is analogously given by: 

Cb = E [ ( b  - 5 ) ( b  - b') T] i (6) 

I 6 = E ( b )  

Hence, W and V are inverses of the covariance matrices of measurement errors 
and prior parameter estimate errors, respectively. 

If a distribution of errors other than the normal distribution is assumed, the 
resulting objective function will not have the generalized least-squares form of 
eqn. (1). Although the true error distribution is frequently unknown, violation 
of the normality assumption will generally not lead to serious errors (Bard, 
1974). Maximum likelihood estimates are asymptotically (i.e. for large samples) 
unbiased, normally distributed and have minimum variance (Bard, 1974). To 
achieve the full benefit of the ML method, the covariance matrices Cq and Cb 
need to be specified. Indeed, Beck and Arnold (1977) recommend simple OLS 
estimation if these matrices are completely unknown. In general, the weighting 
matrices will not be known a-priori. In some cases the appropriate weights in 
the objective function can be estimated along with the model parameters. 
Examples are given by Bard (1974), Beck and Arnold (1977), Sorooshian and 
Dracup (1980), and Troutman (1985). A generally applicable procedure is the 
two-stage least-squares method recommended by Cooley (1982) and Sadeghi- 
pour and Yeh (1984). The first stage consists of OLS estimation which utilizes 
only the available observations q*. The OLS solution will generally not lead to 
optimal parameter estimates, but it will provide unbiased estimates of the error 
covariances. Let e be the residual vector at the OLS minimum: 

O(b f) : [q* - q(b f ) ]T[q  * -- q(bf)] = eTe  (7) 

An unbiased estimate of Cq is then given by: 

1 
Cq - n - 1 eeT  (8) 

where n is the number of observations. To further improve the parameter 
estimates, the second stage of the procedure solves the generalized least 
squares problem using the estimated Cq to provide weights. Based on a number 
of numerical experiments involving estimation of aquifer transmissivities from 
hydraulic head data, Sadeghipour and Yeh (1984) concluded that the two-stage 
approach as compared with OLS estimates led to significantly better parameter 
estimates. 
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In cases where prior information on the model parameters is available, the 
two-stage procedure may be extended to include a plausibility criterion. The 
parameter error covariance matrix Cb may be estimated at the end of the first 
stage from: 

eTe 
Cb - - -  H -1 (9) 

n - -  m 

where m is the dimension of the parameter vector and H is the Hessian, or 
matrix of second derivatives, of the objective function with respect to the 
parameters with components: 

620 
Hij - ~bi~bj (10) 

Depending on the algorithm for solving eqn. (1), H will already be available or 
can be easily computed at the end of the first stage estimation• Note that  
regardless of whether or not the second stage estimation is carried out, eqn. (9) 
may be used to provide an estimate of parameter uncertainty. As an overall 
index of inversion precision, a norm such as the trace or maximum eigenvalue 
of Cb may be employed (Yeh, 1986). 

Solut ion methods  for least-squares problems 

In this section Newton's and related methods for solving least-squares mini- 
mization problems will be reviewed. The starting point is the objective func- 
tion, given by eqn. (1) in the previous section. In order to simplify the notation 
it is assumed that  the weighting matrices W and V are diagonal. This allows 
a new vector of residuals r to be written, where: 

rl Wl[q~l - -  q l ( b ) ]  

rn w~ [qn* -- qn(b)] 
= ( n )  

r~ ÷ vl (b* - bl) 

r,+ vm(b* - bin) 

with: 

w,  = (w~,)  '~2, vj = ( v J  ~ 

Unequally weighted measurements and prior parameter information are all 
lumped into r, so that  eqn. (1) becomes: 
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N 

minO(b) = ~rTr = ½ ~ ~ (12) 
b i=l 

with N = n + m. If W and V are not diagonal, they must be propagated 
explicitly in subsequent equations. While this is a straightforward procedure 
(e.g., Beck and Arnold, 1977; Townley, 1983) the equations become lengthier 
and salient features of the different solution methods are less clear. Unless the 
model is linear in all parameters, minimization of eqn. (12) must be carried out 
iteratively. Initial values, b °, for the parameters must be supplied by the user. 
At every iteration, a linear system of equations is constructed and solved to 
give a correction Ab for the current parameter vector b i, such that: 

O(b i + Ab) ~< O(b ~) (13) 

The i teration continues until  some suitable convergence criterion is satisfied. 
Commonly used stopping criteria are: 

O(b ~+1) - O ( b  ~) <~ ~ (14) 

and/or: 

Ab i <~ "c 2 

where T~ and z2 are set to some small value. 
Newton's method can be derived by writing a 3-term Taylor series expansion 

for O(b) around bi: 

O(b~ + Ab) = O(b ~) + VO(bi)TAb (15) 

+ ~AbTV20(bi)Ab + "small" 

where "small" contains terms of the order of IIAbll 3 and smaller. We wish to 
select Ab so that  O(b i + Ab) is approximately minimized. The correction Ab is 
determined such that: 

(l)(Ab) = VOTAb + ½AbTV2OAb (16) 

has a minimum. A necessary condition for Ab to be a minimizer is that  the 
gradient of ¢(Ab) is zero: 

VO + V2OAb = 0 (17) 

and thus: 

Ab = -(V20) 'VO (18) 

First and second derivatives VO and V20 are obtained by differentiating eqn. 
(12) with respect to b: 

N 

V O  = E r i V r i  = J T r  (19) 
i 1 

and: 
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N 

V20 = H = ~(VriVr T + riV 2ri) = j T j  + S (20) 
i = l  

where J is called the Jacobian or sensitivity matrix and H is the Hessian (see 
eqn. 10). Substitution of eqns. (19) and (20) into eqn. (18) gives Newton's 
algorithm for updating the unknown parameters b: 

Ab = - ( j w j  + S ) - I j T r  (21) 

In the so-called full-Newton method, the Hessian (eqn. 20) is evaluated directly. 
This method is (at least locally) quadratically convergent (Dennis and Schna- 
bel, 1983) and will quickly converge for most problems. A major disadvantage 
of the full-Newton method is the cost of evaluating the second derivatives: 

V 2rk - ~2rk (22) 
~bi~bj 

These second derivatives are generally not available analytically. Because 
approximation by finite differences requires (rn 2 + 3m)/2 + 1 function evalua- 
tions for m parameters, this can greatly add to the overall computational 
expense. The full-Newton method is for this reason, not commonly used for 
solving non-linear least-squares problems. More popular are modifications of 
Newton's method that  do not calculate eqn. (20) directly, but use some 
approximation thereof. These modifications are known as quasi-Newton, 
Gauss-Newton and Levenberg-Marquardt,  respectively. Closest to the full- 
Newton method is the quasi-Newton method which approximates the Hessian 
from available first derivative information using a secant update method. A 
positive definite matrix is constructed and updated at every iteration of the 
optimization algorithm so that  it yields an approximation to H or H-  1 in far 
fewer steps than a full Hessian evaluation requires. Positive definiteness of the 
updated matrix ensures that  the optimization will proceed in a descending 
direction. Well-known general methods for updating the matrix include the 
Davidon-Fletcher-Powell  (DFP) and Broyden-Fletcher-Goldfarb-Shanno 
(BFGS) methods. Equation (20) shows that  the least-squares Hessian consists 
of a first derivative term j T j  and a second derivative term S. Dennis et al. 
(1981) describe a quasi-Newton algorithm that  takes into account this special 
structure of the least-squares Hessian by approximating only the second de- 
rivative term in eqn. (20) with a secant update, and adding this to the directly 
evaluated first derivative term. 

In the Gauss-Newton method it is simply assumed that  the first term j T j  
above is a sufficient approximation to the Hessian. Comparison with eqn. (19) 
shows that  this is a reasonable assumption when the residual vector r is small. 
In fact when the residuals are zero at the minimum, the Gauss-Newton method 
is asymptotic to Newton's method near the minimum and thus locally quadrat- 
ically convergent. On the other hand, when the solution is far from the mini- 
mum or when the residuals remain large at  the minimum, the Gauss-Newton 
method may fail to converge at all. Another problem with the Gauss-Newton 
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method is its sensitivity to rank deficiency in the Jacobian J which occurs 
when one or more of the columns of J are linear combinations of other columns. 
This rank deficiency is related to the identifiability problem mentioned in the 
introduction. Identifiability of the model parameters requires that  the Hessian, 
given by eqn. (20), is non-singular. Otherwise, eqn. (18) will not have a unique 
solution. For the Gauss-Newton method where H is approximated by j T j ,  a 
non-singular Hessian is equivalent to a full rank Jacobian. Exact rank defi- 
ciency in the Jacobian occurs when two or more parameters in the model are 
linearly dependent. Such overparameterization can usually be detected and 
corrected by inspection of the model that  is fitted. Because of finite precision 
arithmetic, problems will often arise in practice when parameters are highly 
correlated, e.g., with correlation coefficients exceeding 0.90. This leads to a 
poorly conditioned Jacobian and slow convergence of the optimization routine. 
Numerical problems can be alleviated to some extent by using robust techni- 
ques (such as orthogonalization) for solving the linear least-squares problem 
(21), but the final parameter estimates may still have large variances. This 
latter problem can only be eliminated by choosing a simpler model and/or by 
including additional information in the objective function. 

