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This paper describes a Gaierkin-type finite element solution of the two-dimensional saturated- 
unsaturated flow equation. The numerical solution uses an incomplete (reduced) set of Hermitian 
cubic basis functions and is formulated in terms of normal and tangential coordinates. The formula- 
tion leads to continuous pressure gradients across interelement boundaries for a number of well- 
defined element configurations, such as for rectangular and circular elements. Other elements generally 
lead to discontinuous gradients; however, the gradients remain uniquely defined at the nodes. The 
method avoids calculation of second-order derivatives, yet retains many of the advantages associated 
with Hermitian elements. A nine-point Lobatto-type integration scheme is used to evaluate all local 
element integrals. This alternative scheme produces about the same accuracy as the usual 9- or 16- 
point Gaussian quadrature schemes, but is computationally more efficient. 

INTRODUCTION 

The frequent use of land for the disposal of  a wide variety 
of industrial, municipal and agricultural wastes emphasizes 
the need for an accurate quantitative description of flow 
and transport in the unsaturated zone. Initially, mostly 
finite difference methods were used to solve the governing 
flow equations, x-4 Finite element techniques became 
available in the late 1960s and have since been applied to 
two-dimensional saturated-unsaturated flow problems by 
Neuman, s Reeves and Duguid, 6 Segol, 7 and many others. 
The finite element solution presented here uses first-order 
continuous Hermitian cubic basis functions. If properly 
applied, this method generates continuous pressure head 
gradients across interelement boundaries, and hence pro- 
duces a continuous flow velocity field over the entire 
domain. Earlier work dealing with one-dimensional flow 
and transport showed that the Hermitian approach gener- 
ated better results than was possible with either standard 
finite differences or linear finite elements, particularly with 
respect to the material balance for the transport equation. 8 
This study is limited to solutions of the flow equation only. 

GOVERNING FLOW EQUATION 

The governing equation for transient saturated-unsaturated 
flow in a two-dimensional vertical cross-section is taken as 

L(h)=-Tx * K ~ - ~  + K.~ -C--+Q=Oat  (~,¢=1,2) 

(1) 

where L is a differential operator, h is the pressure head, 
K~¢ is the hydraulic conductivity, Q is a fluid source, t is 
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the time and x~ is the a-th spatial coordinate. The soil 
water capacity C is 

0 OSw~ 
c =  ~ s + ~  ah l  (2) 

where 0 is the volumetric soil water content, S is the speci- 
fic storage coefficient, S w is the degree of fluid saturation 
and e is the porosity. 

GALERKIN APPROXIMATION 

Equation (1) will be solved with the Galerkin-type finite 
element method. The dependent variable h is assumed to be 
of the form 

n 

h(x,~, t) ~- y Cj(x,O ai(t) (3) 
/'=1 

where the ¢i are the selected basis functions and where the 
aj are the associated time-dependent coefficients. The basis 
functions are used also to minimize the residual L(h)  of 
equation ( 1 ) by requiring that 

f L [h(xa, t)] ¢pi(xa) dI2 = 0 

I2 

(4) 

where ~2 represents the two-dimensional domain. Combin- 
ing equations (1), (3) and (4), and applying Green's first 
theorem to the spatial derivatives leads to 

where 

d{X} 
[P] {X} + [R] + {F} = 0 (5) 

dt 

{Xi} = {ai} (6a) 
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[Pu] J K~ = - - -  d~2 (6b) 
ax~ axa 

I2 

[Ri/] = ( C(9/(9 i d~ (6c) 

12 

1 

in which I" represents the boundary of ~2. The parameter qn 
in equation (6d) holds for applied flux-type boundary 
conditions: 

qn(Xa, t) = -- K~ ~ + Ka2 na (7) 

where nc~ is the outward normal to the boundary F. 

