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A deformed isoparametric Hermitian element can be used in the simulation of two-dimensional
contaminant transport. The degree of freedom arising from the cross derivative may be eliminated in the
Galerkin-type finite element formulation, reducing the computational effort per node. Two example
problems demonstrate that the Hermitian element gives results which are comparable to those obtained
with the zero-order continuous cubic element but requires 25-40% fewer degrees of freedom, depending

on the geometrical description of the problem.

INTRODUCTION

Numerical solutions of the convective-dispersive transport
equation have received considerable attention recently owing
to the increased interest in contaminant and heat transport
simulation. The partial differential equation governing two-
dimensional transport of a conservative ionic species in an
incompressible flow field can be written as
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where

¢ solute concentration, ML"3;
D dispersion coefficient, L27-;
¢ time, T:

¥ mass average velocity, LT

The purpose of this paper is to examine a method for the
numerical solution of (1) by using isoparametric finite ele-
ments in conjunction with first-order continuous Hermitian
basis functions.

THEORETICAL DEVELOPMENT
Galerkin Approximation

The approximate integral equations which provide the foun-
dation for the finite element approach can be generated by
using a Galerkin formulation. In this approach the unknown
function ¢ is approximated by using a finite series of the form

6, . 1) ~ 8, p, 1) = i;a,a)qs,-(x, » @)

where the ¢,(x, y) are basis functions chosen beforehand such
that they satisfy the essential boundary conditions imposed on
(1) and the a, (¢} are undetermined coefficients. In the present
analysis these coeflicients become the values of ¢, dc/dx,
dc/dy, and 8%/(dx 8y) at the nodal locations. The Galerkin
method requires that the residual arising out of the sub-
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stitution of ¢ for ¢ in (1) be orthogonal to each of the n basis
functions ¢;. From the definition of orthogonal functions this
can be expressed as

fL(E)(bL(X»y) d4d =0 i=1,2,--,n (’5)

where 4 is the domain over which the integration is per-
formed. Expansion of (3) provides n equations in the # un-
knowns a,(t). Because it is the intention of this paper to focus
primarily on the form of the approximating function ¢ and the
geometric transformations inherent in the isoparametric for-
mulation, the reader is referred to other work, such as that of
Pinder [1973], for a specific discussion of the coefficient ma-
trices obtained from (3).

Basis Functions

As is true of zero-order continuous polynomials, the Hermi-
tian first-order continuous basis functions can be generated in
two ways. In an approach analogous to the development of
‘Lagrangian’ elements the two-dimensional bases are obtained
simply as the product of the well-known one-dimensional ex-
pressions. In the local (¢£) coordinate system (Figure 1) ths
one-dimensional Hermitian basis functions are written [Oden,
1972, p. 54] as

do' = —HE+ &) (EE — 2)
& = (8 + )8 — 1)

(4a)

-

(40)

where £ = +1. The coefficients @,(r) in (2} are now the nodal
values of the concentration and its first derivatives.

The basis functions in two dimensions (£, n) are obtained by
multiplying (4a) by (4b):

(5a)

boo' = 16§ + o)X EE — 2)(n + 7o) — 2)

d10" = —isbo(E + &) (EE — D +10)(mme — 2) (5B
bo' = —H(E + E)HEL — Dno(n + mol(me — 1) (5¢)
Ot = o€ + £0)*(EEo — Umo(n + 10)* (0 — 1) (54)

where &, = =1 and n, = %1.
The series approximation for ¢ as expressed through (2) may



452
¢}
1.0 ¢c')(€0=—l) q% (&= 7
osf s
¢, (&=-1)
210 >o\_//o €
i -
05k $ €= /

Fig. 1. First-order continuous Hermitian basis functions [after Zien-

kiewicz, 1971},
now be written as
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The elements of the unknown vector are hence the concentra-
tion C, its first derivatives 8C/ 8¢ and 8C/dn, and its cross
derivative 82C/(8¢ on), each being evaluated at a node. The
cross derivative should be included for completeness of the
two-dimensional expansion [Brebbia and Connor, 1974]. In-
clusion of this term leads to a continuous normal derivative at
interelement boundaries for rectangular elements but does not
in general do so for distorted elements [Frind, 1977]. Fortu-
nately, an accurate solution of the convective-dispersive equa-
tion does not require a priori that the normal derivatives be
continuous at the interelement boundaries. Because there will
be a 25% reduction in the number of degrees of freedom per
element (i.e., 12 rather than 16) when the cross derivative can
be eliminated, it is important to obtain an expansion which
does not include the cross derivative. Such an approach to
formulating the two-dimensional basis functions is now con-
sidered.