In the Levenberg-Marquardt  method the Hessian is approximated as: 

H ~ j T j  + 4DTD (23) 

where 4 is a positive scalar and D a diagonal scaling matrix. The elements of 
D are usually set equal to the norms of the corresponding columns of J (Mor6, 
1977). The Levenberg-Marquardt  method has a number of advantages over the 
standard Gauss-Newton method. For non-zero 4, the Hessian approximation is 
always positive definite which ensures the descent property of the algorithm, 
even if initial parameter estimates are poor. The Levenberg-Marquardt meth- 
od can be viewed as an interpolation between the steepest descent and Gauss-- 
Newton methods. When ,t is large, the result will be a small step in the 
steepest-descent direction, while the method degenerates to the Gauss-Newton 
method as 4 approaches zero. The usual strategy is to set 4 initially to some 
large value, and then to decrease its value as the solution approaches the 
minimum. In principle, the method is also numerically more robust than the 
Gauss-Newton method. For non-zero 4, j T j  + 4DTD will have full column 
rank even if j T j  itself does not. In the Gauss-Newton and Levenberg-Mar- 
quardt methods, the approximations j T j  and are often used to compute H-  1 in 
eqn. (9). This first-order approximation will be accurate to the extent that  the 
second term in eqn. (20) is negligible. The alternative of course is to compute 
H in eqn. (9) directly. 

All of the methods discussed are expected to work well for many problems. 
Since parameter estimation problems involving transient flow and/or transport 
are computationally expensive to solve, it will in many cases be worthwhile to 
find the most efficient method rather than just use one that  is already available. 
Different optimization algorithms are widely available through software 
libraries such as IMSL and MINPACK. Comparisons of different algorithms (e.g., 
Bard, 1974; Beck and Arnold, 1977; Hiebert, 1981; Cooley, 1985) indicate that  
results can be very problem dependent. While the quasi-Newton method is 
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preferred for general function minimization, there appears to be little 
difference between it and Levenberg-Marquardt  methods for least-squares 
problems (Hiebert, 1981; Dennis and Schnabel, 1983). In the problems con- 
sidered by Hiebert  (1981) the Gauss-Newton method performed least well. 
Hiebert  further concludes that  the specific implementation of an algorithm can 
significantly affectperformance, and discusses factors that  affect efficiency and 
robustness. 

Besides using an efficient optimization algorithm, i.e., one that  converges in 
the least number of iterations, a reduction in overall computational cost can 
be achieved by reducing cost per iteration. The most expensive part  in the 
solution process is often the evaluation of the Jacobian, i.e., calculation of the 
parameter sensitivities. These sensitivities are usually evaluated by finite 
difference approximation. Even when one-sided differences are used, the direct 
problem must be evaluated m + 1 times, in order to obtain the Jacobian for m 
parameters. Recently, a number of researchers (Neuman, 1980; Carrera and 
Neuman, 1984, 1986; Townley and Wilson, 1985) have applied adjoint tech- 
niques for obtaining the gradient of the objective function in cases where the 
direct problem is given by a differential equation (e.g., the non-steady flow 
equation). The technique involves formulation of an adjoint equation to the 
direct problem. The gradient VO sensitivities can then be obtained by solving 
both direct and adjoint problems once, at a cost that  is approximately the same 
as solving the direct problem twice. Net savings thus result as soon as there is 
more than one parameter to be estimated. A disadvantage of the adjoint method 
is that  one obtains the gradient VO, but not the sensitivity matrix J .  Conse- 
quently, no direct approximation of the Hessian is available, and one either has 
to resort to less powerful optimization methods than the Gauss-Newton or 
Levenberg-Marquardt  method, or combine the adjoint method with a secant 
Hessian approximation to yield a quasi-Newton algorithm. The adjoint method 
has thus far been applied to saturated flow problems. A first application to 
unsteady, unsaturated flow problems is described by Wittmeyer and Neuman 
(1985). 

APPLICATIONS TO UNSATURATED FLOW 

Several applications of the parameter estimation method to the determina- 
tion of unsaturated soil hydraulic properties are discussed in this section. 
First, the direct problem governed by the sa tura ted-unsatura ted flow equation 
and suitable constitutive relationships for the hydraulic properties will be 
defined. This is followed by discussion of laboratory and in-situ methods. 

The direct problem 

The partial differential equation governing transient one-dimensional unsa- 
turated flow in a rigid porous medium is taken as: 

~h ~ [K(h)~(h  + z).] (24) 
C(h) ~t - ~x ~x 
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where x is distance; t is time; K ( h )  is the hydraulic conductivity as a function 
of the pressure head h; C(h)  is the soil water capacity, being the slope dO/dh of 
the soil water retention curve 0(h), where 0 is the volumetric water content; 
and z is the gravitational head such that  d z / d x  = 0 for horizontal flow, + 1 for 
vertical flow with x positive upwards and - 1 for vertical flow with x positive 
downwards. The unsaturated hydraulic properties O(h) and K ( h )  are strongly 
non-linear functions of the pressure head. It is assumed that  suitable analytical 
expressions for these functions are available. Strictly, the problem is one of the 
model identification as well as parameter estimation since the correct function- 
al forms of 0(h) and K ( h )  are generally unknown. Frequently used expressions 
for the hydraulic functions are those developed by Brooks and Corey (1964) and 
Van Genuchten (1980). The expressions derived by Van Genuchten are: 

So = 1 + I eh ln )  ~ '  h < 0 (25a) 

1, h >~ 0 

g K8S~/2[1 (1 ,/mm = - - Se ) ] m = 1 - 1In (25b) 

where Se is the effective saturat ion (0 - 0r)/(0s - 0r); 08 and 0r are saturated 
and residual water contents, respectively; Ks is the saturated conductivity and 

and n are curve shape parameters. Note that  m = 1 - 1/n is not an indepen- 
dent parameter. An expression for C(h)  = dO/dh is readily obtained by differen- 
t iating eqn. (25a). 

As written here, eqn. (25) is valid for monotonic wetting or drying only. 
When the flow process involves both wetting and drying, hysteresis in the C(h) 
relation will have to be taken into account. Kool and Parker (1987) recently 
combined Van Genuchten's expressions (25) with an empirical hysteresis model 
to obtain a set of concise, closed-form expressions describing hysteretic soil 
hydraulic properties with only one additional parameter. The model was 
developed with an eye towards application in parameter estimation problems 
(Kool et al., 1986) where parsimony in the number of model parameters is 
desirable. 

Parameters in eqn. (25) are commonly determined by measuring Ks directly 
and estimating the remaining parameters by fitting eqn. (25a) to measured (0, h) 
data. The (0, h) measurements are obtained from equilibrium desorption or 
absorption experiments on laboratory samples or can be measured in-situ using 
tensiometers and neutron probe. The parameter estimation problem in this case 
becomes very simple. Disadvantages of such an approach are generally time- 
consuming data collection and the fact that  parameters are fitted to (0, h) data 
only, so that  any inaccuracy in the assumed hydraulic relationships, as well as 
effects of measurement error are forced into the predicted K ( h )  (Parker et al., 
1985). Rather than directly measuring only pairs of (0, h) data, a number of 
authors have recently tried to estimate the hydraulic properties from transient 
flow experiments by numerical inversion of eqn. (24). Parameter estimation 
studies of this type have generally been limited to relatively short laboratory 
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soil columns, mostly by measuring outflow volumes from initially saturated 
columns. A comparatively few field-scale experiments involving in-situ 
measurements of water  contents and pressure heads during transient flow have 
also been attempted. Laboratory approaches will be discussed first. 

Laboratory methods 

Probably the first attempts to estimate the hydraulic properties from tran- 
sient flow experiments in the laboratory were those by Zachmann et al. (1981, 
1982) who considered hypothetical  gravity drainage experiments involving 
initially saturated columns of sand. Cumulative drainage outflow data were 
used to estimate by ordinary least-squares two unknown coefficients in a 
four-parameter model for the hydraulic properties. The direct problem was 
solved using finite differences, while the objective function for the 1982 study 
was given by eqn. (3) with the observation vector q* representing cumulative 
outflow volumes (Zachmann et al., 1982). Their study shows the importance of 
selecting correct parametric forms for K(h) and O(h) in the estimation process. 
When incorrect expressions are used, it may still be possible to obtain an 
acceptable solution to the inverse problem but  the hydraulic properties corre- 
sponding to that  solution may be in error. 

This last problem is illustrated in Fig. 1, adapted from Zachmann et al. 
(1982), in which both the " true" and estimated O(h) and K(h) relationships are 
shown. The "true" parametric functions were represented by Brooks and 
Corey-type expressions, while in the inverse problem an exponentional func- 
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Fig. 1. Actual and predicted hydraulic properties for a hypothetical porous medium (after 
Zachmann et al., 1982). (a) water retention curve 0(h); (b) hydraulic conductivity K(O). 
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tion was used for 0(h) and a power function for K(O). Although our own 
experience, as well as other published results (e.g., Van Genuchten and 
Nielsen, 1985), suggest that  Van Genuchten's expressions (25) are reasonably 
accurate for many soils, the appropriateness of this or any other model for a 
particular case will not be known beforehand, and it may be desirable to 
compare the performance of different functional forms for the hydraulic func- 
tions. An obvious criterion for model discrimination is to select the model that  
has the minimum residual error, under the subjective constraint that  the model 
should predict realistic properties for the medium. A more rigorous criterion 
involves evaluation of how well a fitted set of hydraulic properties can describe 
system behavior under initial and boundary conditions that  are different from 
those used in model calibration. 

