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SUMMARY

In the last decade or so finite element techniques have been applied with increased frequency to
contaminant transport problems. Whereas most of the attention has focused on finite element approxima-
tions of spatial derivatives, standard finite difference techniques are generally used for approximation of
the time derivative. Such an approach yields a scheme which is at best second order correct in time. In this
study several higher order approximations of the time derivative are developed and analyzed using a finite
difference approximation, and Galerkin-type finite element approximations in conjunction with several
sets of basis functions. Results obtained with the different schemes exhibit significant improvements in the
numerical solution of the convective-dispersive equation.

INTRODUCTION

Considerable effort has been directed in recent years towards the development of improved
numerical schemes for solution of the convective-dispersive equation which describes con-
taminant transport in porous media. Oscillations are often computed in the region of a sharp
concentration front when convection is much greater than dispersion (Peaceman and Rach-
ford'; Price et al %). These oscillations can often be damped out at the expense of a smeared front
by using standard finite difference or finite element techniques. Chaudhari® in 1971 used an
explicit, backwards in space, finite difference scheme and showed that by adding a term to the
dispersion coefficient, the smearing of the front could be reduced without generating oscillatory
numerical solutions. Several other schemes have since been proposed (Bresler,* Chaudhari,’
van Genuchten and Wierenga,® Lantz”) to minimize the effects of numerical dispersion through
the use of dispersion coefficient corrections in the transport equation. In the present paper,
correction factors are derived which are applicable to several higher order finite difference and
finite element schemes for solution of the convective-dispersive equation. The stability of the
corrected schemes is analyzed and some computed results for finite differences and for linear,
quadratic and Hermitian finite elements are presented.

THEORY

The equation to be considered in this analysis is the one-dimensional convective-dispersive
equation given by

dac dc ¥’c
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where

¢ is the solute concentration (ML ™),

U is the velocity, assumed to be constant (LT %),

D is the dispersion coefficient, assumed to be constant (LT,

7 is the time dimension (T), and

£ is the space dimension (L).

This equation can be made dimensionless with respect to the uniform time and space

increments, At and A¢ respectively, which will be used in the finite element and finite difference
calculations. For this purpose the following dimensionless variables are defined

t=1/A7 (2a)
x =§/A¢ (2b)

such that At and Ax, the dimensionless time and space increments, respectively, equal unity.
Equation (1) then becomes

ac dc ¢

_=0
ot ax  ax’ @)

where

UAr 9= DAr
Aé (agy
Consider now the following difference approximation to (3)

A Ac A%c]r+ar Ac A% ’
A_‘;= [—a,u-A—;+a2@ x ] [ blu +b2@A ] (4)

u=

where Ac/At is given by
AC ct+At _ C‘
Ar A
and where the spatial difference quotients are as yet unspecified, since they depend on the
particular finite difference or finite element scheme adopted. The coefficients a; and b; (i = 1, 2)

in this difference equation will be determined such that (4) becomes a higher order accurate
approximation to differential equation (3).

®)

Time corrections only

When higher order basis functions are used in the finite element formulation, the truncation
errors associated with the spatial derivatives can be assumed small compared to the time
differencing errors. Thus, equation (4) may be written as

Ac ac - crar ¥’c
Y [ a1u£+a2@ x] [—blua +b2@ ] 6)

The basic technique upon which the derivation of the correction factors depends, is the
replacement of the spatial derivatives dc/dx and o ’c/ax? by appropriate time derivatives. To
obtain an expression for dc/dx in terms of the time derivatives, constraint equation (3) may be
rewritten in the following form

ac  dc _dc

U—=—-——-
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ox ot  ax? )
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Multiplication of this equation by 4 and rearrangement yields
ac d ) 0
u2—=—u——c+92—(u—c) ®)
ax at ox \ 9x