Basis functions 
When equation (3) is applied to a one-dimensional ele- 

ment (Xa, Xb) and first-order continuous Hermitian basis 
functions are used, its form reduces to 

h(~,t)= Y~ ~,o/(0~/(t)+~1/(~)---2-~ j (8) 
/=1 

The local coordinate ~ in equation (8) is related to the 
global x-coordinate through the expression 

2 
= -- 1 q - -  (X --Xa) (9) 

AX 

where Ax = x b - x  a is the nodal distance of the element. 
The one-dimensional Hermitian cubic basis functions are 

¢oj = --~(~ + ~o) 2 ( ~ o - -  2) (Go = + 1) (lOa) 

~bl/= ~ ~o(~ + ~o) 2 (~Jo -- 1 ) (Go = -+ 1 ) (1 0b) 

As is the case with zero-order continuous basis functions, 
the two-dimensional Hermitian basis functions can be 
generated from the one-dimensional expressions in at least 
two ways. In one approach, the two-dimensional functions 
are obtained by simply multiplying the one-dimensional 
expressions with each other. This approach leads to four 
unknowns per node:the function H, its spatial derivatives 
aH/bx and aH/az, and the cross-derivative a2H/Oxbz, 
where x = xl and z = x2 are the global coordinates. Un- 
fortunately, this approach also leads to the derivatives 
a2H/ax 2 and a2H/az ~ in the global matrix equation when 
applied to deformed non-rectangular elements. These higher 
order derivatives must be retained in the formulation if 
first-order continuity in the pressure head across inter- 
element boundaries is required. When the higher order 
derivatives are neglected, the gradients still will be continu- 
ous at the nodes, but generally not across element boundaries 
between nodes. 

An. alternative approach would be to eliminate the cross- 
derivative from the formulation altogether, thus avoiding 
the calculation of unnecessary quantities and reducing the 
number of unknowns per node from four to three. This 
approach leads to the following expansion for the unknown 
function over the local element of Fig. I : 9 

4 (  OHJo~mlaHii h(~, r/, t) = ~ ¢oo/Hi+¢lO/-'~-~'.-.+~OIj'-~'--/ (ll)  
/=1 

z (~'z.3) 

~ " ~  a I L I 

• ( x  1 ,Z 1 ) 

( - I  , - I )  ( I ,-I ) X 

o b 

Figure 1. Deformed isoparametric Hermitian elements in 
local {a) and global (b) coordinates 

where the basis functions ¢ are given by 

¢oo/= -~(1 + ~o) (1 + 777/0) (2 + ~ o  + r/% -- ~: -- r~ 2) (1 2a) 

~xo/- -  --  ~ o ( 1  + / ~ o )  (1 + rrOo) (I --  ~2) (12b) 

¢Ol j  = ---~%(1 + ~o)  (1 + ~?¢/o) (1 --77 2) (12c) 

in which Go = +- 1 and % + 1. 

Normal and tangential coordinates 

The finite etement scheme presented here is formulated 
in terms of normal and tangential coordinates (0, z; see 
Fig. lb). The advantage of this method is that flux-type 
boundary conditions are much easier to incorporate into 
the numerical scheme. In addition, the study is restricted to 
deformed elements that have 90 ° internal angles. This 
restriction could limit in some cases the applicability of the 
solution, particularly when highly irregular boundaries are 
present, n However, because most field problems can be 
described easily with elements having 90 ° angles, and 
because the formulation could be simplified, it was felt 
advantageous to maintain the square angles. A different 
formulation is needed for those few cases where this 
restriction cannot be met. 