Let the cubic interpolation function for the element of Fig-
ure 2a be given by

E= 3 aE )

j=1

(7a)

where the a; are the nodal values of the concentration and the
w; are the cubic basis functions, given by [Ergatoudis et al.,
1968]

w; = (1 + EE)L + mmo)[—10 + 9(&* + 7*)] (76)
£ =21 ne = £l
w; = (1 — (1 + 96&)(1 + nmo) (7¢)
fo=%F me= =l
w; = FH(1 = 7)1+ Immo)(1 + £&,) (7d)
& = x1 No = +3
Differentiating (7a) yields
oé L2 300]'
i j;aj 5 (8a)
o - .m a, dw; (85)

on i=1 on

If (8a) and (8b) are evaluated at the corners of the element and
if we require thata, = Cy, a, = Cy, @7 = Cy, and a,, = C, (see
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Figure 2), then the remaining a; can be obtained in terms of C
and its derivatives. Substituting the resulting values of g; into
(7a) yields

| e=ii-n1-mE—t-n—8-mC
U+ B =+ E == £ —10)C
UL+ )2 +E 47— 8 — 1),
R () e R gty
(1 - 81— )1 =) 6C./ 6k
— 41— )1+ )1 = n) 9Ca/ 05
— 1= )1+ X1 + ) 6Cy/ 6
U1 = )1 = 61 + ) 9C./ 08
+ 41— (1 — £)(1 — ) 6Cy/
£ =)0+ E)(1 = 1) 6C/im
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Equation (9) can be written as

4

ocC

é= ,; {(bowcj + ¢ “5? + oy %%} (10a)
where '
booj = (1/8)(1 + E&)(1 + mmo)(2 + £& + mmo — E2 — 9*)  (10b)
bro; = —(Eo/8)(1 — E)(1 + EE N1 + 7o) (10¢)
bo; = ~(m0/8)(1 — n*)(1 + EE )L + 1mo) (10d)

We denote the functions ¢, d105, and ¢qy; as serendipity-type
Hermitian basis functions. These functions can also be derived
from the Lagrangian type (16 degrees of freedom) by in-
troducing an appropriate difference approximation for the
cross-derivative terms. A graphical representation of these
functions is given in Figure 3.

Isoparametric Transformation

Because (9) and (10) are expressed in the local coordinates &
and 7, they apply only over the local element of Figure 4a. The
transformation from the local coordinate system to the global
(x, y) system can be accomplished by using the same basis
functions as appear in (10). The transformation which makes
the square of Figure 4a into the deformed element of Figure 45
is given by

Csy Cy
a a a a %Ca %Cs
10 9 8 7 3F 37
o o o} o] a{“ o o 9t
aC, aC,
| an o7
a,0 Ouag
920 09
G Cz
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a 9, b 9z
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Fig. 2. Nodal arrangements for (a) zero-order continuous cubic and

(b) Hermitian elements.
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where X;, Y;, 60X,/ 8¢, Y,/ 0f, 0X,;/dn, and 8Y,;/ 0y are the
nodal x-y coordinates and their derivatives with respect to the
£-n coordinate system. The nodal derivatives can be defined in
terms of the geometric properties of the distorted element. For
example, for node 1 (Figure 4) we have

6X1=£cosoz —a—§=——15ina
8t 2 ! ot 2 !
(12)
20X, L, oY, _ L .
on - 2 cos 8, pe ) sin 83

where L, and L, are the lengths of sides 1 and 4 (Figure 4).
These side lengths can be evaluated by making use of a for-
mula of the form

e LG+ ()T

The derivatives 8x/2& and @y/a¢ in (13) may be obtained by
differentiating (11) with respect to £ and are evaluated at 5 =
—1landn = +1 for sides | and 3, respectively. (For sides 2 and
4, ¢ and 7 have to be interchanged.) Because L appears not
only on the left-hand side of the equation but also through (11)
and (12) in the argument of the integral, it is clear that itera-
tion is necessary in order to obtain the correct side lengths.
This iteration usually converges rapidly. For the two examples
considered in this study, less than five iterations were required
to obtain answers correct to within 0.005%.

