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Rising temperatures reduce global
wheat production
S. Asseng et al.†

Crop models are essential tools for assessing the threat of
climate change to local and global food production1. Present
models used to predict wheat grain yield are highly uncertain
when simulating how crops respond to temperature2. Here
we systematically tested 30 di�erent wheat crop models
of the Agricultural Model Intercomparison and Improvement
Project against field experiments in which growing season
mean temperatures ranged from 15 ◦C to 32 ◦C, including
experiments with artificial heating. Many models simulated
yields well, but were less accurate at higher temperatures.
The model ensemble median was consistently more accurate
in simulating the crop temperature response than any single
model, regardless of the input information used. Extrapolating
the model ensemble temperature response indicates that
warming is already slowing yield gains at a majority of
wheat-growing locations.Globalwheatproduction isestimated
to fall by 6% for each ◦C of further temperature increase and
become more variable over space and time.

Understanding how different climate factors interact and impact
food production3 is essential when reaching decisions on how to
adapt to the effects of climate change. To implement such strategies
the contribution of various climate variables on crop yields need to
be separated and quantified. For instance, a change in temperature
will require a different adaptation strategy than a change in rainfall4.
Temperature changes alone are reported to have potentially large
negative impacts on crop production5, and hotspots—locations
where plants suffer from high temperature stress—have been
identified across the globe6,7. Crop simulation models are useful
tools in climate impact studies as they deal with multiple climate
factors and how they interact with various crop growth and yield
formation processes that are sensitive to climate. These models
have been applied in many studies, including the assessment of
temperature impacts on crop production1,8. However, none of the
crop models have been tested systematically against experiments
at different temperatures in field conditions. Although many
glasshouse and controlled-environment temperature experiments
have been described, they are often not suitable for model testing
as the heating of root systems in pots9 and effects on micro-climate
differ greatly from field conditions10. Detailed information on field
experiments with a wide range of sowing dates and infrared heating
recently became available for wheat11,12. Such experiments are well
suited for testing the ability of crop models to quantify temperature
responses under field conditions. Testing the temperature responses
of crop models is particularly important for assessing the impact of
climate change onwheat production, because the largest uncertainty
in simulated impacts on yield arises from increasing temperatures2.

In a ‘Hot Serial Cereal’ (HSC) well-irrigated and fertilized
experiment with a single cultivar, the observed days after sowing
(DAS) to maturity declined from 156 to 61 days when growing
season mean temperatures (Tmean) increased from 15 ◦C to 26 ◦C
(Fig. 1a,b). The performances of individual models are illustrated

in Supplementary Fig. 3. Note that simulations were carried out in a
‘blind’ test (modellers had access to phenology and yield data of one
of the treatments only (normal temperature); see Supplementary
Methods). Higher temperatures thus decreased the number of days
during which plants could intercept light for photosynthesis, with
consequent reductions in biomass (Supplementary Fig. 5) and grain
yields (Fig. 1). When Tmean was >28 ◦C and when there were
extremely high temperatures early in the growing season with many
days of maximum temperature (Tmax) > 34 ◦C, a critical maximum
temperature for wheat13, crops did not reach anthesis or grain set,
so it was not possible to record anthesis or maturity dates and the
yields were zero (Fig. 1a–c and Supplementary Fig. 6a–c). Observed
grain yields declined from about 8 t ha−1 when Tmean was 15 ◦C to
zero when Tmean was >28 ◦C (Fig. 1c).

Many wheat models simulated the observed anthesis and
maturity dates and grain yields when Tmean was between 15 ◦C
and 20 ◦C. However, when Tmean reached about 22 ◦C, observed
grain yield measurements were more variable—that is, they had
larger standard deviations (s.d.), and models started to deviate
from observations (Fig. 1a–c). In some cases, observed grain yields
differed by up to 0.7 t ha−1 (17% of average yield) with the same
Tmean. For example, at Tmean of 22.3 ◦C, some growing seasons
had early warmer temperatures that advanced anthesis dates, but
cooler temperatures during grain filling that delayed maturity
dates, resulting in higher yields. Other seasons had early cooler
temperatures during the season that delayed anthesis dates, but
warmer temperatures during grain filling that advanced maturity
dates, resulting in lower yields. These warmer-to-cooler and cooler-
to-warmer thermal variations created disparity even though the
overall Tmean was the same (Supplementary Fig. 7). As these
opposing thermal regimes affect development, gas exchange and
water relations of wheat12, it is important to consider in-season
dynamics when determining grain yield. Many models simulated
the dynamic effects on growth (Supplementary Fig. 5a) and yield
well (Fig. 1). However, unexplained differences between simulations
and some observed yields also exist at around 15 ◦C, where some of
the experimental errors are also large (Fig. 1c). At a seasonal mean
temperature of 29 ◦C the observed yield was zero and a few models
that included heat stress routines affecting canopy senescence, but
not necessarily, were able to simulate close-to-zero above-ground
biomass and a zero or close-to-zero yield (Supplementary Figs 3c
and 5). At a seasonal mean temperature of 32 ◦C, about a quarter of
all models and the multi-model ensemble median represented the
observed zero yields well (Fig. 1c and Supplementary Fig. 3c), as a
result of simulated premature crop death, which was consistent with
the observations (Supplementary Fig. 5).