Equation (7) may now be substituted into the last term of (8) to obtain

w290 a(ac)+ 2 8¢

ax "ot Taxlar x> ©)
This equation may be multiplied also by & and rearranged to the form
5 9c ,0c a( ac) , 0 ( ac)
—=—u'=-9—(u=)+9* 5(uZ 10
“a M a T\t ax2\"ax (10)

Again (7) may be substituted into the last terms of equation (10). Repeating this successive
substitution until all spatial derivatives up to the fourth order are converted to time derivatives,
one obtains
¢ 6c+ D dc 29 6304_5@3 64c+ (11a)
— =t e et — . . a
ox ot u*ort ut o’ u® art
A similar expression may be obtained for the second derivative by differentiating (11a) with
respect to x and using (7) to again convert the spatial derivatives to time derivatives. The
following expression results
,ﬂﬁ:a—zf_@ 8_3(:_,__5@2 L‘C"_ (11b)
ox? o ut o ut o
Proceeding in an analogous manner, one may also obtain expressions for the third and fourth
spatial derivatives ’

;0% 3c 39 d*
3= v

u g "53"*'—2 Y +... (11¢)
e ¢
u4g=gt7+... (11d)

Equations (11), which were derived subject to the constraint imposed by the convective-
dispersive equation (3), may now be substituted into (6), to obtain

Ac ac P ¢ D? ¥c D 3l
5o lo e e BT T e T et an )
ac D dc D* Pc D eyt
B e AT R A e T L q e

By making use of equation (12) optimal values of the coefficients a; and b; for second or higher
order accurate difference schemes may now be developed.

Implicit schemes. The first case to be considered is the implicit scheme. In such a scheme the
terms on the right hand side of (12) at the known time level ¢ are not considered. Thus b, and b,
are zero. Because only two independent parameters, a, and a,, are left to be determined, the
implicit scheme can generally be made only second order accurate in time. Optimal values for a,
and a, may be selected by requiring that equation (12) be exact for ¢ = ¢°. Substitution of this
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relation into (12) and recalling that At = 1, one obtains (with b, = b, =0)
2 2 @
(+1)y 1t =2a1(t+1)+2(a2—a1);2- (13)

Because this equation holds for all values of ¢, the coefficients of like powers of ¢ on both sides of
the equation must be equal. Hence

2=2a1 (148.)
D
1=2a1+2(a2-—a1)-L7 (14b)

Simultaneous solution of equations (14a) and (14b) yields

a;=1 (15a)
-1 u2 .
a:=1-- (15b)

After substitution of (15)into (4), the following implicit, second order, time corrected represen-
tation of the convective-dispersion equation is obtained

Ac [ Ac ( uz) Azc]'”‘ -

— | — ___+ _——

o e\ ? 77 e (16)
Explicit schemes. For an explicit scheme the parameters a; and a, in (12) will be zero. Again

only two parameters are left to be determined, and thus the explicit scheme can also be only
second order correct in time. Substitution of ¢ = ;2 into equation (12) with a; = a, =0 yields

(t+1)2—t2=2b1t+2(b2—b1)% a7)

Equafing the coefficients of like powers of ¢ on both sides of this equation and solving for b, and
b, one obtains

bi=1 (18a)

2
u

b= 1+E (18b)

Therefore, an explicit scheme which is second order correct in time, is given by

Ac Ac u? Azc]'
Ac_[_ Ac (. u’\A 19
At [qu+(@ 2)Ax2 (19)

It should be noted that equations (16) and (19) have been derived also with the use of Taylor
series expansions for the time derivative (Chaudhari,’ van Genuchten and Wierenga®). The
method of analysis followed here, however, appears to be more easily extended to the derivation
of third and fourth order correct numerical schemes. This will be shown next.