Because the unknowns in this study are the nodal values of
the concentration C and its derivatives 8C/dx and C/éy, the
approximation (10g) must be rewritten in terms of these un-
knowns. From the chain rule we have

(13)

4C _8C oKX | 5C 3Y
J ox 0 oy . 0
§ 13 y. 0 (14)
o€ _oC ax | oC oy
an ox on oy on
Substituting (14) into (10a) and rearranging give
B N oC; oC;
c= j=1{¢°jcj+¢xj_8}i +¢y,-3—yj} (15)
where
bos = Gooj
) A7
d)xj - ¢10j as + ¢01j 677 (16)
aY; Y,

by = (75101'3—5 + doyj “’ﬁ

When deformed isoparametric quadrilateral finite elements
are used, the integrals that arise out of the elementwise in-
tegration of (3) must be evaluated with numerical methods.
The required integrations are carried out directly on the square
element in the local coordinates between the limits —1 and +1,
using a 4 X 4 Gaussian quadrature scheme. In this method
the area element d4 in (3) has to be replaced by

dA = det [J] dt dn (17)

where the Jacobian J is defined by

V] = [ ox/3E

8y/ 8k ]
ax/on

ay/ dn
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Fig. 4. Deformed isoparametric Hermitian elements in (@) local and () global coordinates.

The basis function derivatives 9¢/0x and d¢/dy that appear
in the integrals are easily evaluated by using

{ 20/ 0% }_ ) { 80/ 0% }
=V

g/ oy ap/dn

The Jacobian can be evaluated numerically by expressing it in

terms of the nodal x-y coordinates [Ergatoudis et al., 1968] and

the nodal gradients 8X/0§, Y/ &, etc.

Once the basis functions are defined and the isoparametric
formulation is completed, (1) and (3) can be combined with
(15) and (17) to give a set of n ordinary differential equations
in n unknowns. The finite element formulation from this point
on proceeds as outlined by Pinder [1973]. Central finite differ-
ences are used to approximate the time derivatives, and a
matrix solver which takes advantage of the banded nature of

* the coefficient matrices is used for solution of the final set of
equations.

(18)

APPLICATIONS

Two examples are considered here to demonstrate the use of
deformed isoparametric Hermitian elements in the simulation
of two-dimensional contaminant transport. Solutions are ob-
tained for both the Hermitian cubic and the zero-order ¢ontin-
uous cubic elements, so that a comparison can be made of
both the accuracy and the efficiency of the two elements. The
geometries of the examples are chosen such that the numerical
solutions can be compared with available analytical solutions.

Example |

In this example, solute is transported through a rectangular
region as depicted in Figure 5. The elements inside the slab are
distorted as shown in the figure, and the following initial and
boundary conditions are adopted:

c=0 (x, ¥) ¢ T, t=90 (19a)

c=1 (x,y) € I, 120 (196)

sc/on =0 (x, ) € Ty, Ty, T, t=0 (19¢)
where n represents the direction normal to the boundary.

When no rotation is present (i.e., @ = 0), the problem becomes
one dimensional, and the solute distribution inside the slab is
given by

C = berfc [(x — V1)/(4D1)"?]

+ i exp (Vx/D) erfe [(x + Vi)/(4Dt)V?] (20)

where V' and D are the solute velocity and the dispersion
coeflicient, respectively, for one-dimensional transport. For a
rotation of «° the velocities and dispersion coefficients in (1)
are related to V and D by

Ve=Vcosa V,=Vsina (21a)

Dy =Dy, =D Dy =Dy =0 (218)

Since the physical system remains the same irrespective of the

coordinate system adopted, it is clear that (20) may also be

used to describe the solute distribution. inside the rectangle
of Figure 5.

