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Abstract. In the American tropics, livestock production is highly restricted by forage availability. In addition, the
breeding and development of new forage varieties with outstanding yield and high nutritional quality is often limited by
a lack of resources and poor technology. Non-destructive, high-throughput phenotyping offers a rapid and economical
means of evaluating large numbers of genotypes. In this study, visual assessments, digital colour images, and spectral
reflectance data were collected from 200 Urochloa hybrids in a field setting. Partial least-squares regression (PLSR)
was applied to relate visual assessments, digital image analysis and spectral data to shoot dry weight, crude protein and
chlorophyll concentrations. Visual evaluations of biomass and greenness were collected in 68 min, digital colour
imaging data in 40 min, and hyperspectral canopy data in 80 min. Root-mean-squared errors of prediction for PLSR
estimations of shoot dry weight, crude protein and chlorophyll were lowest for digital image analysis followed by
hyperspectral analysis and visual assessments. This study showed that digital colour image and spectral analysis
techniques have the potential to improve precision and reduce time for tropical forage grass phenotyping.
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Introduction

Livestock productivity depends on forage availability and
quality. Grasses from the genus Urochloa (syn. of Brachiaria)
have been widely planted in the tropics as forage for grazing
ruminant livestockandare considered themost important forages
in the American tropics (Miles et al. 2004). The International
Center for Tropical Agriculture (CIAT) in Colombia conducts a
Urochloa breeding program aimed at developing hybrids with
outstanding performance of superior forage productivity and
nutritional quality on infertile, acidic soils. The hybrid
development process is time-consuming and expensive. In a
regular, 3-year breeding cycle, >7000 hybrids are produced by
open pollination, but <2% of these are retained for full
evaluation. Approximately half of the population is discarded
on the basis of reproductive mode, with sexual genotypes
discarded and apomictic hybrids kept; another major
proportion is then discarded based on visual estimations of
biomass production; and only ~100 hybrids are finally
evaluated for tolerance to different biotic and abiotic stresses
(V Castiblanco, pers. comm.). The evaluation of genotypes is
restricted mainly by insufficient economic resources and
technology for rapid screening.

Forage grasses exhibiting high biomass production and
nutritional quality are key to the productivity of grazing
animals (Herrero et al. 2013). Therefore, shoot biomass
production and quality parameters (i.e. crude protein, CP)
are among the most important traits for improvement in
any forage grass breeding program. However, owing to the
destructive nature of these measurements and the insufficient
economic resources, evaluation of these parameters is
postponed to the final stages of the breeding program
characterised by a reduced number of genotypes. Instead of
using analytical measurements of forage quality and
destructive biomass harvests, periodic visual evaluations of
plant performance (i.e. plant biomass and greenness) over time
are traditionally used in Urochloa breeding programs to select
superior plants at initial stages of the breeding scheme (Miles
et al. 2004; Miles 2007). These visual evaluations are
laborious and may not be sufficiently accurate especially in
breeding populations characterised by high genetic diversity
and substantial genotype � environment interaction (Walter
et al. 2012).

The use of new technologies for in-field, non-destructive,
high-throughput phenotyping (HTP), including digital image
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analysis and proximal hyperspectral sensing, offers the
possibility for precise evaluation of a larger number of
genotypes than feasible in traditional ways, achieved at low
cost and implemented in a short period (Montes et al. 2007;
White et al. 2012; Andrade-Sanchez et al. 2014). Proximal
hyperspectral sensing provides continuous information along
the visual and near-infrared electromagnetic spectrum. This
information often relates to plant traits and has been
successfully studied in grasses as a means of estimating
quality parameters (Skidmore et al. 2010; Pullanagari et al.
2012; Thulin et al. 2012; Ferner et al. 2015; Safari et al.
2016), diversity (Lopatin et al. 2017), and nutrient content
(Fava et al. 2009; Knox et al. 2012; Ramoelo et al. 2013;
Adjorlolo et al. 2015; Foster et al. 2017). Likewise, plant
image analysis for phenotyping purposes is based on image
segmentation to separate the soil background and the plant for
further quantification of regions of interest (Tucker 1979;
Woebbecke et al. 1995; Camargo 2004; Hunt et al. 2005).
Digital image analysis has also been used for quantifying
vegetation indices related to plant growth, greenness and
nutritional status (Meyer and Camargo 2008; Hunt et al.
2013). Very few reports of hyperspectral (Numata et al. 2008)
or image analysis (Jiménez et al. 2017) ofUrochloa grasses exist
in the literature.