When normal and tangential coordinates are used, the 
unknown nodal coefficients become H and its derivatives 
aH/ao and aH/az. Hence, approximation (11 )mu s t  be 
rewritten in terms of these unknowns. From the chain rule 
of differentiation we have 

attj all~ ao/ aN~ ar i 
(13a) 

a~ ao a~ az a t  

0M/= 0M/ao/+ 0.; a 
(13b) 

at7 aa a~7 a.r at7 

Because the distorted elements have 90 ° internal angles, it 
follows immediately that all derivatives ar/a~ and aa/ar/are 
zero. The other nodal derivatives in equation (13) can be 
expressed in terms of the geometric properties of the 
element. For example, for node l of the deformed element 
in Fig. 1 b we have 

Oal Ll 0~'l L4 
- -  = - -  - (14)  
a~ 2 an 2 

where L1 and L4 are the lengths of element sides 1 and 4, 
respectively. Substituting equation (13) into equation (11) 
and using the information above yields 

, a., a.q 
h(~, r/, t) = ~ o o i H i + ~ o i - - + q ~ r i  (15) 

j=l ao ar / 
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with the new basis functions 

ao/ ar i 
f~a] = (~lO/ ~ f~r] = (~O1] - -  (16 )  

o~ 

The following isoparametric transformation is used for 
distorted elements: ~l 

= Z e oojX  + + em ! 
j=l 

z (~, 7?) -- Y~ ¢oojZj + ¢ o / - -  + ¢,~/ 
/=l ao -~r ]  

where the coefficients represent the nodal values of the x 
and z coordinates and their normal and tangential derivatives: 

(17a) 

aXi = cos(e/) aZi= sin(e/) (lSa) 
ao ao 

a x ;  _ 
sin(a/) - cos(s/) (18b) 

ar  ar  

Finally, the side lengths L i in equation (14) can be 
obtained by numerically integrating equations of the form? 

1 (°z/'t - L=f{~a~/+\~/~d~ ( ~ ,~o=+  1) (19) 
--1 

(17b) - 

Numerical integration 
Numerical techniques are used to evaluate the integrals 

in equation (6). The integrations are carried out directly on 
the local (~, 7?) element between the limits - 1 and + 1. For 
this purpose, the area elements dFZ in equation (6) are 
replaced by 

dI2 = det(J) d~ d77 (20) 

where J is the Jacobian of the transformation. Several 
methods are available to carry out the numerical integra- 
tions over each local element. Typically, an integral is 
approximated by a sum consisting of the values • of the 
function at selected points in the local element and multi- 
plied by appropriate weighting coefficients. For example, 
for the function f(~, r/) we have 

1 1 

f(~, ~) d~ dl? = ~ wkf(~k, rTk) + E (21) 
k=l 

--1 --1 

where (~k, l/k) are the coordinates of the integration point, 
wk is the associated weighting coefficient, and E is the error 
of the approximation. Gaussian quadrature schemes have 
been used nearly without exception in related finite element 
studies. Although Gaussian quadrature probably is the most 
accurate scheme for a given number of integration points, 
this approach does not take full advantage of the properties 
of Hermitian basis functions. These basis functions, includ- 
ing their derivatives, are zero on several or all corner nodes. 
Hence, the computational effort can be reduced by locating 
some of the integration points at the nodes. Consequently, 
an alternative nine-point Lobatto-type quadrature scheme 
was used for all numerical integrations. Figure 2 shows the 
location of the nine integration points: four at the nodes 
and five inside the element.'The integration error E for this 

0 

4 + 5 Q S  3 X 3 G P  

c o 

0 
i 

0 

C . 

0 0 0 I 

t;k nk Wk t~ k rtk w k 

±1 

0 

o 

Figure 2. 
weighting 
(4 + 5 QS) 
schemes 

-+ 1 1/9 +-.x/'O~ ± ~ 25/81 

0 10/9 0 ± % / ~  40181 

+- ~,/E4 10/9 - + x / ~  0 40/81 

0 - -8 /9  0 0 64/81 

Location of integration points and values of 
coefficients for the nine-point Lobatto-type 
and nine-point Gaussian quadrature (3 x 3 GP) 

scheme is slightly less than the error for 3 x 3 Gaussian 
quadrature.a° 

Integration in time 

Equation (5) defines a set of n ordinary differential 
equations in n unknowns. A finite difference scheme was 
introduced to approximate the time derivative in the matrix 
equation. Define for that purpose: 

dX] +at/2 {x}t+At-- /X}t  (22a) 