Another common cause for erroneous parameter estimates, even when a 
correct parametric model is used, occurs when different combinations of par- 
ameters lead to roughly the same minimum in the objective function. This type 
of uniqueness problem was investigated by Hornung (1983) and Kool et al. 
(1985). In both studies, soil hydraulic properties were represented by Van 
Genuchten's model. Hornung assumed the parameters Ks, 0s and 0r to be known 
and attempted to determine a and n from a column drainage experiment. A 
vertical column, initially at hydrostatic equilibrium, was subjected to a con- 
stant infiltration flux at the surface and the column outflow rate measured. No 
unique solution could be found using only these measurements. The non- 
uniqueness problem could be resolved when additional information was in- 
cluded, in Hornung's case the final steady pressure head at some fixed position 
inside the column. Kool et al. (1985) estimated the three parameters 0 ,  a and 
n in eqn. (25) also from a column drainage experiment. Unlike the gravity 
drainage studies of Zachmann et al. (1982) and Hornung (1983), the experiment- 
al set-up in their study was that  of a "one-step" pressure outflow method where 
desorption was initiated by a step change in air pressure at the upper column 
boundary. Kool et al. (1985) concluded that  the ability to uniquely solve the 
three-parameter estimation problem is a function of the difference between the 
average initial and final water content in the column. Uniqueness was not a 
problem when this difference was at least 50% of the difference between 0s and 
0r- This suggests that  in gravity drainage experiments the desired resolution 
can only be achieved by using unrealistically long soil columns, except for 
extremely coarse materials such as those used by Zachmann et al. (1982). The 
one-step outflow method is much more convenient to use since the water 
content difference depends on the imposed step change in potential, which is 
directly controlled by the experimenter. 

Parker et al. (1985) used the one-step outflow procedure to determine hy- 
draulic properties of undisturbed soil cores taken from four different field soils 
ranging from sandy loam to clay. Soil cores were assembled in pressure cells, 
saturated and then subjected to a step change in the pressure head, Ah, of 10m 
by increasing the external gas pressure. The parameters 0s and Ks were in- 
dependently measured, while a, n and 0r were estimated from the cumulative 
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outflow versus time measurements. Predicted O(h) and K(h) relationships were 
then compared with independently determined hydraulic properties for the 
same soil cores. Good agreement was found for all soils in the range 

- l0 < h < 0 m, i.e. the same range of pressure heads over which the outflow 
measurements were taken, but extrapolation to lower pressure heads outside 
the measurement ranges proved to be less reliable. Predicted O(h) curves 
generally overestimated water contents at pressure heads < - 10 m, indicating 
poor estimates of 0r. This problem could be alleviated by including additional 
information in the objective function, in this case a direct measurement of 0 at 
h = -150m. Thus, their objective function was of the form: 

N M 

O(b) = w ~ [q*- qi(b)] 2 + v ~  [0"- Oj(b)] 2 (26) 
i - 1  j - 1  

where q ' i s  measured cumulative outflow at times ti (i = 1 , . . . ,  N); qi(b) 
represent outflow at times t~, computed by solving eqn. (24) for the trial par- 
ameter vector b with b having elements (~, n, 0r)T; 0* is the measured water 
content at pressure head hj; and Oj(b) is the corresponding predicted water 
content obtained from eqn. (25a). Measurement errors were assumed to be 
uncorrelated and to have constant variance. Weights w and v account for the 
different scales of measurement for outflow volumes and water contents. Since 
only the ratio w/v is of interest, w was set equal to 1.0 and v calculated as: 

N M 

v = M ~  q*/N~ 0* (27) 
i - 1  j 1 

The one-step outflow method is a convenient procedure for obtaining input 
data for the inverse problem because it is experimentally simple and quick, 
Jennings et al. (1985) describe another parameter estimation procedure based 
on a pressure outflow test. Their experiment involves a stepwise desorption test 
in which each step is not necessarily continued until  equilibrium. Jennings et 
al. use spline functions to describe the retention and relative permeability 
functions, with "knots"  on the spline acting as parameters obtained by match- 
ing the observed stepwise outflow curve. 

A disadvantage of these and most other parameter estimation procedures 
based on transient, unsaturated flow data, is the computational expense asso- 
ciated with the numerical solution of eqn. (24). During iterative optimization, 
the direct problem given by eqn. (24) may have to be solved 30 or more times. 
As discussed in the previous section, a large part of total computational cost 
is associated with the finite difference approximation of the Jacobian. A reduc- 
tion in computer costs can likely be obtained by using adjoint-state techniques 
for evaluating the gradient of the objective function (Wittmeyer and Neuman, 
1985). An alternative is to use an experimental design that  permits a (semi-) 
analytical  solution for the direct problem. For horizontal flow eqn. (24) can be 
written as: 
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D h - (28) 
0-~ ~xx ~t 

where Dh = Kdh/dO is the hydraulic diffusivity. Philip (1955) gave a simple 
iterative solution of eqn. (28) for adsorption into a semi-infinite column subject 
to a first-type inlet boundary condition. The solution was recently modified by 
Van Grinsven et al. (1985) for desorption. Using these solutions, eqn. (28) can 
be solved much more cheaply than eqn. (24). Input data for the inverse problem 
could consist of measurements of cumulative absorption (desorption), and/or 
moisture content distribution inside the column at one or more times. W. 
Bouten (University of Amsterdam, Netherlands, unpublished results) applied 
the modified Philip solution to estimate D h from cumulative evaporation mea- 
surements. Using Van Genuchten's expressions, the parametric form for Dh (0), 
written for simplicity in terms of the effective saturat ion Se, is: 

(1 - m)K~ 1/2 1/m .ql/m)-m .ql/m~m D~(Se) ~m~s- - -~Se  [ (1 - -_e  , + ( 1 - - _ o  i -- 2] (29) 

with m = 1 - 1/n. Note that  Ks and a appear in eqn. (29) as a ratio and 
therefore cannot be determined simultaneously from horizontal flow experi- 
ments only. For laboratory soil columns, direct measurement of K~ is a simple 
procedure, so that  this should not present a problem. Richie et al. (1987) outline 
a parameter estimation procedure for determining hydraulic properties from 
measured pressure head distributions along an unsaturated horizontal soil 
column during steady-state flow, and using additional measurements of total 
mass of water in the column, steady flow rate and saturated water content. 
Depending on the functional relationships for O(h) and K(h), the direct problem 
is given in closed or semi-closed form, and the inverse problem could thus be 
solved very cheaply. Richie et al. (1987) obtained very good results for two 
hypothetical soils but did not test the procedure on real soils. A disadvantage 
of their experimental set-up is that  it requires a considerable number of tensio- 
meters to be installed in the column. In the hypothetical experiments 16 
tensiometers were installed along a 30 cm long column. As compared with the 
transient  outflow procedures of Kool et al. (1985) and Jennings et al. (1985), the 
method of Richie et al. (1987), as well as those based on eqn. (30), sacrifice some 
experimental convenience for reduced computational expense. 

In-situ methods 

Whereas laboratory experiments have the advantage of being easy, quick 
and precise, a major disadvantage is that  they lead to soil properties that  are 
often non-representative of field conditions. Main reasons for this are the 
typically small size of laboratory samples, and the fact that  collection of soil 
cores invariably introduces some disturbance that  may affect flow and trans- 
port properties. Since analyses of the soil hydraulic functions are ultimately 
directed towards field-scale processes, determination of in-situ properties is 
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more relevant than data obtained from laboratory analyses. The application of 
parameter estimation techniques to determination of in-situ soil hydraulic 
properties is, at least in principle, a straightforward matter. Restricting our- 
selves to vertical one-dimensional flow, input data for the inverse problem can 
consist of measured water contents and/or pressure heads at different depths 
and times during infiltration and/or drainage events. Solution of the direct 
problem (24) further requires the stipulation of suitable initial and boundary 
conditions. Having instrumented the site with equipment for measuring water 
contents and/or pressure heads, initial conditions can be determined directly, 
while boundary conditions can be treated as additional unknowns in the 
estimation problem as needed. 

To date, only one study has been published (Dane and Hruska, 1983) in which 
parameter estimation methods were employed to determine the water retention 
and hydraulic conductivity functions simultaneously from a transient  field 
experiment. In this study, Dane and Hruska studied gravity drainage from a 
clay loam soil. Initial water content profiles and profiles after 7 and 25 days of 
drainage were measured with a neutron probe. The soil surface was covered to 
provide a zero-flux upper boundary condition, while a first-type lower boundary 
condition was determined from tensiometer readings at a depth of 0.9 m. Par- 
ameters ~ and n in Van Genuchten's model (25) were determined by numerical 
inversion of eqn. (24) while other parameters in the model were assumed 
known. 0s and K S were determined from the maximum water content and 
steady-state infiltration rate, respectively, both measured during wetting of the 
soil prior to drainage. A guessed value, obtained by inspection of available 0 (h) 
data, was assigned to 0r. Dane and Hruska obtained good agreement between 
the predicted and independently obtained O(h) relation for the clay loam soil, 
but found that  the predicted K(O) relation overestimated independently deter- 
mined conductivities by approximately one order of magnitude. Much better 
agreement was achieved when the value of Ks was arbitrarily taken to be 10 
times lower than its measured value; this produced only small changes in the 
optimum values for ~ and n. Use of a much lower than measured Ks value was 
justified by arguing that  macropore flow probably occurred during ponded 
infiltration, leading to an inflated value for Ks. 