No study combining hyperspectral information and image
analyses, and comparing them with conventional phenotyping
methods, is available. Moreover, hyperspectral data have not
been used to evaluate target traits in Urochloa breeding
programs. In this study, in-field visual evaluations, proximal
hyperspectral data, and digital imaging data were collected
over canopies of Urochloa hybrids. Partial least-squares
regression (PLSR) was used to relate hyperspectral
information to field measurements, and machine learning
(i.e. Naive Bayes multiclass) was used to extract vegetation
indices from overhead canopy images. The objectives of the
study were: (i) to develop PLSR models for predicting CP,
forage dry weight (DW) and chlorophyll content; (ii) to extract
plant traits from digital image analysis that can relate to CP
percentage, forage DW and chlorophyll concentration; and (iii)
to demonstrate the superiority of HTP techniques over
conventional visual evaluation of traits. CP, forage DW and
chlorophyll were chosen as target traits in this study because
they are key parameters determining both plant and cattle
productivity. The development of HTP methodologies to
evaluate tropical forages will increase the number of
hybrids evaluated per selection cycle, thus permitting more
intense selection and, hence, genetic gain. Identification of
new hybrids with outstanding performance (i.e. higher
biomass, greener and high CP) will result in more
productive pastures with concomitant increases in milk and
meat production in livestock systems in tropical savannahs.

Materials and methods
Field experiment

Field data were obtained in August 2016 at the International
Center for Tropical Agriculture (CIAT) in Cali, Colombia
(38290N, 768210W; altitude 965 m). Four thousand Urochloa
hybrids generated from crosses between the CIAT’s Urochloa

breeding program population SX12 and U. decumbens cv.
Basilisk (CIAT 606) were initially planted in an Andisol soil in
an augmented block design and spaced at 1.5 m by 1.5 m.
These plants were visually evaluated four times (data not
shown) for persistence, vigour and greenness after
sequential cuttings every 3 months for 1 year. After that
period, 200 hybrids were randomly selected for further
visual and HTP analyses. These 200 hybrids, rather than the
entire population, were selected for economic and practical
reasons. Visual evaluations of biomass and greenness and
imaging and spectra collection were performed after
3 months of regrowth following cutting (see information
below). Plant heights ranged from 20 to 50 cm and shoot
architecture varied with both decumbent and erect growth.

Visual evaluation

Plant biomass was assessed on a 9-point visual scale: 9, high
shoot biomass with many tillers and leaves; 1, stunted growth
with fewer tillers and leaves. Plant greenness was visually
evaluated on a 5-point visual scale: 5, intense dark green in all
leaves of the plant; 1, yellow-pale colour in all leaves of the
plant. This visual evaluation was conducted over 68 min, and
HTP measurements were made 1 week later (Table 1).

Imaging collection and analysis

Individual digital colour images for each of the 200 hybridswere
taken at 1.2 m above the soil surface by using a commercial
digital 13-megapixel camera (Coolpix P6000; Nikon, Tokyo)
fixed to a buggy tractor. Digital images were saved in 4224 �
3168 pixel JPG format. The canopy cover and six vegetation
indices including the normalised green-red difference index,
excess green index, excess red index, excess green minus
excess red, green ratio and green leaf index were created
using the formulae indicated in Table 2. The canopy cover
was extracted by dividing the total number of pixels
representing the plant by the total number of pixels in each
image. The vegetation indices were extracted usingNaive Bayes
multiclass. Briefly, the distribution of colours in a set of digital
colour images (training set) was used to estimate the probability
density function for each of the different regions of interest (i.e.
plant and background). Once the regions of interest were defined
in the training set, the machine-learning process was applied to
all images to classify and separate regions of interest accurately.
Therefore, every pixel in an image was classified into the
previously defined plant and background classes. Every pixel
characterising the plant (but not the background) was then
decomposed into red (R), green (G) and blue (B) channels.
These channels were then normalised as follows:

