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PROBI T ANALYSIS is used to analyze data from bioassay experiments
(Finney 1964). Typically in entomol ogy, sanples of insects are
exposed to various concentrations of an insecticide to determ ne
the concentration that will kill 50% of the insects within a given
time span (e.g., Cilek & Knapp 1993). Ef fects of time on
percentage kill at one dose (serial time-nmortality data) may be of
interest when: 1) material is limting, as m ght occur when
testing insecticides on field strains where few insects are
avail abl e, or when testing an experinmental pesticide that is
available in limted quantities; or 2) when speed of kill is
important, as might occur with a pest that lays all of its eggs
within a few days (like a short-lived stored-product insect), or
in quarantine treatnments. Standard probit analysis techniques are
not applicable to serial time-mortality data because observations
made on the same group of organisns at different times are
correl at ed.

Lanpkin & Ogawa (1975) presented a method for calculating the
sl ope and intercept of serial time-nmortality data. Reports on
results of probit-type analyses should include the standard errors

of the slope, intercept, and lethal time (LT) or |lethal dose (LD)

val ues, and a test for goodness of fit (Anonynous 1992). Any
tests comparing slopes, intercepts, or LT values should include
confidence limts on the estimted statistics. Preisler &

Robertson (1989) devel oped a method for analyzing bioassay data
when response by the same group of organi sns was determ ned at
several times and at several concentrations of the insecticide
(time-dose-nortality data). We present a method for analyzing
correlated serial time-nortality data and a conmputer programthat
can be used to inmplement the nmethod quickly and easily. The
program allows the option of using the conmplementary | og-Iog

logit, or probit transformation of proportion insects killed, and
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allows the choice of using a logarithm c transformation of time.
Al'l statistics required for conplete reporting of probit-type

anal yses are provided by the program and methods for testing for
equality of slopes and variances and for calculating relative
potency of insecticides using information provided by the program

are presented.

Met hods
Notation. The following is a list of synbols that will be used
Matrices and vectors will be indicated by bol d-faced upper and

| ower case letters, respectively. El ements in those matrices and
vectors will be denoted by |ower case letters. Vectors will be
colum vectors, unless transposed by means of a prinme.
Phi = the derivative of p° with respect to z
C=mX mmtrix containing 0's and 1's that is used as a
mul tiplier to accumul ate the proportion insects dead
at each observation time
b = regression coefficients (b, = intercept, b, = slope)
d.ow = cunul ative number of insects that are dead at each
observation time in the contro
d,;, = cunmulative number of insects that are dead at each
observation time in the treatment
d, = estimated cumul ative number of insects that are dead
at each observation time based on the regression |ine
k = number of insects that died in the control during a
time interval
k = number of insects killed in the treatment during a
time interval corrected for control nortality
k = observed m nus estimated nunber of insects killed in
the treatment during a time interval corrected for
control mortality

Ki;t = number of insects killed in the treatment during a
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Probit Anal ysis.

time interval

esti mated nunmber of insects killed in the treatment
during a time interval based on the regression line
number of times observations were made

number of insects in the control

number of insects treated

nunber of insects treated corrected for nunber that
died in the control

cumul ati ve proportion of insects that died during each
time interval in the treatnment, corrected for control
mortality

proportion of insects that died during each tinme
interval in the control
P, corrected for control nortality

proportion of insects that died during each time
interval in the treatment

Student's t

ti mes at which observations were nade

variance of b(1)

covariance of b(1l) and b(2)

vari ance of b(2)

the "design" matrix, the first colum of which
consists of 1's and the second row contains the times
at which observations were nade

the probit, logit, or complementary | og-Iog
transformati on of the cumul ative proportion dead (pﬁ

at each observation tinme

Probit analysis for correlated data differs

from standard probit analysis because in addition to their

vari ances,

to account

for correlation between observati ons.

the covariances of the probits also nust be esti mted

The usual data
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obtained in a serial time-mortality experiment are the times at

whi ch observations were made (t), the cunul ati ve number of insects
that are dead at each observation time in the treatment (d,,) and
in the control (d.,), the number of insects treated (n,,) and in

the control (n and the number of times observations were made

COn[)l
(m . From t hese data, the number of insects that are killed in
the treatment (k,,) or control (Kk,,) during a time interval are

cal cul ated as:

(1)

where i =1, 2, ..., m The proportion of insects that die during
each time interval in the treatment (p,,) or control (Pgn) IS

cal cul ated as:

(2)

The proportion of insects killed during each time interval in the

treatments is corrected for control mortality as (Abbott 1925):

(i) - (1)
p”“(i) =pttt pcorlzt ,if>0
l _pcant{l)

(3)

(4)

because the probit and logit transforms of p(i) are undefined if
p(i) 0. The correction in (4) is suggested by MCull agh and

Nel der (1989).
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The cunul ative proportion treated insects dead at each time

interval, corrected for control mortality, is:

*

P =cpcozz’ ()
5

where Cis an mX mmatrix of 0's and 1's that is used sinmply as a
multiplier to accumul ate the proportion insects dead at each

observation tinme. For an experiment with three observation tines,

Cis:

(6).

Each insect is a multinomal trial that can result in one of m
or (m+ 1) nmutually exclusive and exhaustive outcomes, depending
on whether all n,, insects have or have not died at the last (m
th) observation time, respectively. The variance of p, (i) is:

P (i) (1 =p,  (i))

By — 1

VAr(p,,, (1))

(7)
and the covariances of p,(i) and p,(j) are
. , , S Py (1) Py (7)) , ,
c6vi(p , (i),p,, (7)) = i Lt ;1%
By — 1
(8)
and j =1, 2, ..., m

The variances of the corrected pP's, P.,, are derived fromthe

first-order Taylor series expansion as



+ 1 _ptrt{i) pcont(i) (1 pcont(l))
{1 p“nt{i))z ncont 1
(9)
and the covariances of pg, (i) and pg., (j) are:
1 1
cov | (i), (j)) =
pM“ pM“J 1 _pcont{l) 1 pcont(J)
Dy (1) P ()
Doy — 1
+ _(1 _ptrt(i)) _{1 _ptrt{j)) pcont{l) pccnt{J) , i *]
(1 =p,, (1)) (1 =p ., (i))} Dot ~ 1
(10)