Third order correct schemes. Third order correct schemes may be obtained by requiring that
(12) be satisfied when c is a cubic polynomial in time. With the constraint that ¢ =1, equation
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(12) becomes
2

3t +3t+1= [3a1(t+ 1)2+6(a2—a1)%(t+ 1)+12(a, ——az)%]
v @2J

Pt
+ [3b1t2+6(b2—b1)7+12(b1—bz)F (20)

For this equation to be exact for all ¢, the coefficients of the same powers of ¢ on both sides of the
equal sign must be the same. Hence

3=3a1+3b1 (218)
D
3=6a1+6(a2—a1+b2—b1)F (21b)
P P?
1=3a1+6(a2—a1)7+ 12(a1—a2+b1—b2)7 (21C)

Hence three equations in four unknowns are obtained. The parameter a; will not be solved for,
but instead will be left to take an arbitrary value 4. Solution for the remaining unknowns yields
then

_ 2
d=1—0 +‘—1% (22a)
by=1-9 (22b)
b=+ 2200 220)

Using this relation in (4), one obtains

Ac [ Ac 1-6\  (1-36) Z}Azc]'“‘
_—0[ qu+{9( 00')+ 60 " JAx®

At
Ac 0\ (2-306) Z}A%]f
- -u— — )+ —=u’— 23
+a 0?_[ qu+{9(1—0) s(i-0)" jar] @
In the present study, this equation will be used only when 8 =3, and (23) thus reduces to
Ac 1[ Ac ( 1 2)A2c]r+m 1[ Ac ( 1 2)A2c]r
—=c|~u—+{D--u’|l— +o|—u—+{D+=-u’|— 4
a2l T T\ 25 )5 A\ ) a @4

This equation represents essentially a Crank-Nicolson scheme with correction factors applied to
the dispersion coefficient, the value of the correction factor being dependent upon the time level
at which the dispersion term is evaluated.

Fourth order correct scheme. To obtain a scheme which is fourth order correct in time, equation
(12) is required to be exact when ¢ is a fourth degree polynomial in f. Analogously to the
previous derivations, the requirement that ¢ = t* be exactly represented by (12) yields now

1. 2947

“T e @52)
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a; _ _l[60@2+12u2@+u4]u_2
6 2

a; 129°+4u*P +u* (250)
1 29u’

PR @59

b, 1[60@2—12u2@+u4]u2

—=1+4- —_—

by N EvT s e P 259

Thus the special case of equation (4) which is found to be fourth order correct in time is

Ac_ [1 29u® ][_u£+{@__(60@2+12u29+u4) 2}Azc]'w
At 12 129%+4* Ax 129°+4u*P +u' Ax?
1 294’ Ac 1/609%—12u’P +u* 2}A2c]‘
———— e pu—. .__..+ — —
+[2 12@2+u“][ “Ax {@+6<12@2—4u2@+u4>u Al @9
Note that if 8 in equation (23) is chosen to be
g1, 29’
T2 129%+4°

equation (23) becomes identical to (26). Furthermore for the special case when & = 0, equations
(23) and (26) reduce to the same form.

Space-time corrections

So far only truncation errors associated with the time derivative have been considered, ‘while
those associated with the spatial derivatives were assumed to be ne gligible. This assumptlon may
be correct for those finite element schemes where higher order basis functions are used (e.g.
cubic or first order continuous Hermitian basis functions). For simple finite differences and
linear finite element schemes, however, it is reasonable to include also the truncation errors
associated with the spatial derivatives in the analysis.

The following difference operators are first introduced

56‘,' 1 AC,'+1 AC,' AC.‘_l]

—_—=—=|—+4 —4—

ot 6[ At 4 At At (27)

Ac;  Civ1—Cin

S i St 2

Ax 2Ax (28)
AZC,' C,'+1"'2C,-+C.'_1
=l o 29
sz AxZ ( )

The time discretization defined by equation (27) results when the time derivative is integrated
over the element, using linear basis functions (Gray and Pinder®). The approximations of the
spatial derivatives as defined by (28) and (29) apply both for finite difference and linear finite
element schemes.