r ¼ R
Rþ Gþ B

; g ¼ G
Rþ Gþ B

; b ¼ B
Rþ Gþ B

Normalisation makes the variations of light intensities
uniform across the spectral distribution; thus, the individual
colour components (i.e. r, g, b) are independent from the
overall brightness of the image (Cheng et al. 2001).
Normalised channels were further used for the quantification
of the vegetation indices (Table 2). Image analysis code was
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written in Java and run in ImageJ software (National Institutes of
Health, Bethesda,MD,USA). Imageswere collected early in the
morning in order to avoid beam solar radiation interferences.
Digital images contained the whole plant in addition to the
23-cm-diameter field of view (as indicated below for
hyperspectral measurements; see Supplementary Materials
fig. S1, available at the journal’s website). The collection
process took 40 min (Table 1).

Spectral collection and analysis

Hyperspectral field data collections were performed on
clear days at full sun exposure around 11:00 by positioning a
hand-held field spectroradiometer (Fieldspec 2; Malvern
Panalytical, Malvern, UK) directly above the plant canopy.
The instrument was used with no fore-optics, which provided
a 258 full-conical-angle field of view. In order to avoid soil
background noise, the bare optical input was positioned 50 cm
from the topof theplant canopy toyield a23-cm-diameterfield of
view. The instrument collected information in 750 narrow
wavebands from 325 to 1075 nm in 1-nm intervals. Spectral

collection involved one scan or 10 scans per plant, and 50 plants
were evaluated daily over ~20 min. Differences in the collection
protocols were tested to evaluate which was most effective.
Different spectral collection processes (1 scan or 10 scans)
did not yield significant differences in the root-mean-squared
error of prediction (RMSEP) for the different traits evaluated
(table S1). Radiometric collections over a 99% Spectralon panel
(Labsphere, North Sutton, NH, USA) were used to describe
incoming solar irradiance throughout the data-collection
process. The radiometric collections over the calibration panel
were made before starting and after every five canopy scans, or
when slight changes in solar irradiance due to cloud cover
occurred. The values of the Spectralon panel radiance were
used to compute the canopy reflectance of the plants in each
wavelength over the time of spectra collection. Subsequently,
401 bands from 500 to 900 nm were used for analysis. Based on
visual inspection of reflectance spectra, these bands were
typically less noisy than bands at the bounds of detector
sensitivity. The spectral collection process was run over
80 min (Table 1).

Table 2. Canopy cover and vegetation indices calculated from digital images of 200 Urochloa hybrids
Vegetation indices were extracted by using a Naive Bayes multiclass machine-learning approach. Indices were then
incorporated into a partial least-squares regression model to predict crude protein concentration, forage dry weight biomass
and chlorophyll concentration. No normalisation was performed for the canopy cover quantification. Nc, Total number of
pixels representing the canopy; Nt, total number of pixels in the picture; r, g and b denote the normalised pixel values of each

channel on the RGB colour mode

Plant trait Name Formula Reference

CC Canopy cover Nc/Nt –

NGRDI Normalised green red difference index (g – r)/(g + r) Hunt et al. 2005
ExG Excess green index 2g – r – b Woebbecke et al. 1995
ExR Excess red index 1.3r – g Meyer et al. 1998
ExGR Excess green minus excess red ExG – ExR Camargo 2004
GR Green ratio g/(r + g + b) Tucker 1979
GLI Green leaf index (2g – r – b)/(2g + r + b) Louhaichi et al. 2001