{X} t+At/2 --- w{x}t+At + (1 -- w) lX} t (22b) 

where At is the time step and w a temporal weighting 
coefficient (0 ~ w ~< 1). Defining matrix equation (5) at the 
half-time level and substituting equations (22a, b) into 
equation (5) leads to the following set of equations: 

[A] t + A t l 2 { x } t + A t  = [ B l t + A t / 2 { x } t  + {F}  t+At/'2 (23) 

where 

1 
[AI = w[Pl + Att [R] (24a) 

1 
[B] = ( w - - l )  [P] + ~ t  [R] (248) 

The iterative scheme used to solve equation (23)was exactly 
the same as the scheme employed earlier for similar one- 
dimensional flow situations, s 

Boundary conditions 
Constant pressure head (Dirichlet-type) boundary con- 

ditions were included in two ways. First. all algebraic equa- 
tions that are associated with constant boundary nodes 
were eliminated from matrix equation (23). Second, 
Dirichlet boundary conditions also affect those line integrals 
of equation (6d) that are associated with the normal and 
tangential gradients of  the pressure head. To calculate these 
terms, one must first evaluate the flux qn normal to the 
boundary. This procedure leads to equivalent nodal values 
for the line integrals; these nodal values must be added to 
the vector {F}.11 
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A similar approach applies also to flux-type boundary 
conditions. When the pressure gradient or the flux normal 
to a boundary is specified, either aH]ao or all~at along 
that boundary will be known. This also leads to a reduction 
in unknowns. In addition, the line integrals for both the 
pressure head and one of its spatial derivatives will be non- 
zero for the nodes along the boundary. 

RESULTS 

Some initial results obtained with the Hermitian scheme are 
given below. The examples are presented as a verification of 
the accuracy of the numerical scheme, and also to illustrate 
the type of problems that have been solved thus far. 

One-dimensional vertical infiltration 
In this example, 12 water is allowed to inf'dtrate into a 

deep homogeneous soil profile that has the following 
hydraulic properties: 

0.6829 -- 0.09524 ln(I h [) h <~ -- 29.484 

O(h) = 0.4531 - 0.02732 ln(Ih I) 
(25a) 

--29.484 ~<h ~< -- 14.495 

t19.34x10 41h[ -3"409s h~<--29.484 
(25b) 

K(h) = j-0.97814 ~516.8 Ih --29.484 ~<h ~<-- 14.495 

where K is given in cm/day and h in cm. The initial moisture 
content distribution is 

t 0.15 --z/1200 - - 6 0 ~ z ~ O  
0 (x, z, 0) = (26) 

10.20 -- 125 < z  < - - 6 0  

The equivalent initial pressure profile follows immediately 
from equations (25a) and (26). The medium was divided 
into 25 rectangular elements (Ax = 10 cm, Az = 5 cm) 
with a total of 52 nodes. No-flow boundary conditions 
(qn = 0) were applied at the sides, and a constant pressure 
head was imposed at the soil surface (h = -- 14.495 cm). A 
free draining soil prof'tle was assumed at z = -- 125 cm: 

ah 
- -  ( x , -  125,  t) = 0. (27)  
az 

Figure 3 presents calculated moisture distributions 
versus depth for four different quadrature schemes. The 
solid line represents the assumed correct solution and was 
obtained with several one-dimensional finite difference and 
finite element solutions that used extremely small time and 
spatial increments, s Relatively poor results were generated 
with the four-point Gaussian quadrature (2 x 2 GP) scheme. 
The calculated distributions not only lag behind the correct 
solution, but also exhibit serious oscillations. Much better 
results were obtained with the nine-point Gaussian quadra- 
ture (3 x 3 GP) scheme, although the computed distributions 
also in this case lag somewhat behind the correct solution. 
The most accurate results were obtained with the 16-point 
Gaussian (4 x 4 GP) and the nine-point alternative (4 + 5 QS) 
integration schemes. This last scheme actually generated 
results that were slightly better than those obtained with 
the 4 x 4 GP scheme. The 4 + 5 QS scheme nearly duplicated 
the correct solution, except for some minor oscillations 
near the toe of  the moisture front. 