When there is no control mortality, the formulas for the variances
and covariances of p,,, reduce to the forrmulas for the variances
and covariances of p,,,. Fromthe covariance propagation theorem

the estimate of the covariance matrix for p is:

cov(p*) =C cov(p )¢’

corr

(11)

If using a probit transformation, the probit (z) of the

cumul ati ve proportion dead (p*) at each observation tinme is that
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z-value of the standardized normal random vari able such that the
area under the probability density curve to the left of z(i) is

p' (i), or mathematically (Beyer 1987):

(12)

The derivative of p*(i) with respect to z(i) is the probability
density of a standardized random variable, (z(i)), which is

cal cul ated as (Beyer 1987):

(13)

(z(i)) is the height of the standardi zed normal probability
density curve at z = z(i). From first-order Taylor series

expansion, the variance of z(i) is:

var(z(i)) = Larfp’(il)

plz(i))?
(14)
and the covariance of z(i) and z(j) is:
. - : _cov(p*(i),p*(j)) -
R TR
(15)

If using the logit transformation



I -p*(i)
(16)
The variance of z(i) is:
vir(z (1)) = 1
n,,, p(E) (1 - p*(i))
(17)
and the covariance of z(i) and z(j) is:
c§V(Z(i),Z(j)) = o 1 ¥ % 4 1 * o
prL) (L =pi)) pT(I)(L = pT(]))
cov(p™(i),p*(j)).
(18)
If using the conplementary |og-log transformation,
2(i) =1log, | -log (1 -p*(i)) |
(19)
The variance of z(i) is:
vir(z(i)) = prE) :
N (L =p™(i)) [log, (1 -p™(i))]
(20)

and the covariance of z(i) and z(j) is:

cov(z(i), o(j)) = 1 ! 1

I -p™i) 1 -p*(j) -log,0l -p*(i)]
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cov(p™(i),p"(j)).

~log,[1 - p*(j)]
(21)

Havi ng estimated z and the covariance matri x of z, generalized
| east squares nmethods (Neter et al. 1990) can be used to estimte
parameters for the regression of z ont. An X or "design"
matrix is formulated with the first colum consisting of 1's and
the second column containing the times at which observations were
made. For exanple, for a design at which observations were nmade

at 1, 2, and 3 h:

(22)

b, where b, is the intercept and b, is the slope, is calculated
as:

b =[x cov(z) P X)) [x cov(z)t 2],
(23)

The covariance matrix of b is

cov(b) = [X cov(z)tx]L,
(24)

The covariance matrix of b contains the variances of the slope and
intercept, and the covariance of the slope and the intercept.

This method provides initial estimates for the slope and
intercept, because the true value of cov(z) is unknown and its
estimate is used in (23) and (24). The final values of the slope

and intercept are determned iteratively. In further iterations,
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new z(i)'s are calculated fromthe esti mtes of the slope and

i ntercept as:

z(i) =b(1) +Db(2) t(i).
(25)

If using the probit transformation, new p*(i)'s are cal cul ated
fromthe z(i)'s using (12). New p(i)'s are cal cul ated as:

p(i) =p™(i) -p*(i-1) ,
(26)

with p(l) = p*(l). The covariance matrix of the new p(i)'s is
then cal cul ated using (7) and (8), the covariance matrix of the

new p'(i)'s is estimated as:

cov(p*) =¢C cov(p) C’,
(27)

new (z(i))'s are calculated using (13), a new covariance matrix
for z is calculated using (14) and (15), a new b is cal cul ated
using (23), and a new covariance matrix for b is cal cul ated using
(24). The new b(1l) and b(2) are then conmpared with the b(1l) and
b(2) fromthe previous iteration to determ ne whether the
differences are smaller than some predeterm ned convergence
criterion. If the differences are not smaller, further iterations
are run until convergence is achieved.

If using the logit transformation, the iterative procedure
differs fromthat for the probit transformation as: new p%i)'s

are cal cul ated as:

(28)

and the covariance matrix of z is estimated using (17) and (18).
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If using the complementary | og-log transformati on, new pXi)'s are

cal cul at ed as:

1(1)

(30)

and the covariance matrix of z is estimted using (20) and (21).
Once convergence is achieved, the chi? goodness of fit test is
used to determ ne how well the regression line fits the observed
dat a. New z(i)'s are calculated using the final estimtes of b(1)
and b(2) and (25), new p(i)'s are calculated [using (12) for
probits, (28) for logits, or (29) for the conplenmentary | og-Iog

transformation], n,, is corrected for control nortality as

- _ p(nm)
Dy tcorr = Dipe (l /
1
cont

(30)
the curnul ative number that would be observed dead at each
observation time based on the regression line is calcul ated as:

dr( i) = P *{i) Dyrtoore !

(31)

and the nunmber that died during each time interval based on the
regression line is calcul ated as:
k (i) =d (i) -d, (i-1)
(32)

with k(1) = d(1). The corrected nunber of insects observed dead

during each time interval in the experiment is calcul ated as

(33)

Thus, the observed m nus predicted number of insects killed during
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each time interval is

(34)

The covariance matrix for Kk, is calculated by multiplying the
covariance matrix for p fromthe last iteration by n,, .o, This
is because the predicted number dead at each time interval is

t heoretical and has no variance, and the observed number dead at
each time interval is Ny, tiMes pg,(i). The variance of a
constant (N cn,) times a variable (pg,) is the constant squared
times the variance of the variable. From standard multivariate

2

normal distribution theory, chi® is calcul ated as:

(35)

with m- 2 degrees of freedom A significant chi? may i ndicate that
the data are heterogeneous and should be corrected using a
het erogeneity factor or that an alternative transformati on woul d
be more appropriate for the data (Finney 1964). Although the
program automatically cal cul ates a heterogeneity factor to
compensate for significant chi?, the user should exam ne the graph
of observed versus calculated z(i)'s to ensure that the selected
transformation is appropriate for the data

An LT value is then obtained by calculating z [using (12) for
probits, (16) for logits, or (19) for the conplementary | og-Iog
transformation] of the proportion kill for which an LT value is

desired, and calculating the LT value as

(36)