A more general procedure than that  followed by Dane and Hruska (1983) 
would be to not fix 0 r and Ks, but to take these as additional unknowns in the 
inversion problem. As indicated by the results of Dane and Hruska and others 
(see the discussion by Van Genuchten and Nielsen, 1985), a reliable value for 
K~ is difficult to obtain, especially in structured media. A value for 0~ could be 
obtained by determining the water content at some suitably low pressure head, 
e.g., - 150 m. This is a somewhat arbitrary definition of Or. However, experience 
shows that  when input data for the inverse problem do not include measure- 
ments at very low pressure heads, as is the case for gravity drainage, inversion 
results are not very sensitive to the value of 0r. On the other hand, it also 
implies that  predicted O(h) and K(h) relations cannot be reliably extrapolated 
to dry conditions. 
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Next, an example of parameter  estimation for a drainage problem similar to 
the study of Dane and Hruska (1983) is considered, but with Ks and 0r taken as 
additional unknowns. The example involves drainage from a 3 m diameter by 
6 m deep lysimeter, filled with crushed Bandelier Tuff, a material  with silty 
sand texture. The in-situ experiment was carried out at the Los Alamos 
National  Laboratory and is described in detail by Abeele (1984). The lysimeter 
was instrumented with neutron probe access tubes and tensiometers at depths 
of 0.4, 1.16, 1.91, 2.71, 3.47 and 4.23m. The average water content  following 
ponded infil tration for more than one month provided a value for 0s of 0.331. 
The saturated conductivity, Ks, computed from the steady-state flux exciting 
the bottom of the lysimeter was 0.1244 m day 1. After saturation, the lysimeter 
was allowed to drain for 100 days during which period water content  and 
pressure head profiles were monitored. The surface of the lysimeter was 
covered during the drainage period. In the present analysis of the problem Van 
Genuchten 's  model (25) is used to describe hydraulic properties with 0s the only 
known parameter.  

Prel iminary analyses of hypothet ical  data sets showed that  the parameter  
estimation problem for the two parameters a and n can be solved uniquely using 
only information on water  content  profiles during drainage, but that  the 
simultaneous estimation of three or more parameters requires additional in- 
formation. For this reason, measured water contents, and additionally, mea- 
sured pressure head at one depth (0.4 m) were used as input data for the inverse 
problem. Observed water contents and pressure head at t = 1, 4, 10, 20, 40 and 
100 days after the star t  of drainage were used in the objective function. Ob- 
served pressure heads at depth x = 4.23m were used to provide the lower 
boundary condition for the solution of the direct problem. Observed water 
contents at this depth were not used, so that  simultaneous information on 
water  contents and heads at x = 0.4m only was employed. The initial con- 
dition was h(x) = 0, while the upper boundary condition was that  of a zero flux. 
The direct problem (24) was solved using an efficient fully implicit, mass-lumped 
Galerkin-type, l inear finite-element code with a variable time step and constant  
node spacing Ax of 5 cm. As a check on numerical accuracy, a computer run for 
the same problem with Ax = 2.5 cm was made, which gave essentially identical 
results. The inverse problem was formulated as a weighted least-squares 
problem with suitable weighting to account  for the different scale of measure- 
ment of water  contents  and pressure head: 

5 6 6 

O(b) = ~ ~ [0" - Oij(bl] 2 + v ~ [ h * -  hi(bl] 2 (30) 
i - l j  1 j 1 

where 0* represents measured water contents at depths xi and times tj, h* is the 
measured pressure head at depth 0.4 m and times tj, and b is the four-parameter 
vector (a, n, 0r, Ks) T. After Parker  et al. (1985), relative weights for pressure 
heads are computed as the ratio of mean observed water content  to mean 
observed pressure head: 
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5 6 6 

v = 6 ~ ~ 0*(xi, tj)/30 ~ h*(ti) (31) 
i= l j~ l  j=l  

With pressure heads expressed in m H20, this gave a weighting of v = 0.160. 
The non-linear least-squares problem for the four parameters (~, n, 0r, Ks) was 
solved using the Levenberg-Marquardt  method. Error variances were com- 
puted with eqn. (8) as a check on the correctness of the weighting coefficient 
(31). Weighting the residuals in the objective function by reciprocals of error 
standard deviations would have given a relative weight of v = 0.124 to the 
pressure head observations. This was considered sufficiently close to the actual 
weight so that  the analysis was not repeated. 

Estimated parameter values and their statistics are given in Table 1. Since 
the estimated value for 0 r is identically zero, there are no error estimates for 
this parameter. Of the remaining parameters, the estimated Ks is the least 
accurate with a 95% confidence interval of _+ 50% of the estimated value. 
Observed and fitted water content profiles at t = 1, 10, 40 and 100days are 
shown in Fig. 2. For pressure heads at 0.4 m depth, the mean deviation between 
observed and fitted values was 0.07 m H20. Fig. 2 shows good overall agreement 
between observed and fitted water contents, with poorer results for t = 1 day 
and for the 3.47 depth at t = 4 days. Computed water content profiles show a 
more rapid initial decrease than observed. This is related to the high estimated 
value for K s (Table 1) which is about 2 times higher than the observed value of 
0.124 m day -1. A too high Ks value will result in overly rapid initial drainage, 
but will have less of an effect where the soil has become unsaturated. Con- 
sequently, the estimated value of Ks is determined mainly by observations at 
small times. The wide 95% confidence region further indicates the poor iden- 
tifiability of Ks. As discussed previously, the remedy for this is to include prior 
information on Ks in the least-squares function. In practice, determining a good 
value for in-situ Ks is quite difficult. Alternatively, the early time observations 
could have been assigned higher weights to obtain a more accurate estimate for 
Ks. If an experiment contains no observations at saturated or near-saturated 
conditions, Ks will be very ill-determined, as for example in the experiment of 
Dane and Hruska (1983) who observed little sensitivity to K s when it changed 
by an order of magnitude. To verify accuracy of parameter estimates, predicted 

TABLE 1 

Van  Genuch ten  parameters  for Bandelier  Tuff est imated from in-situ dra inage 

Paramete r  Init ial  Est imated Std. 95% confidence limits 
value value dev. 

lower upper  

(m -1) 2.00 1.433 0.15 1.13 1,74 
n 2.00 1.506 0.052 1.40 1.61 
0r 0.05 0.0 - - 
K s (m day -1) 0.25 0.250 0.063 0.124 0.376 
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Fig. 2. Observed and fitted water content profiles during drainage of Bandelier Tuff. Observed data 
from Abeele  (1984). 
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Fig. 3. Hydraulic properties of Bandelier Tuff. (a) water retention curve 0(h); (b) hydraulic conduc- 
tivity K(O). Data points from Abeele (1984), * is the measured saturated conductivity. 
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and independently determined O(h) and K(O) relations for the Bandelier Tuff 
are compared in Fig. 3. The 0(h) data points in Fig. 3a represent in-situ mea- 
surements from the lysimeter as well as from the laboratory at the lower 
pressure heads. The K(O) data points shown in Fig. 3b were calculated from the 
lysimeter drainage experiment (Abeele, 1984) using the instantaneous profile 
method (Watson, 1966). Both figures show excellent agreement. 

The results of Fig. 3 as well as those by Dane and Hruska (1983) clearly 
illustrate the potential of parameter estimation techniques for determination 
of in-situ soil hydraulic properties. We acknowledge that  the lysimeter experi- 
ment was carried out in a very homogeneous medium, whereas field soils may 
exhibit marked heterogeneity (e.g., layering) at this scale of observation. 
Nevertheless, the type, intensity and accuracy of measurement in the lysimeter 
example are those of a typical field situation. In this case, measurements were 
taken over a 100 day period. While this is quite long, the frequency with which 
measurements need to be taken should decrease quickly as the duration of the 
experiment increases. The lysimeter data changed little after approximately 20 
days. In the present study no attempt was made to determine the minimum 
required experimental duration. Experience with laboratory outflow tests in- 
dicate that  the important factor is change in water content and pressure head 
between beginning and end of the experiment rather than duration of the 
experiment per se. This means that  measurements would have to be taken over 
a longer period of time for a slowly draining heavy-textured soil as compared 
with a more quickly draining light-textured soil. Alternatively, the desired 
effect may be obtained more rapidly by not covering the soil surface during 
drainage and allowing simultaneous evaporation and gravity drainage. Unfor- 
tunately, unless the generally variable evaporation rate is known a-priori, this 
will lead to additional unknowns in the parameter estimation process. A 
practical solution would be to take periodic measurements of the surface 
moisture content during the experiment and use this information to obtain a 
prescribed first-type surface boundary condition. Another alternative would be 
to use transient  infiltration data in the inversion problem, either instead of or 
in addition to drainage data. An infiltration test, especially when the soil is 
initially dry and infiltration is continued until the medium is saturated, should 
lead to better resolution in the input data, and hence to more accurate estima- 
tes for Ks. The simultaneous use of both infiltration and drainage data also 
leads to a better definition of the parameters. As shown by Kool et al. (1986) for 
laboratory data, an additional advantage of the latter approach is that  it can 
be used quite effectively to determine the soil's hysteretic hydraulic properties. 