Two provisions. must be made in the numerical formula-

tion before the problem can be simulated correctly. First, it

should be noted that it is not immediately clear what values
dc/dx and dc/ 8y should have at the inlet position I'; at the
start of the simulation (r = 0). If we assume that these values
are initially zero, an error is introduced, as is readily demon-
strated for the one-dimensional case as follows. If we assume
C, and 3C,/9¢ to be zero (¢ = 1), the initial concentration
inside the element is given by (see Figure 1)

booy = Cigpo* + (3C1/3£)¢11 (22)

When C, = 1 and 8C,/ 3£ is assumed to be zero, the simulated
initial distribution will not be zero but will follow the curve
éo (£, = —1) of Figure 1. However, by choosing 8C,/ 8¢ = —3
it is readily shown that [van Genuchten, 1976]

fjl berdt =0 @3

By satisfying (23) the initial concentration as averaged over the
first element is still zero, and the material balance of the solute
will be correct. Similar problems arise when other basis func-
tions are used. For the cubic element, for example, an average
zero initial concentration may be obtained by forcing the
concentration at the midside nodes to be slightly negative. No
such correction, however, is possible for linear elements, since
by specifying C, = 1 at the first node and C, = 0 at the second
node the concentration inside the element will be fixed and will
be determined by a straight line from boundary I'; to the first
interelement node.

A second problem may be encountered in the correct formu-
lation of boundary condition (19¢). In the case of Hermitian
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basis functions this condition is easily satisfied by expanding

the unknowns 9C/dx and 9C/éy into normal (8C/én) and
tangential (2C/8T) components as follows:

aC . aCc | . aC
—— = —siny —— + cosy ——

(24a)
on ox ay
oc oC . 3C
— = cosy— +siny — (24b)
oT Y ox Yoy
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Fig. 6. Concentration profiles obtained by using undistorted zero-

order continuous cubic and Hermitian elements.

15 20 25

X
Schematic representation of nodal arrangement for finite element solution of example 1.

where v is the angle between the boundary side considered and
the x coordinate direction: Boundary condition (19¢) will be
satisfied by requiring that 8C/dn in (24a) be zero.
Parameter values for example 1 were taken from the work of
Peaceman and Rachford [1962] and are as follows: node spac-
ing of 182.9/50, or 3.658 cm; veloc1ty (Vin (Zla)) of 0.01411
cm/s; dispersion coefficient (D in (21b)) of 0.001 ¢cm?/s; time

" step of 50 s; and total elapsed time of 3250 s (65 time steps).

Simulation results for this example are shown in Figures 6-8.
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Fig. 7. Concentration profiles obtained by using distorted Hermitian

elements.
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Fig. 8. Concentration profiles obtained by using distorted zero-order

continuous cubic elements.

Figure 6 gives the analytical solution and the results obtained
for the undistorted zero-order continuous and Hermitian ele-
ments. Both the Hermitian and the zero-order continuous
cubic elements produce approximately the same results and
agree closely with the analytical solution. Some deviations
from the analytical solution are apparent at around 40 c¢m, a
result that is typical of the problem encountered when the
mass transpor{ equation is solved for large velocities and rela-
tively small dispersion coefficients [Pinder, 1974). This behav-
ior is often referred to as ‘overshoot.” Results for the distorted
elements are shown in Figures 7 and 8. Figure 7 compares the
Hermitian element solution with the analytical solution. Dis-

/
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tributions for both the upper (I';) and the lower (I';) boundary
are plotted in the figure. Figure 8 gives similar results for the
zero-order continuous cubic element, using the same distorted
elements as were used for the Hermitian case. Note that the
numerical results are different along boundaries I', and T in
both figures. This may be expected, since the elements are
distorted differently when these boundaries are approached

. from the inside. Again, basically the same results are obtained

for the two elements, although the oscillations for the Hermi-
tian element are somewhat more severe than those for the
zero-order continuous cubic element. The results for the one-
dimensional case (Figure 6) are only slightly better than those
for the two-dimensional simuldtions.

An important consideration in comparing the relative merits
of the two elements is the number of degrees of freedom
required to solve a particular problem, i.e., the number of
equations which have to be solved during the numerical calcu-
lations. For the one-dimensional case, two additional degrees
of freedom are introduced for each additional Hermitian ele-
ment, compared with three degrees of freedom for the zero-
order continuous cubic element. Hence 50% more equations
must be solved when zero-order continuous cubic elements
rather than Hermitian elements are used to solve the one-
dimensional convective-dispersive equation. For the two-di-
mensional problem sketched in Figure 5 this ratio is 6:8 in
favor of the Hermitian element. Note, however, that only one
row of elements was used to describe the geometry in this
problem; when additional rows are considered, the above ratio
ultimately becomes 3:5 in favor of the Hermitian element.