If the chi?is significant, all variances used to calculate |etha
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times and confidence limts on lethal times must be multiplied by

the heterogeneity factor, which is chi? divided by m- 2 (Finney

1964) . Fieller's theorem (Finney 1964) is then used to calcul ate
confidence imts on |ethal tinmes. If the chi?is not significant,
a standard z of 1.96 is used to calculate confidence limts. |

the chi® is significant, a Student's t (st) with m- 2 df is used to
cal cul ate confidence limts. Letting v,; equal the variance of
b(1), v,, equal the variance of b(2), and v,, equal the covariance

of b(1l) and b(2), then:

x1 =11 + 112
v22
(37)
X2 =vll+(2 LT v12) + (LT?wv22) ,
(38)
2
k3 =v11 - L2
v22
(39)
_ st v22
(b(2))*
(40)
y1 =11 + 32
I -9
(41)

and

st vx2 - (g x3)
b(2) (I - gq)

(42)



15

The | ower confidence Iimt for LT is then yl - y2, and the upper
confidence Iimt is yl + y2. It is possible for the quantity
within the square root in equation (42) to become negative, in
whi ch case the confidence Iimts are undefined

The conputer program The probit analysis was programed in
Mat hemati ca® | anguage (Wl fram Research, Inc., Chanpaign, IL).
The programis commented to facilitate understanding the
structure, and the vari able names used generally correspond to
those used in the above description of the analysis.

The programis modified by the user in any text editor to
include the data and the name of the output file. The programis
then saved, brought into a Mathematica® sessi on, and executed.
Qutput is witten to a file.

The user should provide a name for the output file (line 17 in
program listing in Appendix I|). I nput to the program (lines 44-
51) are the number of observations (notimes), the cumulative
number of insects dead in the control (contdead) and treatment
(expdead) at each observation time, the actual tinmes that
observations were made (tinmes), and the number of insects tested
in the control (ncont) and treatment (nexp). A logarithmc
transformation of time may be executed by setting tranx to "yes"
(l'ine 50). The choice of making a conmplementary |og-1og, logit,
or probit transformati on on proportion insects killed is made on
l'ine 51.

The program automatically modifies the input data set.
Observations at the beginning of the test when no insects were
dead are del eted, except for the |last zero observation.
Observati ons when all insects are dead are del eted, due to the
mul ti nom al design. Observations when no insects died during a
time interval are del eted, except as already discussed for those

at the beginning of the test.
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The program writes a graph of observed and cal cul ated probits
(or logits or conplementary |log-log transforms) to the screen
The output file (Appendix I1) contains the input data for
verification (lines 4-12); the slope and intercept of the
regression line with their standard errors and covariance (lines
14-17); the observed m nus expected number of insects dying in
each time interval (lines 20-21); the chi? value, the probability of
a greater chi? val ue (p <= 0.05 is significant), and the degrees of
freedom for the chi? (lines 22-24); the heterogeneity factor if chi?
is significant (chi2 is not significant in the example in Appendix
I1); the t or z used for calculating confidence limts (line 27);
and the LT values with confidence limts corresponding to
proportion kills of 0.1 to 0.9 by 0.1, 0.91 to 0.99 by 0.01, and
0.991 to 0.999 by 0.001 (lines 31-57). Any negative confidence
limts or LT values are set to 0. Undefined confidence limts are
shown as "undefined". |[If a transformation on time is used, an
additional table will be printed showing LT values and confidence
limts converted fromtransformed val ues back to real time.

Versi ons of Mathematica® are avail able for Macintosh and | BM
conmpati bl e conmputers. The program shown in Appendix | took 10 sec
to run on a 120 Mhz Pentium conputer using the OS/2 version of
Mat hemat i ca®.

Testing for equality of slopes and intercepts. Bioassay data
are often collected for two sexes of a species, for two separate
species, or on the effects of two insecticides on one species
etc. The user mi ght want to conpare the two regression |lines for
equal ity of slopes and intercepts. This test is easily calcul ated

usi ng output fromthe program (Snedecor & Cochran 1967).



17

If the chi®? for each sex (or other class variable) is not

significant, the test statistic is calcul ated as:

parameter(l) —parameter(2)

Jvar{parameter{l)) + var(paraneter(2))
(43).

The parameter in (43) is either the slope or the intercept from
the output file, and the variance of the parameter in (43) is the
square of the standard error of the parameter from the output
file. If the test statistic exceeds the z for the desired
probability level, then the parameter tested for the two
regression lines is different.

If the chi? for either sex (or other class variable) is
significant, the test statistic is calculated as above. However,
the test statistic is conpared to a modified Student's t

cal cul ated as:

(44)

where t, = Student's t with n, - 2 df, t, = Student's t with n, - 2
df, w, = the variance of parameter 1, and w, = the variance of
parameter 2. A program called SLOPE was developed for comparing
sl opes and intercepts. The program can be used with output from
any probit program
Cal culating relative potency. |If theta; and theta, are tinmes required
to kill the same proportion of insects with two insecticides, then
the ratio theta,/ theta, is the potency of insecticide 1 relative to
insecticide 2 at a given nmortality |level (Robertson & Preisler
1992). If the slopes for the regression lines for the two

insecticides are parallel, then relative potency will be the same
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for any nmortality |level. If the sl opes are not parallel, then
relative potency must be cal culated for each nortality |level for
which a conparison is desired

Thetas corresponding to a given nortality |level can be obtained
from the output fromthe program For the exanple in Appendix |1
the theta corresponding to 0.90 nortality is 3.8397. The variance of

theta,/ theta, is:

6, )2 6, |

var | —| = | — var(91) - || — var(92).
9 9 2
2 2 /)

(45)

The variance of theta is:

L

var(f) = %

[var(a) + 26 cov(a,f) + 86 *var(f)].
(46)

The variances of alpha and beta, and the covariance of alpha and beta are
obtained fromthe program output. Approximte 95% confi dence

limts for theta,/ theta, are:

6, 6,
— +t 1.9¢ var | —|.
8, 8,

(47)