APPLICATIONS TO SOLUTE TRANSPORT 

The common representation of subsurface transport employs the convec- 
tion~lispersion equation that  includes terms for solid-liquid partit ioning and 
irreversible kinetics. Thus, the general one-dimensional transport equation is 
taken to be of the form: 
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~t + 8t - 8x OD-~x - qcr - Opcr + 07 (32) 

where Cr is the resident solution concentrat ion,  s is the adsorbed concentrat ion,  
p is the dry soil bulk density, D is a dispersion coefficient, q is the Darcian fluid 
flux density, tt is a first-order degradation coefficient and y is a zero-order 
production coefficient. Other symbols are the same as before. Most parameter  
estimation studies of solute t ransport  thus far have assumed steady-state flow 
or some equivalent steady-state system using a transformation that  avoids the 
solution of the t ransient  flow equation (eqn. 24) along with eqn. (32). For 
steady-state flow in a homogeneous profile, the t ransport  equation reduces to: 

~ + -~- = D~Zx~ - V Tx - pc, + y (33) 

where v = q/O is the mean pore water velocity. 
Application of parameter  estimation techniques to the determination of 

va r iousunknown coefficients in eqn. (33) are discussed below. For convenience, 
a distinction will be made between t ransport  models involving local equi- 
librium and non-equilibrium conditions. Spatial variabil i ty of medium proper- 
ties often limits the applicability of deterministic approaches based on eqn. (33) 
to mass t ransport  predictions at the field-scale. Thus, a stochastic formulation 
that  explicitly considers the effects of areal variat ions in hydraulic fluxes on 
field-scale solute t ransport  will also be discussed. 

E q u i l i b r i u m  t ranspor t  

Consider the special case where adsorption is described by a linear isotherm 
of the form s = kcr, where k is an empirical distribution coefficient. Equation 
(33) reduces then to: 

R ~Cr _ D 02cr ~Cr 
0t ~ x  2 - v~--~x - pcr + 7 (34) 

where R = 1 + pk/O is the re tardat ion factor. Inspection of eqn. (34) shows 
that  the equilibrium transport  model contains five unknown parameters: R, D, 
v, p and 7. Of these five parameters, a maximum of four can be fitted simul- 
taneously to a set of observed cr(x, t) data. This dependency of at least one of 
one of the coefficients follows immediately by noting that  division of eqn. (34) 
by a constant  permits one of the coefficients to be eliminated. Consequently, at 
least one of the non-zero coefficients R, D, v, g or ~ must be known independent- 
ly. Because values of D, p and 7 are not easily measured independently, in 
practice ei ther v or R (or both) must be known beforehand. For non-adsorbing 
chemicals, R = 1 and v can be fitted to the data. This may be opportune if, for 
example, uncer ta in ty  exists about the hydraulic flux or the effective water 
content  in the system. For adsorbing chemicals, R can at least in principle be 
estimated directly using batch equilibration techniques. 



277 

P rope r  s t ipu la t ion  of bounda ry  condi t ions  for the  so lu t ion  of  eqn. (34) can  be 
cr i t ica l  to the  pa r ame te r  es t imat ion  problem. Choice of b o u n d a ry  condi t ions  
depends on the  me thod  of  solute  i n t roduc t ion  into the system and on the mode 
of obse rva t ion  of concen t r a t i ons  in t ime and /or  space. If  solute  of concent ra-  
t ion  Co is in jec ted  at  a cons t an t  flow rate ,  t hen  the appropr ia te  bounda ry  
condi t ion  is: 

( V C r - - D  ~Cr~ = IVCo, 0 <. t <~ to (35) 

~X ]x=o+ (0, t > to 

where  to is the  du ra t ion  of  pulse Co. The  so lu t ion  of  eqn. (34) subject  to eqn. (35) 
and to the  addi t iona l  condit ions:  

cr = ci x >~ 0, t = 0 (36a) 

~Cr/~X = 0 X --* ~ ,  t > 0 (36b) 

may  be used to descr ibe res ident  concen t ra t ions  in effect ively semi-infinite 
systems or in finite systems of  length  L when  P = vL/D ~> 5 (Van G en u ch t en  
and Parker ,  1984). Subjec t  to some addi t ional  const ra ints ,  the so lu t ion  of  eqns. 
(34)-(36) may  suffice for  smal ler  P in a finite system when  D is due to mobi le -  
immobile  zone in t e rac t ions  (Parker ,  1984; P a r k e r  and Valocchi ,  1986). Detec- 
t ion  of res iden t  solut ions  may be ob ta ined  by sect ioning soil cores and extract-  
ing the so lu t ion  via a suc t ion  appara tus  or, for  non-adsorbed species, by 
repea ted  wash ing  wi th  t racer- f ree  solut ion.  

Ano the r  mode of solute  detect ion,  pe r t inen t  to ce r t a in  exper imenta l  con- 
dit ions,  involves  flux concen t r a t i ons  which represen t  hydrau l ic  f lux-weighted 
mean  concen t r a t i ons  on a cross sec t ion  of the  porous  medium. Such concent ra-  
t ions arise n a t u r a l l y  from observa t ions  of effluent from a soil column, a 
lysimeter ,  or an ex t r ac t i on  well. Macroscopica l ly ,  the  flux concen t r a t i on  cf may  
be defined as a ra t io  of  solute  flux densi ty  to hydrau l ic  flux densi ty  which 
indica tes  (Kref t  and Zuber, 1978): 

D ~c~ 
cf = c r - - - - -  (37) 

v ~x 

Using eq. (37) we find t ha t  eqns. (34) and (36) t r ans form to express ions  of  
ident ica l  form in cf while eqn. (35) becomes: 

I c0, 0 ~< t ~< to 
(38) 

cf = (0, t > to 

I f  bounda ry  condi t ions  are  improper ly  formulated,  appreciable  er rors  in 
pa r a me te r  es t imates  may  arise for  the inverse  problem. As an example,  con- 
sider a problem discussed by P a r k e r  and Van  G en u ch t en  (1984a). Resident  
solut ions  were  genera ted  using an  ana ly t ic  solut ion to eqns. (34)-(36) for  
medium coefficients given in Table  2. The in i t ia l ly  solute-free medium (ci = 0) 
is subjected  to a pulse input  of Co = 100#gcm -3 for a du ra t ion  to = 5 days. 
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TABLE 2 

Comparison of fitted transport  parameters using correct and erroneous detection modes for hypo. 
thetical problem 

D R # 

True values for c r 100.00 2.5000 0.2500 0.5000 
Fit to cr solution 100.28 2.5006 0.2496 0.4971 
Fit to cf solution 85.6 2.52 0.34 0.76 
Fit to c~ solution 161.7 3.00 (0.25) (0.50) 

D in cm2day 1, 7 in ttm cm Sday 1, values in parentheses was assumed known. 

Resident solutions were predicted for 11 depths from 0-100 cm at t = 5 and 10 
days. Parameters were estimated by a non-linear least-squares regression 
procedure with equal weights for all observations and using only the t = 5 
days data. Initial guesses for all parameters were taken to be unity. Using the 
correct solution for resident concentrations, parameter estimates were found 
to be very close to their true values whereas for the erroneous flux concentra- 
tion boundary conditions, significant errors in parameter estimates occurred. 
When # and y were fixed at their correct values, a two-parameter fit greatly 
overestimated D and R. This overestimation is a characteristic occurrence 
when resident concentrations are misinterpreted as flux concentrations (Par- 
ker and Van Genuchten, 1984b). The converse will be found when flux con- 
centrations are misinterpreted as resident concentrations. 

N o n - e q u i l i b r i u m  t r a n s p o r t  

Although the linear equilibrium convection-dispersion model represented 
by eqn. (34) is the most common approach to describing transport, many 
circumstances arise for which it may be inadequate. Limitations arise due to 
kinetic control of adsorption reactions disregarded by eqn. (34). One approach 
to the extension of eqn. (31) has been to consider two types of adsorption sites, 
one governed by equilibrium adsorption and one by reversible first-order kinet- 
ics. Such two-site models have been discussed by Selim et al. (1976), Cameron 
and Klute (1977), Rao et al. (1979), De Camargo et al. (1979), Van Genuchten 
(1981), Flfihler and Jury (1983) and others. If type-1 sites are regarded as 
equilibrium-controlled, then R in eqn. (34) may be considered the retardation 
due to adsorption on type-1 sites (R1). For kinetically-controlled type-2 sites, 
the term: 

~C2 
9--[ = ~(k2cr - c2) (39) 

must be added to the LHS of (34), where ~2 is the amount of solute adsorbed on 
type-2 sites expressed as an equivalent solution concentration, ~ is a rate 
coefficient, and k 2 is the slope of the equilibrium isotherm for type-2 sites 
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TABLE 3 

Initial and fitted parameter values and associated residual SSQ's for the two-site model fit to boron 
effluent data from Glendale clay loam 

D Rt fl ~ SSQ 

Initial values 1.0 1.00 0.500 0.200 
Final values 216.0 3.58 0.564 14.2 0.142 
Initial values 2.00 10.00 0.200 0.200 
Final values 47.7 4.30 0.600 0.424 0.53 

Units  of D in cm 2 day -1, other values dimensionless. 

d~2/dc r. Ana ly t i c  so lut ions  for the two-site model  may be obtained for both 
resident and flux detect ion  modes if adsorpt ion /exchange  is l inear (Coats and 
Smith,  1964; Van  Genuchten  and Wierenga,  1976b; Parker and Van Genuchten ,  
1984a), whi le  for non- l inear  adsorption numerical  so lut ions  may be employed 
(e.g., Van  G e n u c h t e n  and Wierenga,  1976a; Fli ihler and Jury, 1983). 