Estimates of the truncation errors associated with the spatial derivative approximations are
obtained directly from Taylor series expansions as

Ac ac lac

Ax  ox 6ax (30)
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and
Ax® ax? 12 ax*
Finite differences. Substitution of (30) and (31)into (4) yields the following general difference
scheme

F... (31)

Ac [ ac ¥%c au 3¢ a9 a%]‘*“ [ ac d%c byu °c b, a4c]'
VO B Pl T e ot i) IR B SN N AL U L K S
A LT T e T 12 ot Yox T ax2 6 ax ! 12 ax°

(32)
The analysis now proceeds in exactly the same fashion as before. The constraint imposed by
equation (3) is again satisfied by substitution of equations (11a)-(11d) into (32), resulting in

Ac ac 9@ c (29 a, 8¢
= _+;5(a2_a1)55+{7(a1—a2)+8‘u—2

ar % Y
+ iblg§+u—g;(b2-—b1)z—j§+{2u—%2(bl—bz)+$}%
¥ %i"’z”’l)“‘z‘g:%(%"’*)]g—:g]‘ (33)

Because four parameters are left to be determined, this equation can be made fourth order
correct by requiring it to be exact for all fourth degree polynomials in time. Substitution of ¢ = #*
- into-(33) and solution for the four correction parameters yields

DQu*-1
“"=E+u“+(12@2—)u2 (342)
a, 60D%— 6D +12Du* -2+ 1+ u* u?
@a—,_'"@-_[ 129729 +49u> — i+ u” ]? (34b)
1 2Qu*-1)
s (34)
by, [609246'@-129u2—2+u2+u‘]u2
92 _ - 34d
@bl 2+ 129°+22 -4’ - u*+u* 6 (34)
The following fourth order correct finite difference scheme is then obtained from 4):
Ac Ac -yluz) Azc}”’“‘ [ Ac ( 72u2> Azc]'
—=0|-u— -7\ == -0 ~u—+(9+2-) = 35
Ar 0[ qu+(@ 6 Jar] T et 2+ )i (33)
where 1 90 ) 1y
uie
R RS T (362)
_ 609’69 +12Pu*~2+u’+u* (36b)
L YT Y B, W
2 _ 2_ 2, 4
_609%+6D - 129u*~2+u’+u (36¢)

Y T e 29— 4% =it it
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Linear finite elements. When linear finite elements instead of finite differences are used, Ac/At
in equation (4) is replaced by 8¢/t as defined in (27). Rewriting (6) for this case gives

5 Ac AZcr+ae Ac A%
b—f::[—aluA +a2@ ] [ bluA—-+b2@A ] (37)

The left hand side of (37) is easily expressed in terms of Ac/At as

.icl':%_i-l[ACH.l_zAcl'*.ACi—]]
ot At 6L At At At
Ac; Ax? ot Ax2r A%y
_—-+——— —— ] —
6At [Ax ] 6At [Ax2] (38)

Because of the way the time and space domains were made dimensionless, Ax and At are both
equal to unity. Combination of equations (37) and (38) and solution for Ac/At yields

Ac [ Ac ( 1) A’c ]rw [ Ac 1\ A%
S [ronte (oo BT (e 25]
At N Ax a2 6/ Ax® 1u 22+ Ax? (39)
One technique to obtain optimal values for the parameters a; and b, in this equation is to again
convert the spatial derivatives to time derivatives and requiring the resulting equatlon to be

fourth order correct in time. Alternatively, the required corrected scheme may be obtained
directly by substituting equation (38) into (35) and rearranging to show that

8¢ Ac { yiu® 1 }Azc]'“‘ [ Ac { yiu? 1 }Azc]‘
—=0-u—H{P-"—+—t— | +(1-0)|-u—+|p+L _ —
ot 0[ “Ax 6  66)Ax (A=0) ~u g * 12+ ca-oiaz] “0

where 6, v and vy are as defined in equation (36). Thus the fourth order correct finite difference
and linear finite element schemes with their appropriate correction factors are identical.