Table 1. Phenotyping techniques used in the present study, time required for evaluation of 200 Urochloa plants under the conditions of the study,
applications, advantages and disadvantages

Phenotyping
techniques

Time to
evaluate

Applications Advantages Disadvantages

Visual evaluation 68 min Visual observations of different
plant characteristics

Easy operation, low cost;
evaluations can be done under
diverse conditions and
environments

Evaluation of low number of
genotypes; evaluation is subject
to human bias and fatigue

Image analysis 40 min Quantification of canopy cover
and vegetation indices in the
visible electromagnetic
spectrum

Easy operation, low cost, greater
number of plants evaluated,
determination of several
vegetation and water indices

Changes in ambient light
conditions limit calculation of
vegetation indices; data
analysis is moderately complex

Hyperspectral
analysis

80 min Canopy reflectance information in
visible and near-infrared
regions of the electromagnetic
spectrum; information can be
used to predict biochemical
composition of plants

Moderately easy operation,
greater number of plants
evaluated, determination of
nutritional and biochemical
composition of leaf or canopy

Low solar radiation or cloudy days
limit analysis; sensor and white
reference calibration is
frequentlyneeded; dataanalysis
is complex
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Laboratory sample collections

Plants were immediately harvested after collection of spectra.
Aboveground tissue was removed by cutting the area defined
by a 23-cm-diameter plastic circle co-located with the spectral
data-collection area. Tissues were packed in plastic bags and
stored on ice in a cooler in the field and then transported to the
laboratory. Extraction of chlorophyll was performed by adding
fresh tissue (100 mg) to 80% (v/v) cold methanol, and the
mixture was homogenised by using a pestle in a mortar until
the plant residue was clear and the solution was uniform. This
solution was then filtered and absorbance was determined with
a spectrophotometer (Synergy HT; BioTek, Winooski, VA,
USA). Total chlorophyll concentration was calculated
according to Lichtenthaler and Wellburn (1983). Forage
DW was measured on an electronic balance (PB602S;
METTLER TOLEDO, Columbus, OH, USA) after oven-
drying the samples for 3 days at 608C. Nitrogen (N)
concentrations in the dry tissue were determined by using
an automated N-carbon analyser (Sercon, Crewe, UK).
Urochloa and common bean (Phaseolus vulgaris L.) leaves
were used as reference tissues for confirmation of the
reliability of the analyses. The CP concentration was
calculated by multiplying N concentration by 6.25, because
protein is assumed to contain 16% N on average.

Statistical analyses

Visual evaluations and digital image analysis, spectral
reflectance and plant trait data were incorporated into a PLSR
algorithm (Mevik and Wehrens 2007) within R (The R
Foundation: http://www.r-project.org). Models were
developed to predict each plant trait (i.e. CP, forage DW
and chlorophyll content) and to compare the precision for
prediction of each of the different methods of phenotyping.
PLSR was used in preference to conventional least-squares
analysis in order to reduce collinearity effects. Thorp et al.
(2011) provided the details on the PLSR methodology used in
the present study. Briefly, if Y is an n � 1 vector of responses
(i.e. CP, forage DW or chlorophyll content) and X is an
n-observation by p-variable matrix of predictors (a set of
visual evaluations, digital image analyses, or spectral
reflectance data), PLSR aims to decompose X into a set of

A orthogonal scores such that the covariance with
corresponding Y scores is maximised. The X-weight and Y-
loading vectors that result from the decomposition are used to
estimate the vector of regression coefficients, bPLS, such that:

Y ¼ � bPLS þ e

where e is an n � 1 vector of error terms.
Leave-one-out cross-validation was used to test model

predictions for independent data. Results were reported for
PLSR models with the number of factors that minimised the
RMSE of cross-validation. Pearson’s correlation coefficients
were calculated for the different traits extracted from digital
colour images taken from Urochloa hybrids.