As an appl icat ion of the  parameter es t imat ion  method to the  two-site model,  
cons ider  an experimental  breakthrough curve for boron in a Glendale  c lay 
loam described by Van  Genuchten  (1974). A boron tracer of pulse  durat ion  
t o = 5.06 days and hav ing  a concentra t ion  co = 20 gg cm -~ was leached through  
an in i t ia l ly  solute-free 30 cm long column.  The measured pore water ve loc i ty  
was 38.5cm day -1. Four parameters were fitted to the  data: the dispersion 
coefficient D, total  retardat ion factor Rt = 1 - R I + R2 where R2 = 1 + k2, a 
site d is tr ibut ion factor fl = R1/Rt,  and a reduced rate cons tant  
(o = ~(1 - f l)RtL/v where L is the co lumn length  (for more detai ls  see Van  
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Fig. 4. Experimental boron effluent curve for Glendale clay loam and fitted curve using linear 
two-site kinetic model (from Parker and Van Genuchten, 1984a). 
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Genuchten, 1981 or Parker  and Van Genuchten, 1984a). Final parameter esti- 
mates and sums of squared residuals (SSQ) for two different sets of initial 
parameter  estimates using the solution for flux concentrations are shown in 
Table 3. The results of the first example yielding the lowest SSQ are compared 
with the experimental data in Fig. 4. For the second set of initial parameter 
estimates, the inversion program converged to a set of parameter values having 
a larger SSQ using the stopping criteria that  all parameters change by a factor 
of less than 0.0005 from the previous iteration and allowing a maximum of 50 
trials with no residual decrease at an iteration. In this instance a local mini- 
mum or plateau occurs in the response surface, which prevents convergence to 
the global minimum. This points to the need for realistic initial estimates of 
parameter values. Some specific guidelines for selecting initial values for the 
two-site model are discussed by Parker  and Van Genuchten (1984a). 

As pointed out by Van Genuchten (1981) and Nkedi-Kizza et al. (1983), a 
mathematical  problem of identical form to that  of the two-site kinetic model 
may be obtained when apparent non-equilibrium in the system is attributed to 
diffusional limitations between mobile and immobile pore regions, provided 
that diffusion is approximated by an apparent first-order exchange process. In 
non-dimensionalized form, the two-site and two-region models become identi- 
cal, thus leading to difficulty in ascribing proper physical significance to fitted 
model parameters (e.g., fl and o~ in the preceding example). Further  complica- 
tions relevant to the parameter identification problem arise owing to relation- 
ships between the first-order two-site/two-region model, and to interrelation- 
ships between the first-order two-site/two-region model and the equilibrium 
convection-dispersion model on the simpler side, or a true diffusional kinetic 
model on the more complex side. It may be demonstrated that  under certain 
conditions, the true diffusion kinetic analysis will degenerate to the form of the 
first-order kinetic model or to the local equilibrium model (Passioura, 1971; 
Raats, 1981; Bolt, 1982; De Smedt and Wierenga, 1984; Van Genuchten, 1985; 
Valocchi, 1985; Parker  and Valocchi, 1986). In such circumstances, the par- 
ameter identification problem will be essentially indeterminant and model 
selection should be governed by parsimony (e.g., Parker, 1984). 

Further  difficulties in the parameter estimation problem may arise due to 
non-linearity and/or non-uniqueness in the adsorption isotherm, and hence in 
R (or R1 and R2), and to similar complications for the production and decay 
coefficients g and y. A number of modelling approaches have been developed 
which incorporate more complex equilibrium chemistry, ranging from the use 
of empirical non-linear isotherms with or without hysteresis (Van Genuchten 
and Cleary, 1979) to more detailed geochemical analyses (Rubin and James, 
1973; Jennings et al., 1982; Cederberg et al., 1985). The use of overly simplified 
chemical models to describe complex systems can lead to difficulties when 
predictions are extrapolated to situations that  are different from those used in 
the calibration process. For example, Jardine et al. (1985) found that a linear 
two-site non-equilibrium transport  model closely described observed A1 
breakthrough curves for a soil in which Ca-A1 exchange and A1 polymerization 



TABLE 4 

Effect of influentiAl concentration 0~g ml 1) on calculated and fitted parameters for a 
two-site kinetic model (after Jardine et al., 1985) 
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linear 

Influent R fl fitted 
concentration ~(h 1) 

calc. fitted calc. fitted 

0.73 40.2 51.8 0.632 0.620 0.132 
1.51 25.2 42.2 0.415 0.417 0.124 
2.37 16.8 49.6 0.216 0.261 0.127 
4.85 13.6 17.1 0.325 0.363 0.262 
7.75 * 12.0 0.329 0.385 0.330 

* Data not available from isotherm. 

cont ro l led  t ranspor t .  An acceptable  fit was ob ta ined  in spite of h ighly  non- 
l inear  adso rp t ion -p rec ip i t a t i on  relat ions.  For  exper iments  run  at  different  
inf luent  A1 concen t ra t ions ,  values  of D, Rt, fl and ~ for the  l inear  two-site model 
were  es t imated  from b r e a k t h r o u g h  curves  using a leas t :squares  regress ion  
analysis .  Independen t  es t imates  of l inear ized d is t r ibu t ion  coefficients, a l lowing 
ca lcu la t ion  of  Rt and fl, were made from ba tch  equi l ibr ium data.  Comparisons  
of  fit ted and ca lcu la ted  va lues  indica ted  good cor respondence  for fl, while  R t 
va lues  were  less cons i s ten t  (Table 4). Notable  var ia t ions  in the  appa ren t  ra te  
cons t an t  ~ occur red  wi th  inf luent  concen t ra t ion ,  which  should not  ar ise if the 
r eac t ion  s t r ic t ly  fol lowed first-order chemical  k inet ics  or was diffusional ly 
control led.  Higher -order  chemical  k inet ics  may  be suggested. An equal ly  plau- 
sible exp lana t ion  is t ha t  a t  lower  inf luent  Al-levels, increas ing  non- l inear i ty  in 
the  i so therm produces  g rea te r  ta i l ing  in the  b r e a k t h r o u g h  curves.  This  ta i l ing  
is t hen  s imula ted  by the model as a k ine t ic  effect  yielding lower fitted ~. 

In more  r ecen t  studies,  potass ium t r anspor t  subject  to non- l inear  K - C a  
exchange  in a he t e rogeneous  medium with  equi l ibr ium and k ine t ic  adsorp t ion  
sites has  been  simulated.  To eva lua te  pa rame te r  in te rac t ions ,  the l inear  two- 
site k ine t ic  model  was fitted to a series of  hypo the t i ca l  b r e a k t h r o u g h  curves  
tha t  were genera ted  numer ica l ly  with a s imilar  k ine t ic  model t ha t  also ac- 
coun ted  for non- l inear  adsorpt ion.  While  keeping  the  ra te  coefficients ~ fixed at  
the or ig ina l  values  used in the  non- l inear  model,  the fitted (l inear) r e t a rda t i on  
fac tors  were  found to decrease  s ignif icant ly  wi th  increas ing  ~. This  i n t e rac t ion  
occurs  because  the l inear  model  will s imula te  tail ing, due ac tua l ly  to non- 
l inear i ty  in the  isotherms,  t h r o u g h  ad jus tments  in the  re la t ive  p ropor t ion  of 
equi l ibr ium versus  non-equi l ibr ium adsorp t ion  sites, as well as t h ro u g h  
changes  in the dispers ion coefficient. In t e rac t ions  be tween D and observed 
chemica l -k ine t i c  effects were also noted  by Van  G e n u c h t e n  (1981) for  non- 
l inear  boron  d isp lacement  t h rough  a clay loam soil. Thus,  when  a s t rongly  
non- l inear  d isp lacement  model  is l inear ized or when  impor t an t  k ine t ic  mechan-  
isms are  neglec ted  in the  pa r ame te r  es t imat ion  analysis ,  the  resul ts  may  
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become physically meaningless, even for parameters that  are not directly 
affected by the approximation. 

Field-scale transport 

The question of field-scale variability effects on both the formulation of the 
direct problem and on the inverse problem solution will now be considered. To 
evaluate the effects of field-scale heterogeneities, a stochastic approach must 
generally be taken. Here, discussion will be restricted to a relatively simple 
model discussed by Parker and Van Genuchten (1984a) which is similar to the 
one-dimensional stochastic transport models of Bresler and Dagan (1981), 
Amoozegar-Fard et al. (1982) and Simmons (1982). Conceptually, the transport 
region is regarded as being composed of numerous independent parallel soil 
columns (denoted as the "local" scale), each having specific properties and 
being subject to specific local boundary conditions. Additionally, it is assumed 
that  transport within each column can be described by the one-dimensional 
convection-dispersion eqn. (34) with constant coefficients. Lateral flow, trans- 
verse dispersion, and vertical inhomogeneities are conveniently ignored. 