Table 1 gives a summary of the various computer runs 
for this example, including a comparison of the execution 
times needed to complete the 0.4-day simulation on an IBM 
360191 computer. The table also shows results that were 

0 

2 0  

4 0  

A 

E 6O 

" 1  ~ . 

8. 80 
LO 

I00  

~" 2 hr. 

b 

~ ~/.I nitiol 
Distribution 

9hr J - " "  

2 x 2  GP 
3 x 3  GP 

~ ................. 4 x 4 G P  

120 l 0 0 0 0  4+5  QS (nodal values) 
correct solution 

0.20 030 040 

MOISTURE C O N T E N T  ( c m 3 c n ' ? )  

Figure 3. Effect o f  different quadrature schemes on com- 
puted moisture distributions 

obtained with equivalent one-dimensional Hermitian finite 
element solutions, a For example, the four-point Gaussian 
quadrature scheme in two dimensions reduces to a two-point 
Gaussian scheme (2 GP) in one dimension. Similarly, the 
4 + 5 quadrature scheme reduces to (and produces the same 
results as) a five-point Lobatto integration scheme (5 LP). 
The infdtration example shows that the 4 + 5 quadratqre 
scheme generates results that are at least as accurate as 
those obtained with 4 x 4 Gaussian quadrature (Fig. 2), but 
with a saving in computer time of about 45% (Table 1). The 
equivalent savings for the 5ne-dimensional programs are 
considerably less. 

Two.dimensional horizontal infiltration 
This example considers the two-dimensional horizontal 

infiltration of water into an initially air-dry, semi-infinite 
soil slab. A detailed description of the physical problem is 
given by Rubin. 13 In summary, water infffltrates from the 
left side of the rectangular soil slab under the influence 

Table 1. Summary o f  various one-dimensional (l-D) and two- 
dimensional (2-D) simulations o f  example 1. Total simulation time 
is 0.4 days 

Integration method Total number CPU time (s) 
of time steps 

1-D 2-D 1-D and 2-D 1-D 2-D 

2GP 2X2GP 132 6.6 63.6 
3 GP 3 X 3 GP 170 9.9 130.8 
4GP 4X4GP 149 10.2 160.0 
5 LP 4 + 5 QS 156 9.4 89.8 
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REHOVOT SAND 
0.200 0150 OlO0 0.050 

' 0 [  ~ . . . . .  R'UBIN (,968) 
~ , .  \ ' ,  \ ' ,  ,~ ', \ ~ . . . . . . .  z,.oLos,,, v r  ,,. 

'° \ : ,  \ - -  s.,-,.,o:"'" 
F "%-,. X,>. \ \ \ ',X,,~ 

o 
0 2 4 6 8 I0 12 14 16 

HORIZONTAL DISTANCE (cm) 

Figure 4. Calculated moisture distributions durin& infiltra- 
tion into a horizontal soil slab 

of a constant total head (h + z) o f - -  13 cm. No-flow bound- 
ary conditions are present along the top (z = 0) and bottom 
( z = - - 1 0 c m )  boundaries of the system. Soil-hydraulic 
properties of the Rehovot sand used in the experiment are 
given elsewhere} a'14 Figure 4 compares the Hermitian 
simulation results after 10 min of infiltration with results 
obtained earlier by Rubin ~a using finite differences and by 
Zyvoloski et al. ~s using linear finite elements. Note that the 
Hermitian-based moisture distributions are very close to the 
distributions calculated by Rubin} a 