Results

In this study, visual evaluations of biomass andgreenness, digital
colour imaging and hyperspectral data were collected on 200
Urochloa hybrids in 68, 40 or 80 min, respectively (Table 1). A
high degree of variability was found for the characteristics
forage DW, CP percentage and chlorophyll concentration
among the 200 Urochloa hybrids evaluated (Table 3).

Visual assessments

The PLSR for measured traits of forage DW, CP and
chlorophyll based on visual evaluations of biomass and
greenness performed with RMSEP of 8.47 g plant–1, 1.76%
and 0.60 mg g–1 fresh weight (FW), respectively (Fig. 1).

Spectral data and digital image phenotyping

The PLSR models developed from digital image analysis
estimated forage DW, CP and chlorophyll with RMSEP of

Table 3. Phenotypic variation on plant traits measured in 200
Urochloa hybrids

CV, Coefficient of variation

Trait Min. Max. Mean CV (%)

Forage dry weight (g plant–1) 6.74 64.1 30.22 34.81
Crude protein (%) 6.76 21.58 11.23 19.68
Chlorophyll (mg g–1 fresh weight) 0.87 6.41 2.88 24.31
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Fig. 1. Modelled versus measured forage dry weight (a), modelled versus measured crude protein percentage (b) and modelled versus
measured chlorophyll concentration (c) when fitting partial least-squares regression models to relate each biophysical characteristic to visual
evaluations of biomass and greenness of 200 Urochloa hybrids.
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7.81 g plant–1, 1.53% and 0.57 mg g–1 FW, respectively (Fig. 2).
Differences in the correlation coefficients among traits extracted
from image analysis indicated that including different indices
into the model added independent information to build stronger
PLSR models (Fig. 2). The contribution of each trait extracted
from digital image analysis to the overall prediction of each
destructively measured trait is shown in Table 4. The green leaf
index had a stronger positive influence on the PLSR model for
predicting forage DW. Excess green minus excess red had a
stronger positive influence on the PLSR model for predicting
both CP and chlorophyll concentrations.

The fitted PLSR models developed from 401 wavebands of
canopy spectral reflectance estimated forage DW, CP and
chlorophyll with a RMSEP of 7.90 g plant–1, 1.63% and
0.55 mg g–1 FW, respectively (Fig. 3). The contribution of
each spectral waveband to the overall prediction of each
destructively measured trait is present in Fig. 4. In the PLSR
model for forage DW, local extremes in regression coefficients
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Fig. 2. Modelled versus measured forage dry weight (a), modelled versus measured crude protein percentage (b) and modelled versus
measured chlorophyll concentration (c) when fitting partial least-squares regression models to relate each biophysical characteristic to digital
image analysis of 200 Urochloa hybrids.

Table 4. Regression coefficients of the fitted partial least-squares
regression models of seven traits extracted from digital image analysis
CC, Canopy cover; NGRDI, normalised green red difference index; ExG,
excess green index; ExR, excess red index; ExGR, excess green minus
excess red; GR, green ratio; GLI, green leaf index. Positive and negative
coefficients indicate positive and negative influence on the prediction

model, respectively

Traits Forage dry
weight (g plant–1)

Crude protein
(% DW)

Chlorophyll
(mg g–1)

CC 3.7606 –0.2311 –0.0167
NGRDI 9.9486 0.0860 –0.0353
ExG –14.3163 0.0776 0.0731
ExR –32.1262 –0.3911 –0.0776
ExGR 3.7245 0.2659 0.1033
GR –34.7709 –0.3116 –0.0363
GLI 80.8715 –0.3111 –0.0358
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Fig. 3. Modelled versus measured forage dry weight (a), modelled versus measured crude protein percentage (b) and modelled versus
measured chlorophyll concentration (c) when fitting partial least-squares regression models to relate each biophysical characteristic to canopy
spectral reflectance of 200 Urochloa hybrids.
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were found at 701 and674nm, corresponding to red light near the
inflection band and red light, respectively (Fig. 4a). Strong
positive contribution to forage DW estimation was made with
NIR (700–750), and a strong negative contributionwith red light
(674–640). In the PLSR models for CP and chlorophyll,
regression-coefficient plots showed a strong positive
contribution for trait estimation in the visible green light
(Fig. 4b, c). The PLSR models for CP contrasted wavebands
in the visible spectrum, with positive contribution from
wavebands ~503 nm and negative contributions from 678 nm.
Similarly, regression coefficients for total chlorophyll indicated
a strong positive contribution in the visible spectrum at ~504 nm
and negative contribution throughout the visible wavebands,
especially at 625 and643nm(Fig. 4c). This is logical considering
that visible light absorption is increased with additional leaf
chlorophyll.