To approximate transient  flow, hydraulic fluxes and water contents are 
averaged over the time and space domains of interest. At the local scale, mean 
local surface hydraulic fluxes q0 and water contents 0 are defined as (Parker 
and Van Genuchten, 1984a): 

tm 

qo = ~ qo(t)dt (40) 

tm X m 

xmtm f f O(x, t)dxdt (41) 
0 0 

where (0, tin) and (0, xm) are the time and distance intervals for averaging and 
qo is the hydraulic flux at the soil surface. The time-averaged local velocity is 
then taken as: 

= 0o10 (42) 

At the global- or field-scale, means over the areal domain A of the time- 
averaged velocity are defined as: 

@} = ~ ~dA (43) 
(A) 

of the time-averaged surface flux qo: 

1 
(/odA (44) ( 0 o )  = 

(n) 

and of the instantaneous surface flux qo at time t as: 
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(qo)(t) = ~ (/o(t)dA (45) 
(A) 

The equivalent steady-state time variable is then defined by the transforma- 
tion: 

t 

t*(t) = | (qo)(z)dz/(~l) (46) 
0 

Variations in local pore water velocities 0 are assumed to be lognormally 
distributed with probability density function p(O) = N(#ln, a~n) where #~n and a~ 
are the mean and variance of In 0, respectively. The local dispersion coefficient 
is assumed to be perfectly correlated to 0 such that  D = eO for deterministic 
apparent dispersivity e. Ignoring R, # and y leads then to a three-parameter 
field-scale transport  model described by e, aln and #in. 

Field-scale resident concentrations Cr are given as areal means over domain 
A as: 

Cr(X, t*) (~) Cr (X' 
t*)dA 

= (47) 
(~)dA 

where Cr is the local-scale concentration. Since fi is the only random variable 
on A, p(~)dfi may be substituted for dA: 

Cr(X , t*) ~ Cr(X, 
t*; ~)p(~)d~ 

= (48) oo 
I p(~)dfi 

Ignoring variations in 0 in the field as small compared to q, field averaged flux 
concentrations are obtained as: 

I Ce(X, t*; ~)00(5)dO 
~f(x, t*) = (49) 

i 00(0)d0 

The integrals in eqns. (48) or (49) may be evaluated by numerical quadrature 
once local boundary conditions are stipulated. As appropriate, these may be 
defined by invoking a constant pulse duration to for the field or by imposing a 
constant local mass loading which leads to local values of to varying inversely 
with ~. For purposes of model calibration, note that  for n random measure- 
ments of local concentration cr or Cr in the field, the field-average values ~ or 
8f may be calculated by replacing the integrals in eqns. (48) or (49) by sums with 
weighting coefficients p(0) = 1/n assigned to each observation. To obtain ~f, 
local velocities must be known. 

Application of the above model to a field experiment described by Jury et al. 
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T A B L E  5 

P a r a m e t e r  e s t i m a t e s  and  the i r  s t a n d a r d  e r ro r s  o f  e s t i m a t i o n  ( ± ) for t he  field-scale b romide  t r ace r  
e x p e r i m e n t  of  J u r y  et al. (1982), v a l u e s  fixed on  i n p u t  a re  s h o w n  in p a r e n t h e s e s  

Tr ia l  e ( v )  aln SSQ 
(mm) (mm d a y -  1 ) 

1 1.0 ± 227 30.5 ± 21.0 0.800 __+ 0.943 0.0005177 
2 (0.01) 30.5 ± 1.8 0.803 + 0.060 0.0005185 
3 (1.0) 30.5 + 1.8 0.800 + 0.060 0.0005177 
4 (10.0) 29.7 __+ 1.7 0.763 ± 0.063 0.0005182 
5 (100.0) 24.7 + 1.6 0.373 ± 0.143 0.00056 
6 123 ± 22 23.6 ± 1.4 (0.0) 0.00061 

(1982) involving measurements of bromide transport in a 0.64 ha field under 
t ransient  hydraulic conditions is considered. Concentrations were determined 
with solution samplers at various depths taken at different times after addition 
of the tracer. Areal-averaged resident concentrations at a depth of 30 cm versus 
transformed time t* were used as input to the inverse problem to estimate E, 
(note that  (~) is a known function of aln and #in). The results indicate large 
uncertainty in ~ (Table 5). Using a two-parameter fit with e fixed at various 
values, little sensitivity of the model to ~ for e ~< 10 mm was found. For larger 
e, the mean error increases slightly, but compensation between s and a~ is 
observed as the fitted values of a~, decrease for larger e. Thus, field-scale 
dispersion is reduced as local-scale dispersion increases. Note from Table 5 that  
even when a~, = 0, which corresponds to the deterministic convection-disper- 
sion model, SSQ is only moderately larger than for the three-parameter 
stochastic model. 

Fitted concentration-time curves using trial 1 and trial 6 parameter esti- 
mates from Table 5, corresponding to the three-parameter stochastic model and 
the two-parameter deterministic model, are compared to observed data for 
x = 30cm in Fig. 5a. Using the same parameter estimates, breakthrough 
curves were predicted for 60-90 cm depths and are compared to observed data 
in Fig. 5b and c. It is apparent that  while the two models are virtually indis- 
tinguishable at the calibration depth, they yield increasingly divergent predic- 
tions at greater depths. Jury  and Sposito (1985) presented a detailed com- 
parison of the deterministic convection~iispersion model (denoted as the CDE 
model) and a "transfer function model" (TFM, Jury, 1982) which corresponds 
to the stochastic model described above with e -* 0 (local piston flow). Results 
of their analyses for calibration of the two models to breakthrough curves for 
each depth are shown in Fig. 6. Error ellipses computed by partit ioning squared 
deviations between model prediction s and observations by the X 2 theorem 
indicate better clustering for the TFM than the CDE model, but both models 
are clearly too simplistic to fully describe the observed transient transport of 
bromide. While the CDE tends to underpredict the rate of spreading of the 
solute distribution due to the assumption of homogeneity, the TFM tends to 
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Fig. 5. Experimental areally-averaged resident concentrations at three depths as a function of 
transformed time t* for bromide transport  in a field soil (data from Jury et al., 1982). (a) data for 
30 cm depth and fitted curve using the deterministic convection~lispersion model and a three- 
parameter stochastic model; (b) data for 60 cm depth and predicted curves for the two models using 
parameters fitted to the 30 cm depth data; (c) same as (b) for the 90 cm depth data. 

overpredict spreading due to the assumption of zero lateral transport and of 
perfect correlation of velocity distributions with depth. These results 
emphasize the caution which must be exercised when a calibrated model is used 
to extrapolate to conditions and particularly to travel distances which differ 
greatly from those employed for the inverse problem solution. 

Data specification and data error 

Given a suitable parametric model, the most critical factor for successful 
parameter estimation analysis becomes specification of a data set which will 
lead to a unique and well-behaved solution of the inverse problem. In practice, 
experimental design will be a compromise between optimum conditions for the 
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Fig. 6. Mean and 0.05 probability error elipses for parameters fitted to breakthrough curves at 
different depths for (a) CDE model, and (b) TFM model (from Jury and Sposito, 1985). 

inverse problem and technological and economic constraints. In other words, 
we would like to obtain a well-behaved inverse problem but not pay too dearly 
in computational and experimental costs. The assumed model will dictate to 
some extent the type of data which must be collected. Data sufficient to define 
the hydrologic conditions will be necessary, although the requirements may 
range from stipulation of (quasi-)steady-state hydraulic fluxes or water bal- 
ances for simple hydrologic models, to complete specification of soil hydraulic 
properties and flow boundary conditions for explicit modelling of transient 
variably-saturated flow. Irrespective of the flow model, observations of tracer 
concentrations must be made at various locations and/or times. Frequency and 
spatial distribution of observations will impact the feasibility of the inverse 
problem. 

As an example of the effects of data set composition on the inverse problem, 
consider a hypothetical data set generated with the linear two-site/two-region 
model consisting of 12 concentration observations versus time at two depths 
each. Such a si tuation is not atypical of field experiments where the data may 
be obtained from suction solution samplers (Parker and Van Genuchten, 
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T A B L E  6 

S ta t i s t i c s  for  i nve r se  p rob lems  on 240 rea l i za t ions  of  a d a t a  set  sub jec t  to r a n d o m  er ro r  (af ter  
W a g n e r  and  Gorel ick,  1986) 

D v tt 7 

T rue  v a l u e s  100.0 25.00 0.2500 0.500 

Time and distance data 
M e a n  100.9 24.98 0.2495 0.487 
Bias  0.9 0.02 0.0005 0.013 
S t a n d a r d  dev ia t i on  7.6 0.29 0.0164 0.227 

Distance-only data 
M e a n  101.7 25.06 0.2471 0.389 
Bias  1.7 0.06 0.0029 0.111 
S t a n d a r d  dev ia t i on  12.4 0.73 0.0258 0.941 

Time-only data 
M e a n  95.3 25.15 0.2599 0.901 
Bias  4.7 0.15 0.0099 0.401 
S t a n d a r d  dev ia t i on  27.9 0.44 0.0635 1.926 

D in cm 2 day  -1, v in cm day  -1, # in  day  -1, 7 in p g c m  -z day  1. 