RESULTS AND CONCLUSIONS

Numerical results obtained with the various finite difference and finite element schemes derived
in the theoretical part of this study will be presented now. The results were obtained with
equation (3) subject to the conditions

<0,0)=1 t=0 (41a)
c(x,0)=0 x>0 (41b)

The concentration distribution versus distance hence can be closely approximated by the
analytical solution of Lapidus and Amundson® as

c =3 erfc[(x —ut)/(4Dr)"*] +1 exp (ux/D) erfc[(x + ut)/ (421)"/?] - (42)

To further assess the accuracy of the numerical results, a Fourier analysis was used to determine
the ability of the schemes to accurately propagate a sharp concentration front. The details of the
procedure have been previously given in Gray and Pinder® and will not be repeated here. The
basic idea of the procedure is to express the concentration front as a series of sine and cosine
waves. The error with which each wave is computed is then determined by comparing the phase
and amplitude of the numerical wave with the corresponding properties of the analytical wave.
‘The comparison is made at the time for which the analytical wave will have propagated one
wavelength. A wave which is not propagated at all will thus lag the analytical wave by a full 360
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degrees. Gray and Pinder® have shown that when the amplitude of the numerical wave is
significantly damped in comparison with the analytical wave, the concentration front will be
smeared or spread out more than it should be. Furthermore a phase lag of the numerical wave is
responsible for the overshoot-undershoot phenomena commonly observed at the upstream side
of the concentration front. A phase lead on the other hand will lead to oscillations at the
downstream side of the front. : :

In the present study values chosen for 4 and 9 are 0-369 and 0-00689, respectively, and
results will be presented after 65 time steps (Af = 1). The Fourier series analysis indicated that all
second order corrected, implicit schemes with 8 = 1 are unstable. Thus these schemes will not be
considered in further discussions. Figure 1 gives the concentration profiles for a few computa-
tional schemes calculated when no correction factors are used. The schemes are time-centred,
Crank-Nicolson type approximations of the convective—dispersive equation. Note the poor
performance of the finite difference scheme as compared to the other schemes. None of the
schemes are able to remove the oscillations upstream of the concentration front. Also the
scheme which uses ¢! Hermitian basis functions in space generates oscillations, roughly equal in
amplitude to those obtained with ¢® quadratic functions. Because it is not the purpose of this
study to discuss the relative merits of the different basis functions used in the finite element
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Figure 1. Concentration profiles obtained with various uncorrected finite difference and finite element schemes
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formulation, we will now proceed with a discussion of each numerical method employed
showing the effects of the different dispersion corrections on the numerical results.

Results for standard finite differences using the various dispersion corrections are presented
in Figures 2 and 3. Figure 2 gives a plot of the phase lag and amplitude ratio for each scheme,
while Figure 3 compares the numerical solutions with the analytical results. The two figures
indicate that the uncorrected and the third order correct schemes generate the same results. The
fourth order correct scheme, although not shown, generated results which roughly duplicated
those obtained with the uncorrected scheme. The fact that the small wavelengths are damped
more and propagated somewhat better by the explicit scheme in comparison to the uncorrected,
time centred scheme, leads to a marginally better description of the concentration profile. The
space-time correction, when included in the difference scheme, markedly decreases the phase -
lag and, in general, improves the amplitude modification ratio. Figure 3 confirms that the
space-time corrected scheme provides results which are better than those obtained with the
other finite difference schemes considered here.