If a logarithm c transformation on time is used, the relative

potency (T,/T,) on the log scale becomes 102/10% or 10",° %) in the

original (untransformed) units (where T = theta). I f:

¢ = Jvar (6, -6, = ¢var{61) +var (9, ,
(48)
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then the approxi mate 95% confidence |limts for the relative

potency are:

(8, -6, - 1.960) (8, -6, +1.960)

(49)

A program call ed RELPOT is included on the diskette for
calculating relative potency. The program can be used with output

fromany probit program
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APPENDI X | - PROGRAM LI STI NG
(* PROBIT - This programis used to analyze serial time-nortality data
from bi oassay studies. Fol |l ow the instructions below for modifying the
program to include your data. | would suggest that you save the

original version of the program and make changes to a copy of the
program *)

(* This program was devel oped by:

Jim Throne

USDA, ARS, USGMRL

1515 Col | ege Avenue
Manhattan, KS 66502

(913) 776-7624
throne@runch. usgnrl . ksu. edu

Pl ease notify me of problems or suggestions. 5 Oct 95 *)
Of f[1]

(* You may change the name of the output file by changing the name in
quot ati on marks on the next line. *)

out =OpenW i te["outprob", Format Type- >Qut put For m PageW dt h- >76]

(* You may type in headings for the output file between the
quotation marks on the next programlines. Total line |length
shoul d not exceed 72 characters. *)

WiteString[out,"probit transformation"]
WiteString[out," \n"]
WiteString[out,"Anisopteromal us cal andrae"]
WiteString[out," \n"]
WiteString[out,"mlathion data"]
WiteString[out," \n\n"]

(* The eight lines after the follow ng descriptions are where you
enter your data.
noti mes = nunmber of time intervals for which you will enter data
contdead = the observed cunul ative number of insects dead in the
control at each time interval, enclosed in brackets
expdead = the observed cunul ati ve number of insects dead in the
treatment at each time interval, enclosed in brackets
ti mes = the times at which observati ons were made, enclosed in
brackets
ncont = the initial number of insects in the contro
nexp = the initial nunmber of insects in the treatment
tranx = decision to use loglO(time) in analysis (yes or no in
quot ati on marks)
trany = decision to use "probit", "logit", or "gompertz"
transformation on vy. Encl ose choice in quotation marks.
Not e that gompertz is being used to represent the
conmpl ementary |l og-log transformation *)
noti mes=5

contdead={0, 0, 0, 0, 0}
expdead={2, 6, 20, 23, 25}
times={1, 2, 3, 4, 5}
ncont =25
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49 nexp=25

50 tranx="no"

51 trany="probit"

52 (* The user should not make any further changes to the program *)
53 WiteString[out,"lnput data: \n\n"]

54 WiteString[out,"Number of time intervals = "]

55 Wite[out, noti mes]

56 WiteString[out,"Nunmber dead in controls = "]

57 Wite[out, contdead]

58 WiteString[out,"Number dead in treatments = "]

59 Wite[out, expdead]

60 WiteString[out,"Time intervals = "]

61 Wite[out,times]

62 WiteString[out,"Nunmber of controls = "]

63 Wite[out, ncont]

64 WiteString[out,"Nunber treated = "]

65 W ite[out, nexp]

66 WiteString[out,"Logarithm c transformation of time = "]

67 Wite[out,tranx]

68 WiteString[out,"Transformation = "]

69 Wite[out,trany]

70 WiteString[out," \n\n"]

71 (* Delete data for time periods when no mortality occurred or in
72 which all insects were dead. Apply l0gl0 transformation to time. *)
73 If[tranx=="yes",ti mes=Log[ 10,tinmes] //N]

74 |nput—TabIe[0,{|,notines},{j,3}]

75 input[[1,1]]=times[[1]]

76 input[[1,2]]=contdead[[1]]

77 input[[1, 3]]=expdead[[1]]

78 inc=1

79 Do[ | f[ expdead[[i]] ==expdead[[i-1]], Goto[elim, Goto[add]];

80 Label [ add] ;

81 | f[ expdead[[i]] ==nexp, Goto[elim,inc=inc+l];

82 input[[inc,1]]=tinmes[[i]];

83 input[[inc,2]]=contdead[[i]];

84 input[[inc,3]]=expdead[[i]];

85 Got o[ end1];

86 Label [elim;

87 | f[expdead[[i]]==0,input[[1,1]]=times[[i]]];

88 | f[expdead[[i]]==0,input[[1,3]]=contdead[[i]]];

89 Label [ endl1];

90 ,{i,2,notimes}]

91 (* Set up vectors containing the time intervals (t), the number dead
92 at each time interval in the control (dcont), the number dead at
93 each time interval in the treatment (dexp), and the nunber of tinme
94 intervals that had valid data (m *)

95 t=Table[input[[i,1]],{i,inc}]

96 dcont =Tabl e[input[[i,2]],{i,inc}]

97 dexp=Tabl e[input[[i,3]],{i,inc}]

98 nM=i nc

99 pdeadc=dcont[[m ]/ ncont

100 (* Calculate the number of insects that die during each tinme

101 interval (kexp or kcont), the proportion that die during each time

102 interval (pexp or pcont), and correct for 0 dead. *)



103
104
105
106
107

108

109
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115
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123
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125
126

127
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129
130
131
132
133
134
135
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138
139
140
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142
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149
150
151
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kexp=Tabl e[| f[

1,dexp[[1]],dexp[[i]]

pexpinit=kexp/ nexp //N

2

4

kcont =Tabl e[ I f[i==1,dcont[[1]],dcont[[i]]-
pcont =Tabl e[ kcont[[i]]/ncont, {i, m

(* Calculate the covariance matri x of p.