Example 2

In this example the combiried effects of radial convection
and dispersion are considered. A contaminant source, for ex-
ample, a contaminated recharging well, is located at the center
of a confined homogeneous isotropic aquifer. Because of sym-
metry, only a pie-shaped wedge of 22.5° is considered in the
finite element formulation (Figure 9). The radial velocity V. of
the incompressible fluid is given by

Ve = Q/Qrpr) (25)

where p is the density of the fluid and Q is the amount of Auid
transported across any circle per unit time. The boundary
value problem describing the contaminant distribution during

10
EXAMPLE 2
GAUSS
Y POINT
NODE OF 5
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0 L k o o T T S Y
k)
o
1 H 1 i
o 1 5 10 15 20
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Fig. 9. Schematic representation of nodal arrangement for finite element solution of example 2.
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Fig. 10. Concentration profiles obtained by using zero-order continuous cubic and Hermitian elements.

steady radial flow may be stated in radial coordinates as

D dc ac
—_— Vr —_— el =
D or? +(r >6r ot 0 (26)
c=0 t=20 r>r,
c=1 t=20 r=r, 27
ac/or = t=>0 r—o

The analytical solution for this problem is given by Carslaw
and Jaeger [1959, p. 390] as

c=1+ 2 <_r_> f g~ Ut
7w \r 0

where J, and Y, are Bessel functions of the first and second
kind, respectively, and » is defined by

= Q/(4n Dp)

By using radial coordinates x = 7 cos # and y = rsin § it is
readily shown that the concentration distribution in the aqui-
fer can also be described by (1), provided the following rela-
tions are satisfied:

V,=V,cost Vy

JLur)Y (ury) — Y. (ur)J{ur)

ulJ 2 (ur,) + Y, Xur)) du

(28)

(29)

= V,sin#d

30
Dy =0 (30)

Dy = Dy, =D D,y =

At least two approaches are possible to evaluate the variable
velocities ¥, and V. One possibility is to expand the velocities
in terms of the basis functions and the nodal values of ¥, and
V, (and its derivatives if Hermitian functions are used [e.g.,
Pinder et al., 1973]). A somewhat simpler approach follows.
Since the velocities are determined by (25) and (30), the only
problem left is to evaluate these expressions at the Gauss
points (X¢, Yg), which are required for the numerical in-
tegration of the integrals appearing in the coeflicient matrices.
The Gauss points are easily expressed in terms of the global
coordinate system by using (11). Figure 9 shows the location

of the Gauss points in an arbitrary element. The velocities ¥
and V, are then computed by using (25) and (30) together with
the following relations:

0 = tan' (Yo/Xe)

3
F= (X2 + Ysz)m' @3H

Simulation results for example 2 are presented in Figure 10.
Results for both the Hermitian and the cubic elements are
given and compared with the analytical solution. Values of the
parameters Q, D, ro, p, v, and At are given in the figure. The
relatively small integer value 5 was chosen for v to facilitate the
evaluation of the integral appearing in (28). In contrast to the
first example the same concentration distributions were ob-
tained for boundaries T, and I'; because the elements of the
present problem are distorted in exactly the same fashion
along T'; and I';. The figure shows excellent agreement between
the numerical and analytical solutions. Some oscillations are
present during the first few time steps, especially for the zero-
order continuous cubic element. This may be due to very high
velocities in the elements nearest to the well. Because the
velocities decrease rapidly with increasing radial distance, the
oscillations disappear rather quickly. After 10 time steps (¢ =
10) the numerical and analytical results are essentially identi-
cal.

CONCLUSIONS

The two examples considered show that the Hermitian ele-
ment gives results in the solution of the convective-dispersive
equation that are comparable to those obtained with the zero-
order continuous cubic element. The Hermitian element, how-
ever, generates 25-40% fewer degrees of freedom and is there-
fore more efficient than the zero-order cubic element. A sub-
stantial part of the saving was achieved by eliminating the
cross derivative 8°C/(dx 8y) from the solution, which is fea-
sible when continuous normal derivatives at the interelement
boundaries are not required.
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