The phase lag and amplitude modification plots for the linear finite element schemes are given
in Figure 4. It is apparent that the phase errors are reduced in comparison to the finite difference
schemes. Errors in the amplitudes are, however, only slightly less in comparison to finite

1]
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Figure 3. Concentration profiles obtained with several dispersion corrected finite difference schemes
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differences. Thus the oscillations near the concentration front should be reduced by the finite
element schemes, but the steepness of the concentration front will be roughly the same as with
finite differences, except for the uncorrected scheme. This is evidenced by the results plotted in
Figure 5. Note that the space-time corrections and the third order time corrections lead now to
approximately the same results. Perhaps the most interestin gcurves in Figures 4 and 5 are those
for the second-order (explicit) scheme. The tremendous amount of damping observed with this
scheme will smear the concentration front, while the phase lead for most wavelengths will cause
oscillations to occur on the downstream side of the front. Thus this scheme produces a solution
inferior to the other finite element schemes.

The curves in Figures 6 and 7 indicate that the third order correct in time scheme provides a
slight improvement over the uncorrected scheme when quadratic elements are used. The phase
lag plots of both schemes indicate that these two techniques are superior in accurately
propagating the concentration fronts to all other schemes thus far considered. The third order in
time correction reduces the oscillations in comparison to the uncorrected scheme by distributin g
the oscillations between the upstream and downstream sides of the concentration front. This is
also evidenced by the fact that the corrected scheme shows a phase lag at the lower wavelengths
and a phase lead at the higher wavelengths. The second order (explicit) scheme is very

12
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Figure 5. Concentration profiles obtained with several dispersion corrected linear finite element schemes
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disappointing in that it causes a large phase lead for small wavelengths. Thus the oscillations
appear almost exclusively on the downstream side of the front (Figure 7). The severe damping of
the amplitude modification at the same time causes the front to be smeared in comparison to the
analytical solution.

The plots of the phase lag and amplitude ratio for the Hermitian scheme (Figure 8)indicate a
tremendous improvement over the linear and quadratic finite element schemes. The very small
wavelengths in particular are propagated much more accurately than by the previously analyzed
methods, even for the uncorrected scheme. The phase lag for the third and fourth order in time
corrected schemes is never more than half a degree, while the amplitude modification ratio for
the fourth order corrected scheme is accurate to within half a per cent. The accuracy of the two
corrected schemes is further evidenced by the numerical results plotted in Figure 9. The nodal
values of the concentrations obtained with the two schemes nearly duplicate the analytical
solution. Note the relatively severe overshoot upstream of the front obtained with the uncor-
rected scheme.

It should be mentioned that the Hermitian schemes have two possible stability eigenvalues.
One corresponds to the physical problem being considered and the other corresponds to the
computational mode. For the parameter values investigated here, the physical modes were
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Figure 7. Concentration profiles obtained with several dispersion corrected quadratic finite element schemes
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Figure 9. Concentration profiles obtained with several dispersion corrected Hermitian finite element schemes

found to be stable for the three schemes considered. The numerical mode for the uncorrected
and the third order corrected schemes was also stable. A very slightly unstable numerical mode
was detected, however, for the fourth order corrected scheme. This indicates that if this mode is
introduced, possibly by numerical roundoff errors, it will grow and eventually swamp the
physical solution. This difficulty was not encountered during the numerical calculations per-
formed here, but it may cause some problems if the computations are carried out over a very
long simulation time,

CONCLUSIONS

Several higher order accurate finite difference and finite element computational schemes have
been presented for solution of the convective-dispersive equation. The various schemes were
made higher order accurate in time through the introduction of appropriate dispersion correc-
tions in the numerical formulations. The most accurate standard finite difference and linear
finite element schemes were obtained when fourth order space-time corrections were applied to
each of the two schemes, in which case the two methods become identical. The quadratic finite
element schemes which provided the best results were based on third and fourth order correct
difference equations in time. Superior results were obtained with the dispersion corrected
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Hermitian schemes. A Fourier analysis showed that the phase lag for the corrected Hermitian
schemes never exceeded half a degree, while the amplitude modification ratio for the fourth
order corrected scheme was accurate to within half a per cent.
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