-dexp[[i-1]11,{i,m]

pexpcorr=Tabl e[| f[ pexpinit[[i]]==0,0.5/(nexp+1l), pexpinit[[i]
i

dcont[[i-1]]1],{

*)

covp=Tabl e[ I f[i==], (pexpcorr[[i]]*(1-pexpcorr[[i]]))/
(nexp-1),-(pexpcorr[[i]]*pexpcorr[[j]])/(nexp-1)],{i m, {j

(* Apply Abbott
Cal cul ate covariance matrix for

s formula to correct
corrected p's. *)

for

control mortality.

pexp2=Tabl e[ (pexpinit[[i]]-pcont[[i]])/(1-pcont[[i]l]),{i,m]

pexp=Tabl e[ I f[ pexp2[[i]] <=0, 0.5/ (nexp+1l), pexp2[[i]]],{i,m]

covpcorr=Table[ I f[i==],((1/(1-pcont[[i]]))"2)*(((1-pexp[[i]]
pexp[[i]])/(nexp-1))+((1-pexp[[i]])/((1-pcont[[i]])"2)"2)*
(((L-pcont[[i]])*pcont[[i]])/(ncont-1)),(1/(1-pcont[[i]]))
(1/(1-pcont[[j]]1))*(-(pexp[[i]]*pexp[[j]])/(nexp-1))+
(-(L-pexp[[i]])/((1-pcont[[i]])"2))*(-(1-pexp[[j]])/
((1-pcont[[j]])"2))*(-(pcont[[i]]*pcont[[j]])/(ncont-1))],
{iom, {j,m]

(* Calculate the ¢ and x matrices. *)

c=Table[If[j<=i,1,0],{i,m,{j,m]

x=Table[ I f[j==21,1,t[[i]]],{i,m,{j.,2}]

,

]},{i,ﬂﬂ]

» ]

(* Calculate the cumul ative proportion killed during each interva
(pstarobs) and the covariance matri x of

pst arobs=c. pexp

covpstar=c.covpcorr. Transpose]

(* I'f using probit
cumul ati ve proportion killed during each interval

density of the probits (phiz),

probits (covz).

covariance matri x of

transformation,

Needs[" Statistics ContinuousDistributions™"

Do[lf[trany !=

y=Map[ Quantil e[ ndi st ,
A

z=Table[y[[i]]

c]

p

starobs. *)

transform calculate the probits (z) of t
the probability

and the covariance matrix of
If using logits calculate the logits (z) and the

the logits (covz).

I f using Gonpertz

he

t he

calculate the transforns (z) and the covariance
matri x of the transforms. *)

"p

robit", Got o[ ot her],

, M

phi z=(E*(-(z"2)/2))/Sqrt[2*Pi]
covz=Tabl e[l f[i==j,covpstar[[i,i]]/phiz]
covpstar[[i,j]]/(phiz[[i]]*phiz[[j]])]

Got o[ endtr ans] ;
Label [ ot her];
If[trany l—'W
(1-pstarobs|
covz=Tabl e[| f[i
(1/(pstarobs
(1-pstarobs|
Got o[ endtr ans] ;

Label [ gonp] ;

z=Tabl e[ Log[ - Log[ 1- pstarobs[[i]]
i1l

covz=Tabl e[| f[

AUSNE

j,pstarobs[[i

Got o[ gonp]

#] & pstarobs];

/' I'N;

pstarobs[[

{i

(nexp* pstarob
1- i
*covpstar[[i,]

]

ndi st =Nor mal Di stri bution[O0, 1]];

[

1172
i,

i
Giom (i, ml;

z=Tabl e[ Log[ pstarobs[[i]]/

(1-pstarobs[[i]])).
1/ (pstarobs[[j]]*

b {0, m ]

"pstarobs[[i]])*
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154 ((Log[ 1-pstarobs[[i]]])"2)),(1/(1-pstarobs[[i]]))*

155 (1/-Log[ 1l-pstarobs[[i]]])*(1/(1-pstarobs[[j]]))*

156 (1/-Log[ 1l-pstarobs[[j]]1])*covpstar[[i,jl1.1.{i.m,{j,m];

157 Label [endtrans];, {i 2, 1}]

158 (* Calculate the (X' X)-1 (binitl) and XY (binit2) matrices

159 Cal cul ate the slope and intercept (the matrix newb) as binitl times
160 binit2. *)

161 bi nitl=Inverse[ Transpose[x].lnverse[covz]. X]

162 bi nit2=(Transpose[x].|lnverse[covz]. z)

163 newb=binitl. binit2

164 Needs[ " Graphi cs™ Graphics™ "]

165 gl=ListPlot[Table[{t[[i]],z[[i]]},{i,m],DisplayFunction

166 ->ldentity]

167 (* Begin iterations to converge on best values of slope and

168 intercept. Calculate new probits (or logits or Gonpertz's

169 transforms) using slope and intercept (y). Calculate new cumulative
170 proportion dead at each interval (pstar) from probits (or logits or
171 Gonmpertz's transforns). Calculate new proportion dying during each
172 interval (p) from pstar. Calculate covariance matrix of p (covp)
173 and covariance matrix of pstar (covpstar). Calculate new

174 probability density of probits (phiz), if using probit

175 transformation, and covariance matrix of the probits (or logits or
176 Gompertz's transform (covz). Obtain new estimates of slope and
177 intercept (newb), and keep iterating until convergence criterion
178 met. *)

179 Do[

180 b=newb;

181 y=b[[1]]+(b[[2]]*t);

182 z=Table[y[[i]l].{i,m];

183 If[trany !'= "probit", Goto[other2], pstar=Map[ CDF[ ndi st, #] & z]];
184 p:TabIe[If[i::1,pstar[[1]],pstar[[i]]-pstar[[i-1]]],{i,rm];

185 covp=Table[ I f[i==j, (p[[i]]*(1-p[[i]]))/(nexp-1),

186 (pLLiTT*plLiT])/ (nexp-21)],{i,m, {j, m];

187 phi z=(E*(-(z"2)/2))/Sqrt[2*Pi] //N,

188 covpstar=c.covp. Transpose[c];

189 covz= Table[lf[|::j,covpstar[[l,i]]/phiz[[i]]“

190 covpstar[[i,j]]/(phiz[[i]]*phiz[[j]])].{i,m, {j,m]

191 Got o[ endtrans2?];

192 Label [ ot her 2] ;

193 Ifl[trany !'= "logit", Goto[gonmp2], pstar=Exp[z]/(1+Exp[z])];

194 p=Table[If[i==1,pstar[[1]], pstar[[l]]- pstar[[i-21111,{i,m];