Subsurface irrigation 

This example describes the infiltration of water from a 
horizontal line source in a two-dimensional cross-section. 
Water is applied through buried laterals (point sources) that 
are located at a depth of 15 cm below the soil surface 
(Fig. 5). The experiment was used earlier by Thomas et al. 16 
to compare calculated and measured steady-state pressure 
head distributions in a soil box designed to model a sub- 
surface irrigation system. The calculated distributions were 
based on an analytical Solution developed by Zachmann 
and Thomas. 17 This solution holds for a semi-inf'mite soil 
medium with no-flow boundary conditions at x =-+ Xo. 
Here we will compare the analytical solution with Hermitian 
finite element results using exactly the same experimental 
conditions as described by Thomas et al. ]6 

Figure 5 shows schematically the finite element mesh 
for the line source problem. The soil slab was extended 
arbitrarily to a depth of 350 cm, thereby assuming that the 
semi-infinite system was closely approximated by this deep 
profile. The source strength Q equals 1.05 x 10 -3 cma/cm/s, 
which is equivalent to a constant application rate of 0.7436 
cm/day when distributed evenly over the entire soil surface. 
The hydraulic conductivity K (cm/day) of the clay loam 
soil is 

g = 96.768 exp(--0.1258h) (h >t 0) (28) 

Two methods can be used to evaluate the steady-state 
pressure distribution. One approach would be to calculate 
the distribution directly by forcing the time-derivative in 
equation ( I )  to be zero. This method often requires numer- 
ous iterations and could at times even lead to convergence 
problems, especially for highly non-linear problems. The 
direct method was followed first. However, several numeri- 
cal adjustments were required in the program, such as an 

SOIL SURFACE 7 z 

/ 

Q=Qo 8(X'Xo)8(z- Zo) 

,. 

b 

I z° • 

Xo 

x (cm) 

Figure5. Schematic representation of  the line source 
problem and the associated finite element mesh 

effective under-relaxation, to speed up convergence and 
hence to limit the number of iterations. Alternatively, the 
problem can be solved indirectly by starting out with an 
arbitrary initial condition and solving the problem as if it 
were a transient one. A fictitious soil water retention curve 
was used for this purpose. This last approach proved to be 
much easier and less costly. 

Calculated steady-state pressure head distributions are 
shown in Fig. 6. The curves duplicated exactly the analy- 
tical results obtained with the solution of Zachmann and 
Thomas. 17 The pressure head deep in the profile was found 
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Figure 6. Calculated steady-state pressure head distribution 
resulting from a buried line source at z = -  15 cm (semi- 
infinite profile) 
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Figure 7. Calculated steady-state pressure head distribution 
resulting from a line source at z = -  15 cm (fixed water 
table at --100 cm) 

to be --38.7 cm, and was independent of the horizontal 
coordinate. The value o f - - 3 8 . 7  cm is consistent with the 
pressure head at which the hydraulic conductivity reaches 
a value of 0.7436 cm/day, the latter being the application 
rate as averaged over the soil surface. As a modification of 
the last example, Fig. 7 shows calculated steady-state 
pressure head distributions resulting from the same line 
source as before, but now with a fixed water table present 

saturated-unsaturated f low equation." M. Th. van Genuchten 

at z = -- 100 cm. Note that the pressure distributions close 
to the soil surface are nearly identical to those shown in 
Fig. 6. 

CONCLUSION 

The three examples shown in this study demonstrate that 
the Hermitian finite element solution can be used to calcu- 
late pressure head (and moisture content) distributions for 
a number of two-dimensional problems. Application of the 
alternative 4 +  5 Lobatto-type quadrature scheme results 
in considerable computer savings as compared to the use of 
Gaussian quadrature. Because the Hermitian solution gener- 
ates a continuous flow velocity field for most finite element 
configurations, it is expected that the scheme will be especi: 
ally attractive when combined with numerical solutions of 
the solute transport equation. 
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