Discussion

The results from this study demonstrate that the current visual-
assessment methodology at initial steps of the breeding cycle
in the CIAT Urochloa breeding program can be improved by
using non-destructive HTP techniques. Colour imaging,
hyperspectral analysis and PLSR models are more precise
and faster than visual evaluations, thus increasing the
number of plants evaluated in the tropical forage-breeding
program.

Visual evaluations of plant growth and greenness
(characteristics associated with N content, and therefore CP
and chlorophyll concentration in leaves) have traditionally
been used to discard Urochloa hybrids at initial stages of
plant phenotyping. The visual evaluation of an entire breeding
population (i.e. 7000 hybrids) is a slow, costly and tedious
process, and is often biased by subjectivity and human
fatigue, especially when phenotypic variation of such traits is
high (Table 3). In this study, the estimation of forageDW, andCP
and chlorophyll concentrations was more precisely and
consistently estimated by HTP techniques. Forage DW and
CP predictions were more accurate when digital image
analysis was used, followed by spectral analysis and visual
evaluations. Chlorophyll was better estimated by the analysis

of 401 spectral wavebands, followed by colour image analysis
and finally visual evaluations. The time required to run non-
destructive HTP evaluations was considerably shorter for
colour image analysis than visual evaluations, by 28 min
per 200 plants, but longer in hyperspectral than in visual
evaluations, by 12 min per 200 plants (Table 1).

The moderate trends in the relationship between Urochloa
canopy imaging and reflectance and measured DW, CP and
chlorophyll may indicate that the method is not appropriate for
very precise estimations of these traits. However, for breeding
purposes where a large percentage of hybrids are discarded
without detailed evaluation owing to scarce resources, a
difference of 7.90 g plant–1 in the forage DW or 1.63% in
the CP concentration of plants may be acceptable during initial
stages of plant breeding. The moderate trend between
Urochloa canopy analysis and measured traits in this study
can be explained by dissimilarities in the canopy architecture
of the Urochloa genotypes (Numata et al. 2008), as well as
different growth patterns during recovery from cutting. Further
evaluation of breeding populations with contrasting canopy
architectures will improve the accuracy of the PLSR model to
predict the targeted traits. Nonetheless, by combining both
digital image and hyperspectral analysis techniques, higher
precision accuracy for forage DW, CP and chlorophyll
contents can be achieved.

The vegetation indices (see Table 2) extracted from colour
images of 200 Urochloa hybrids were originally developed to
separate green plants from the background by extracting green
and red colours from digital images. These indices have been
related to different plant characteristics including biomass,
chlorophyll content and nutritional status (Tucker 1979;
Woebbecke et al. 1995; Camargo 2004; Hunt et al. 2005,
2013; Meyer and Camargo 2008; Lee and Lee 2013; Wang
et al. 2013). In the present study, digital image analysis
performed better than hyperspectral scanning analysis for
estimating forage DW and CP (Figs 2, 3). Nonetheless, the
use of spectral analysis over grasses becomes more important
when this technique is used to detect either nutritional or anti-
nutritional compounds (i.e. metabolisable energy, digestibility,
fibre) that are better estimated with the near-infrared regions of
the electromagnetic spectra (Curran 1989; Pullanagari et al.
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Fig. 4. Regression coefficients of the fitted partial least-squares regression models for forage dry weight (a), crude protein percentage (b) and
chlorophyll concentration (c). The regression coefficients represent the contribution of each spectral waveband to the overall prediction of each
destructively measured trait.
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2012; Ferner et al. 2015). In this sense, digital colour image
analysis and hyperspectral analysis are complementary
because, by using both techniques, a diverse set of plant
traits can be accurately predicted, and by adding extra
factors to the prediction model, higher prediction accuracy
can be achieved (cf. Numata et al. 2008). Future efforts will
use data-mining to fine-tune the spectral bands included in the
PLSRmodel (Thorp et al. 2017), which can reduce model error
and improve model-fit statistics. Although testing multiple
methods of analysis was not the intention of this study, future
research could test other techniques (e.g. artificial neural
networks) for relating HTP measurements to plant traits.