195 covp=Tabl e[ I f[i==, (p[[i]1]*(1-p[[i]1]))/(nexp-1),

196 -(pLliTT*plliT])/ (nexp-2) ], {i, m, {j, m];

197 covpstar=c.covp. Transpose[c];

198 covz=Tabl e[l f[i==],1/ (nexp*pstar[[i]l]l*(1l-pstar[[i]])),

199 (1/ (pstar[[i]]*(1-pstar[[i]])))*(1/(pstar[[j]]*

200 (1-pstar[[j]])))*covpstar[[i,j]]],{i,m,{j,m];

201 Got o[ endt rans2];

202 Label [ gonp2];

203 pstar=1- Exp[-Exp[z]];

204 p=Table[If[i==1,pstar[[1]],pstar[[i]]-pstar[[i-1110,{i,m];

205 covp=Table[If[i==j,(p[[i]1]1*(1-p[[i]]))/(nexp-1),

206 -(pLliTT*plliT])/ (nexp-2)],{i , m, {j, m];

207 covpstar=c.covp. Transpose[c];

208 covz=Table[If[i==],pstar[[i]]/(nexp*(l-pstar[[i]])*

209 ((Log[l-pstar[[i]]])"2)),(1/(1-pstar[[i]]))~

210 (1/-Log[1-pstar[[i]l]l)*(2/(1l-pstar[[j]l]))*

211 (1/-Log[1-pstar[[j]]])*covpstar[[i,j]].],{i,m, {j,m];
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Label [ endtrans2];
bi nitl=Inverse[ Transpose[x].|lnverse[covz].x];
bi nit2=(Transpose[x]. |l nverse[covz].z);

newb=bi nit1. binit?2;
| f[ Abs[ newb[[1]]- D]

[ <. 00000001 &&
Abs[ newb[[2]]-b[[2

1111
1]1]1<.00000001, Break[]];,{i,50}]

(* Calculate the standard errors of the slope (seslope) and intercept
(seint) fromthe covariance matrix of b (binitl). *)

seint=Sqrt[binitl[[1,1]]]
sesl ope=Sqrt[binitl[[2,2]]]

(* Wite output about slope and intercept to file. *)

WiteString[out,"Intercept = "]

Wite[out,newb[[1]]]

WiteString[out,"\nSE Intercept = "]

Wite[out, seint]

WiteString[out,"\nSlope = "]

Wite[out, newb[[2]]]

WiteString[out,"\nSE Sl ope = "]

Wite[out, seslope]

WiteString[out,"\nCovariance of Slope & Intercept = "]

Wite[out,binitl[[1,2]]]
WiteString[out," \n"]

(* Calculate Chi-square to test for goodness of fit of regression
line to observed data. Probit, logit, or Gompertz's transform
(zpred) is calculated fromfinal values of slope and intercept. A
new p (ppred) is calculated fromthe probit (or logit or Gonpertz's
transform . The cumul ati ve nunber dead at each time interval (dpred)
calculated fromthe p and ncorr (the number of insects tested m nus
the number that died in the control). The noncumul ative number
dying during each tinme interval (kpred) is calculated from dpred

The observed nunmber dead at each tinme interval (kpred) is calcul ated
fromthe cunul ative proportion dead at each time interval (pexp)
times the initial number of treated insects (ncorr). The observed
m nus expected number of insects dead is calculated as dobs - dexp
The covariance matrix for the observed m nus expected number dead
(covobsne) is calculated as ncorr squared times the covariance
matri x of p (covp). The Chi-square value (chisq) is then

cal cul ated, and the probability of a |arger Chi-square (prchisq)
with n-2 degrees of freedom (dfchisq) is determ ned. *)

zpred=newb[[ 1] ] +(newb[[2]]*t)

Do[

If[trany !'= "probit", Goto[other3], ppred=Map[ CDF[ ndi st, #] & zpred]];
Got o[ endt rans3];

Label [ ot her 3] ;

If[trany !'= "logit", Goto[gomp3], ppred=Exp[zpred]/ (1+Exp[zpred])];
Got o[ endt rans3];

Label [ gonp3];

ppred=1- Exp[ - Exp[ zpred]];

Label [ endtrans3];

{13, 1}]

ncorr=nexp*(1l- pdeadc)

dpred=ppred*ncorr

kpred=Tabl e[ I f[i==1,dpred[[1]],dpred[[i]]-dpred[[i-1]11,{i,m]
kobs=pexp*ncorr

obsmexp=kobs- kpred

covobsme=(ncorr”2)*covp

is
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chi sg=obsmexp. | nverse[ covobsme] . obsmexp
chi di st =Chi Squar eDi stri bution[ m 2]

prchi sq=2* PDF[ chi di st, chi sq]

df chi sg=m 2

(* I'f the Chi-square is significant, correct all variances used to
calcul ate confidence limts on LT levels by multiplying each variance
by h. *)

h=1f[ prchisqg<.05,chisq/(m1), 1]

(* Chi-square information is output to file. *)

WiteString[out,"Obs - Exp nunber of insects dying during each tinme

interval = \n"]

Wite[out, obsmexp]

WiteString[out,"\nChi Square = "]

W ite[out, chisq]

WiteString[out,"\nProbability of a greater Chi Square = "]
Wite[out, FortranFornf prchisq]]
WiteString[out,"\nDegrees of freedom for Chi Square = "]

Wite[out, dfchisq]

WiteString[out," \n"]

| f[ prchisg>0.05, Null,WiteString[out,"Heterogeneity factor = "J];
Wite[out, h]]

WiteString[out," \n"]

g2=Pl ot [ Tabl e[ newb[[1]] +(newb[[2]]*i)],{i,input[[1,1]],t[[m1]},
Di spl ayFuncti on->ldentity]

Do[

If[trany != "probit", Goto[other4]];

If[tranx == "yes", Goto[l ogyesl], Show[ gl, g2, Frame->True, Pl ot Label - >
"Observed and Cal cul ated Probits vs Time \n - Hit any key when

done -",Di spl ayFuncti on->$Di spl ayFuncti on, AxesOrigin->{0,0}]];