1984a). Using data for both depths, a five-parameter inversion for v, D, R, fl, 
and to successfully converged to the true values. Using concentration data for 
only one depth, convergence could not be obtained for the five-parameter 
inversion. Convergence for the smaller data set was feasible if to was assumed 
known and only four parameters were estimated. 

In actuality, exact correspondence between model predictions and observed 
data will never occur, due in part to simplifications inherent in the parametric 
model as well as to measurement errors. Wagner and Gorelick (1986) studied 
the effects of the latter via a Monte Carlo approach. Twenty concentration 
observations were generated for two times each at 25 depths using the simple 
one-dimensional convection-dispersion model for the same problem as dis- 
cussed previously in conjunction with Table 2. Each concentration value was 
assumed to be subject to random measurement error such that  the probability 
of a given observed value is normally distributed with standard deviation equal 
to 20% of the true concentration. Parameter estimation analyses for 240 real- 
izations of the data, with random error overlain, were carried out to determine 
D, v, tt and 7. Means, variances and biases of the parameter estimates from the 
240 replications were computed using a weighted least-squares procedure with 
weights inversely proportional to the estimated concentration values. The 
results (Table 6) indicate that  parameter estimates are essentially unbiased. 
This may be attributed in part to the adopted weighting scheme which corres- 
ponded to the assumed model for distributions of measurement error. Sensitiv- 
ity to data error varied markedly with parameters. For v, the standard devi- 
ation of estimates for the 240 realizations was only 1% of the mean value, for 
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D and ~ they were approximately 7%, and for p the standard deviation was 45% 
of the mean. The difficulty in accurately determining # would be evident in 
individual inversion analyses from a large standard error of estimation in the 
parameter. 

To compare the suitability of concentration observations in time or space, 
similar Monte Carlo analyses were performed using either observations in time 
at single points in space or observations versus distance at single times. The 
results (Table 6) indicate less satisfactory parameter estimates than when both 
time and distance data were used. Use of spatially distributed observations led 
to results with markedly lower biases and standard errors than the use of 
temporally distributed observations. Additionally, better agreements between 
parameter confidence limits, obtained from individual inversion analyses and 
those estimated from the Monte Carlo analyses, were obtained using spatially 
distributed data, indicating that the linear error analysis is more suitable for 
spatial data. 

Similar preference of spatially over temporally distributed data appear to be 
indicated also by analyses of Ju ry  and Sposito (1985) for field-scale tracer 
movement. Parameter  estimation variances for their transfer function model 
calibrated using soil core data (spatial distributions) were lower than when 
model calibration was carried out using suction solution sampler data (tem- 
poral distributions) at single depths. The interpretation of these results is, 
however, confounded by differences in experimental procedures. In the soil 
core experiments, 36 replicates were available. The solute was moved into the 
ground by daily sprinkler irrigation, and the entire experiment took only two 
weeks. In contrast, the solution sampler experiment was irrigated by rainfall 
with long periods of evaporation in between and had only 14 sites for solution 
sampler analysis (W.A. Jury,  pers. commun., 1986). 

The results above indicate that  the form and accuracy of data for the inverse 
problem can incur varying degrees of estimation error in the parameters and 
in some instances impede convergence. Data uncertainty may affect the sen- 
sitivity of the results to different parameter estimation methods as well. In 
weighted least-squares regression, the weighting coefficients may be very sig- 
nificant in this respect. In the parameter estimation studies of Ju ry  and Sposito 
(1985), three different objective functions were studied based on an ordinary 
least-squares procedure, a least-squares minimization of observed and predic- 
ted time moments to fourth-order, and a maximum likelihood analysis. Signifi- 
cant differences in the parameter estimates by the three methods were observed 
with the moments method giving greater weight than the other methods to 
low-concentration observations at longer times and the ordinary least-squares 
procedure giving them the least weight. 

FUTURE DIRECTIONS 

As unsaturated zone flow and transport  simulations become increasingly 
common due to heightened concerns with the prevention and remediation of 
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groundwater contamination, the need for efficient and accurate methods of 
model calibration will become more crucial. Also, because of inherent limita- 
tions of any modelling effort, it is important that  probable errors associated 
with model parameters and ultimately with model predictions, be quantifiable. 
Parameter  estimation methods offer the most suitable means of meeting these 
requirements. Such methods have been widely applied in surface hydrology 
and lately also in saturated subsurface flow and transport  modelling; they have 
only recently begun to be applied to vadose zone flow and transport  model 
calibration. In this paper, we have summarized the basic methodology involved 
in parameter estimation and reviewed recent applications pertinent to vadose 
zone flow and transport  modelling. It is clear that  while certain progress has 
been made, a great deal of work remains to be done. 

To date, the majority of studies have involved laboratory-scale experiments 
and rather  simple parametric models. The few reported field-scale parameter 
estimation studies have involved simple model formulations, boundary con- 
ditions and/or soil conditions. Efforts are needed to extend parameter estima- 
tion methods to more complex field conditions using models capable of accom- 
modating soil heterogeneity, variable and uncertain boundary conditions, 
simultaneous flow and transport, complex biochemical processes and other 
phenomena. Parameter  identification and parameter estimation studies will 
need to be carried out in conjunction to meet these needs. Parametric formula- 
tions for the direct problem incorporating different processes in varying de- 
grees of sophistication will need to be studied to determine the most efficient 
representations which do not excessively compromise accuracy and precision. 
For example, to accommodate effects of soil heterogeneity, investigations must 
address the development of concise parametric representations of soil vari- 
ability, perhaps employing scaling analyses in conjunction with geostatistical 
methods and incorporating prior information to facilitate blocking of statistic- 
ally homogeneous zones. 

Given that  a variety of approaches to the direct problem will be possible, 
explicit methods of dealing with the parameter identification problem will need 
to be addressed. To do this, accuracy and precision associated with different 
parametric representations must be considered simultaneously to evaluate the 
point at which increased complexity and accuracy of the model is counteracted 
by loss in precision due to an inability to estimate a larger number of par- 
ameters with confidence. 

The analysis of optimum experimental design and optimum input data re- 
quirements for unsaturated flow and transport  model inversion via parameter 
estimation methods has not been investigated in a systematic manner for 
field-scale problems. Attention must be given to the selection of the most 
suitable measurements (e.g., water contents, heads, solution concentrations, 
solid phase concentrations), the most appropriate methods of measurement 
(e.g., concentrations via suction samples or cores), and optimum distributions 
of observations in time and space. Consideration of optimum initial and boun- 
dary conditions for experiments when these are wholly or partially controlled, 
suitabili ty of ambient environmental conditions, and sensitivity to uncertain- 
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ties in bounda ry  and ini t ia l  condi t ions  will be impor t an t  in the deve lopment  of  
field ca l ib ra t ion  methods.  

Final ly ,  the  impor tance  of  improving the efficiency and robus tness  of 
numer ica l  me thods  for bo th  the  d i rec t  problem and the  inverse  problem is 
emphasized.  Because  pa r ame te r  es t imat ion  involves  repea ted  so lu t ion  of  the  
d i rec t  problem, efficiency of  the l a t t e r  becomes increas ing ly  crucia l  to the 
p rac t i ca l i ty  of  pa r ame te r  es t imat ion  especial ly  when spat ia l  var iab i l i ty  effects 
are  expl ic i t ly  cons idered  in the  di rect  problem and d imens iona l i ty  and model 
complexi ty  increase.  Because  pa r ame te r  values  are unde r  au tomat i c  con t ro l  in 
the  invers ion  analysis ,  robus tness  of the  d i rec t  problem solution,  in the sense 
of insens i t iv i ty  of  model  a ccu racy  to pa r ame te r  values,  will be of  fundamenta l  
impor tance .  Al though  much  research  on opt imizat ion  methods  has  been done, 
this  is still an ac t ive  field and gains may  be an t ic ipa ted  from improved 
efficiency and robus tness  of  opt imizat ion  techniques .  The deve lopment  and 
appl ica t ion  of  adjo in t  s ta te  methods  to eva lua te  pa rame te r  gradient  vectors  
would appear  to be a pa r t i cu la r ly  f rui t ful  endeavor ,  which  should yield sub- 
s tan t ia l  benefits  especial ly  when a large number  of  pa ramete r s  must  be esti- 
mated.  Because  the choice  of object ive  func t ion  fo rmula t ion  can have  signifi- 
can t  effects on the computed  results ,  pa r t i cu la r ly  when da ta  u n c e r t a i n t y  is 
large,  the object ive  func t ion  select ion must  be given sui table  a t ten t ion .  For  
conclusion,  much  work  remains  to be done in the deve lopment  of  p a r am e te r  
es t imat ion  methods  for u n s a t u r a t e d  zone flow and t r anspor t  models, but  as the 
quest  for field-scale predic t ive  capabi l i ty  and the  need for efficient ca l ib ra t ion  
becomes increas ing ly  great ,  these methods  will be of  ever  increas ing  ut i l i ty.  
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