The regression coefficients for the PLSR for forage DW
and chlorophyll concentration obtained in this study highlight
that the key wavelengths for the prediction of these traits
occur in the green, red, red-edge and NIR regions of the
electromagnetic spectrum (Fig. 4). Previous hyperspectral
studies have highlighted those regions as being highly
representative for dry mass and chlorophyll content in
plants (Lichtenthaler et al. 1996; Thenkabail et al. 2000;
Mutanga and Skidmore 2004; Fava et al. 2009; Thorp et al.
2011; Adjorlolo et al. 2015; Dou et al. 2018). Although some
similarities were found for some individual wavebands among
the different traits, the general regression coefficients differed
among the traits, thus demonstrating that the reflectance data in
a given waveband contributed differently towards the
estimation of a given trait. Given the logistical burden to
collect and analyse hyperspectral scans, the identification of
informative key bands associated with each evaluated trait can
improve the HTP process (Thorp et al. 2017). Results from this
study will help guide the selection of optimal bands in the
construction of multispectral sensors tailored to predict
specific traits of interest in tropical forage breeding programs.

The PLSR models for predicting forage DW, CP and
chlorophyll can be now used to evaluate the next generation
of hybrids from the same Urochloa gene pool (i.e.
U. ruziziensis–U. brizantha–U. decumbens). The accuracy
of these prediction models relies on collection protocols
similar to those explained in the Materials and methods and
evaluations on plants with growth characteristics comparable
to the hybrids evaluated here (i.e. about 3 months after
regrowth). The prediction accuracy will likely be reduced
on larger plants with higher biomass (Hill 2004) and a
greater proportion of senescent leaves (Asner 1998). The
development of more precise PLSR models to predict
variables of interest in a breeding program requires ongoing
effort. The collection of ground data every year, in addition to
making improvements to standardise collection protocols and
incorporate wider range of genotypes, will result in more
accurate and robust models. Larger datasets will increase
estimation precision.

Conclusions

In this study, 200 Urochloa hybrids were monitored in 40 min
by digital imaging and 80 min by spectral analysis
(Table 1). At this pace, >1000 Urochloa hybrids could be
evaluated in <7 h. This means that forage biomass and quality
in a high number of genotypes would be reliably evaluated

with minimal increased acquisition costs relative to destructive
harvest. This demonstrates the superiority of HTP
techniques over conventional visual evaluation of traits. The
PLSR models for predicting CP, forage DW, and chlorophyll
contents developed in this study support the evaluation of
higher numbers of genotypes at initial stages of the breeding
program. The greater the numbers of plants evaluated reliably
every year in the Urochloa breeding program, the greater the
genetic gain will be. Therefore, the use of image analysis and
hyperspectral monitoring over Urochloa hybrid canopies
will benefit the ongoing breeding program. The application
of this HTP method could be of great help in rural remote areas
lacking facilities to perform destructive harvest and plant
chemical analysis. Research is under way to improve the
utility of proximal sensing by considering a greater range of
canopyarchitecturalconfigurationsandevaluating thepotential to
assess nutritional quality, including characteristics such as
metabolisable energy, fibre, digestibility, lignin and cellulose
fractions in Urochloa grasses.
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