Got o[ endt r ans4] ;
Label [ ogyes1];
Show[ g1, g2, Franme->Tr ue, Pl ot Label - >
"Observed and Cal cul ated Probits vs Log Time \n - Hit any key
when done -", Di spl ayFuncti on->%$Di spl ayFuncti on, AxesOri gi n->{0,0}];
Got o[ endtrans4];
Label [ ot her4];

If[trany !'= "logit", Goto[gomp4]];

If[tranx == "yes", Goto[l ogyes2], Show[ gl, g2, Frane->True, Pl ot Label - >
"Observed and Cal cul ated Logits vs Time \n - Hit any key when

done -", Di spl ayFuncti on->$Di spl ayFuncti on, AxesOrigin->{0,0}]];

Got o[ endt r ans4] ;
Label [ | ogyes2];
Show{ g1, g2, Frame- >True, Pl ot Label - >
"Observed and Cal cul ated Logits vs Log Tinme \n - Hit any key
when done -", Di spl ayFuncti on->$Di spl ayFuncti on, AxesOri gi n->{0,0}];
Got o[ endt r ans4] ;
Label [ gonp4];

If[tranx == "yes", Goto[l ogyes3], Show[ g1, g2, Frane->True, Pl ot Label - >
"Observed and Cal cul ated CLL transforms vs Time \n - Hit any key
when done -", Di spl ayFuncti on->$Di spl ayFuncti on, AxesOri gin->{0,0}]];

Got o[ endtrans4];

Label [ | ogyes3];

Show[ g1, g2, Frame- >True, Pl ot Label - >

"Observed and Cal cul ated CLL transfornms vs Log Time \n - Hit any
key when done -", Di spl ayFuncti on->$Di spl ayFuncti on, AxesOri gi n->{0, 0}];
Label [ endtrans4];

{14, 1]
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325 (* Use Fieller's theoremto calculate confidence limts on LT |evels
326 *)

327 tdi st =St udent TDi stri bution[ m 2]

328 t2=If[prchisg>.05,1.96, Quantile[tdist,.975]]

329 If[prchisq>.05,mtite8tring[out,"z for calculating confidence |limts =
330 ], WiteString[out,"t for calculating confidence limts = "]]
331 Wite[out,t?2]

332 WiteString[out," \n"]

333 a=newb[ [ 1]]

334 b=newb[ [ 2]]

335 vil=binit1l[[1,1]]*h

336 v22=binitl[[2,2]]*h

337 v12=binit1[[1,2]]*h

338 out probl=Table[i,{i,.1,.9,.1}]

339 out prob2=Tabl e[i, {i,.91,.99,.01}]

340 out prob3=Table[i, {i,.991,.999,.001}]

341 Do[

342 If[trany !'= "probit", Goto[other5],It1=Map[ Quantil e[ ndi st, #] &
343 out probl]];

344 | t 2=Map[ Quanti | e[ ndi st, #] & out prob2];

345 |t 3=Map[ Quanti | e[ ndi st, #] & out prob3];

346 Got o[ endtrans5] ;

347 Label [ ot her 5] ;

348 If[trany !'= "logit", Goto[gonmp5],It1l=Tabl e[ Log[outprobl[[i]]/
349 (1-outproba[[i]])],.{i,9}11];

350 It 2=Tabl e[ Log[ out prob2[[i]]/(1-outprob2[[i]])].{i,9}];
351 |t 3=Tabl e[ Log[ out prob3[[i]]/(1-outprob3[[i]])].{i,9}];
352 Got o[ endt r ans5] ;

353 Label [ gonp5];

354 It 1=Tabl e[ Log[ - Log[ 1-outprobd[[i]]]].,{i,9}];

355 It 2=Tabl e[ Log[ - Log[ 1-outprob2[[i]]]1].{i,9}];

356 |t 3=Tabl e[ Log[ -Log[ 1-outprob3[[i]]l11.{i,9}]1;

357 Label [ endtrans5];

358 ,{i5,1}]

359 ml=(1t1-a)

360 m=(1t2-a)/

361 nG:(ItS a)/b

362 x11l=ml+(v12/v22)

363 x12=m2+(v12/v22)

364 x13=nB3+(v12/v22)

365 Xx21=v11+2*ml*v12+(mLl"2)*v22

366 X22=v11+2*m2*v12+(m2"2)*v22

367 Xx23=v11+2* mB*v12+(m3"2) *v22

368 x3=v1l-((v1272)/v22)

369 g=(t272)*v22/ (b"2)

370 yll=ml+(g*x11/(1-9g))

371 y1l2=m2+(g*x12/(1-9g))

372 y13=nB3+(g*x13/(1-9))

373 y21=t2*Sqrt[x21-(9g*x3)]/(b*(1-9g))

374 y22=t2*Sqrt[x22-(g*x3)]/(b*(1-9g))

375 y23=t2*Sqrt[x23-(9g*x3)]/(b*(1-9g))

376 [ 1=y11-y21

377 | 2=y12-y22

378 | 3=y13-y23

379 ul=yll+y21

380 u2=yl1l2+y22

381 u3=y13+y23
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382 Do[ I f[g*x 3<x21[[|]] && (1-g) >0, Got o[ Ski p1]]

383 I 1[[i]]="Undefined"

384 ul[[i]]="Undefined"

385 Label [ Ski p1], {i, 9}]

386 Do[ I f[g*x 3<x22[[i]] && (1-9)>0, Got o[ Ski p2]]

387 I2[[i]]="Undefined"

388 u2[[i]]="Undefined"

389 Label [ Ski p2], {i, 9}]

390 Do[ | f[g* x3<x23[[|]] && (1-g) >0, Got o[ Ski p3]]

391 I3[[|]]— Undefi ned"

392 u3[[i]]="Undefined"

393 Label [ S ip3],{|,9}]

394 Do[ I f[ml[[i]]<O,mLl[[i]]=0],{i, 9}]

395 Do[If[mR2[[i]]<O,n2[[i]]=0], {i, 9}]

396 Do[ I f[mB[[i]]<0,nB8[[i]]=0], {i, 9}]

397 Do[If[l2[[i]]<O,12[[i]]=0],{i,9}]

398 Do[If[I2[[i]]<0O,12[[i]]=0],{i,9}]

399 Do[ I f[I3[[i]]<0,I3[[i]]=0],{i, 9}]

400 Do[ I flul[[i]]<O,ul[[i]]=0],{i,9}]

401 Do[ I f[u2[[i]]<0,u2[[i]]=0],{i,9}]

402 Do[ I f[u3[[i]]<0,u3[[i]]=0],{i,9}]

403 (* Output results of Fieller's theorem calculations to file. *)

404 I f[tranx=="yes",WiteString[out,"Logl0 transform was used; follow ng
405 data output as logarithms\n"]]

406 WiteString[out,"\n Prop. Lower Ti me Upper\n"]
407 WiteString[out," kill limt [imt\n\n"]
408 Do[mtite[out,PaddedForn{SequenceForn{outprobl[[i]]," LA

409 Coot,mi[i]], CLul[[ET]). {7,400, {1, 9}]

410 Do[mrlte[out PaddedForn{SequenceForn{outprob2[[|]] "L12[[i]1,
411 cme[ il u2[[i]]],{7,4}]].{i,9 _

412 Do[mtlte[out PaddedForn{SequenceForn{outprob3[[|]] "LI3[[i]]

413 " , MB[[i]], “LuB[[iT1]. {7,411, {i,9}]

414 (* I'f using log transform write out LT values in real time. *)

415 Do[

416 If[tranx=="no", Goto[end]];

417 outI1=Tab|e[|f[|1[[i]]=="Undefined","Undefined",loﬂll[[l]]],{i,9}];
418 outl 2=Table[If[I12[[i]]=="Undefined", "Undefined", 10" 2[[i]]],{i,9}];
419 outl 3=Tabl e[ I f[I13[[i]]=="Undefined", "Undefined", 10" 3[[i]]1],{i,9}];
420 out mt=Tabl e[ 10~rm1[[i]],{i,9}];

421 out m=Tabl e[ 10"m2[[i]],{i,9}];

422 out m3=Tabl e[ 10 m3[[i]],{i,9}];

423 outul=Tabl e[l f[ul[[i]]=="Undefined", "Undefined", 10rul[[i]]],{i,9}];
424 outu2=Tabl e[ I f[u2[[i]]=="Undefined", "Undefined", 10ru2[[i]]].{i,9}];
425 outu3d=Tabl e[ I f[u3[[i]]=="Undefined", "Undefined", 102u3[[i]]].{i,9}];
426 WiteString[out,"\n\nOutput converted to original time units\n\n"];
427 WiteString[out," Prop. Lower Ti me Upper\n"]

428 WiteString[out," kill i mt

429 limt\n\n"];

430 Do[mtlte[out PaddedForn{SequenceForn{outprobl[[l2]] "Loutl 1[[i 2]]
431 " ,outmil[[i2]], ,outul[[i2]]1]),{7,4}11.{i2, 9}]

432 Do[mtlte[out PaddedForn{SequenceForn{outprob2[[|2]] "Loutl 2[[i2]]
433 " ,outm2[[i2]], ,outu2[[i2]11,{7,4}11.,{i 2, 9}]

434 Do[mtlte[out PaddedForn{SequenceForn{outprob3[[|2]] "Loutl 3[[i2]]
435 " ,outn3[[i2]], ,outud[[i21]1],{7,4}11,{i 2, 9}]

436 Label[end]

437 {i3,1}]



438

Cl ose[ out]

30
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APPENDI X |

probit transformation
Ani sopt eromal us cal andr ae
mal at hi on dat a

| nput dat a:

Nunmber of time intervals
Number dead in controls =
Nunmber dead in treatments
Time intervals = {1, 2, 3
Nunmber of controls = 25
Number treated = 25

Logarithm c transformation of

Transformation = probit

Intercept = -2.29424
SE Intercept = 0.449058
Sl ope = 0.931281

SE Sl ope = 0.159994

5
{o, o, o,
= {2, 6,
4, 5}
time

Covariance of Slope & Intercept =

Obs - Exp number of insects dying during each time interva
{-0.161179, -2.16348, 5.04163,

Chi Square = 4.77441

Probability of a greater

Degrees of freedom for Chi Square

z for calculating confidence limts

Prop. Lower

kill limt
0. 1000 0.2014
0. 2000 0. 8546
0. 3000 1.3042
0. 4000 1.6677
0. 5000 1.9861
0. 6000 2.2824
0.7000 2.5765
0. 8000 2.8962
0. 9000 3.3094
0.9100 3.3631
0. 9200 3.4210
0. 9300 3.4843
0. 9400 3.5545
0. 9500 3.6340
0. 9600 3.7267
0.9700 3.8397
0.9800 3.9886
0.9900 4.2207

Chi Square

Ti me

AR OWWOWWWWNNDNRERPRE

. 0874
. 5598
. 9004
. 1915
. 4635
. 7356
. 0266
. 3673
. 8397
. 9032
. 9723
. 0482
. 1330
. 2298
. 3434
. 4831
. 6688
. 9615

-0.0632318
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PROGRAM OUTPUT

2

-2.81116}

1.96

Upper

OO DMDWWNDNNNE

. 6197
. 0322
. 3510
. 6440
. 9393
. 2566
. 6191
. 0678
. 7202
. 8099
. 9077
. 0157
. 1369
. 2756
. 4393
. 6414
. 9115
. 3396

0.0918861254207547

limt



[eNololoNoNoNoNoNe)

. 9910
. 9920
. 9930
. 9940
. 9950
. 9960
. 9970
. 9980
. 9990

ARADMADADMDADDS

. 2540
. 2905
. 3313
. 3776
. 4311
. 4951
. 5752
. 6840
. 8603

oo orororor ol

. 0037
. 0502
. 1021
. 1611
. 2294
. 3113
L4141
. 5541
. 7818

w
N

N~NNOOOODOOOO O

. 4015
. 4698
. 5461
. 6328
. 7335
. 8542
. 0060
. 2129
. 5503
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Foot not es
Names of products are included for the benefit of the reader and

do not imply endorsenment or preferential treatment by USDA.