A second experimental data set was analysed, focusing on two
different cultivars grown at well-irrigated and fertilized Interna-
tional Maize and Wheat Improvement Center (CIMMYT) global
sites. The number of days to anthesis and to maturity declined
with increasing temperatures, accompanied by yield loss. Model

†A full list of authors and a�liations appears at the end of the paper.
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Figure 1 | Observations and multi-model simulations of wheat phenology
and grain yields at di�erent mean seasonal temperatures. a–f, Observed
values± 1 standard deviation (s.d.) are shown by red symbols. Multi-model
ensemble medians (green lines) and intervals between the 25th and 75th
percentiles (shaded grey) based on 30 simulation models are shown.
a–c, ‘Hot Serial Cereal’ experiment on Triticum aestivum L. cultivar Yecora
Rojo with time-of-sowing and infrared heat treatments. DAS,
days-after-sowing. d–f, CIMMYT multi-environment temperature
experiments on T. aestivum L. cultivar Bacanora with time-of-sowing
treatments. Note, no anthesis and maturity date measurements were
available >28 ◦C in a and b owing to premature death of crops. For details
of field experiments and calibration steps, see Supplementary Methods.
Error bars are not shown when smaller than the symbol.

simulations showed the same temperature responses (Fig. 1d–f and
Supplementary Fig. 9). However, unlike the HSC experiment, crops
did not fail with Tmean > 28 ◦C and still yielded about 2 t ha−1 of
grain. This was despite similar Tmax in both experiments during the
time after sowing and before the HSC crop died (that is, about 28
DAS; Supplementary Fig. 8). The cultivars Bacanora (Fig. 1d–f) and
Nesser (Supplementary Fig. 9) used in the CIMMYT experiments
in various locations might be more heat tolerant than the cultivar
Yecora Rojo11 used in the HSC experiment (Fig. 1a–c). It is known
that cultivars have different heat tolerance mechanisms associated
with canopy temperature depression via stomata opening and tran-
spirational cooling14.

The differences between simulated and observed yields revealed
considerable uncertainty, as reported in a previous systematic sen-
sitivity analysis with a large crop model ensemble2. Uncertainty
increased, particularly at higher temperatures, with models deviat-
ing from the observed data at Tmean >22 ◦C. However, many of the
models simulated the yield decline due to increasing temperatures
within the measurement errors (±1 s.d.). Notably the median of the
ensemble of 30 models consistently had the best or near-best skill
in reproducing the observed temperature impacts on grain yield,
as shown for other crop model ensembles that simulated present
growing conditions2,15. When considering the subset of treatments
in the HSC experiment that were heated artificially in the field
with infrared heaters, the simulated relative impact of increased
temperature was mostly within the observed relative impact range,
and was largest when reference or background temperatures were

the highest (Supplementary Fig. 4). In general, the uncertainty in
both observed and simulated impacts was relatively large for the
artificially heated crops (Supplementary Fig. 4).

Information on cultivars and crop management needed for re-
gional or global modelling studies is sparse16. Lack of such informa-
tion can affect the outcomes of an impact assessment owing to large
model input uncertainties2. Here, further information on cultivar
parameters and phenology improved grain yield simulations for
a few individual models (Supplementary Table 4), consistent with
previous findings, but had little or even a negative impact on the
performance of many other models—and, therefore, on the multi-
model ensemble median (Supplementary Fig. 10). Therefore, when
using a single model to assess climate change impact, the simulated
impacts varied widely depending on the individual model and avail-
able information, but the level of information hardly affected the
accuracy of the ensemble median impact simulations.

The simulated phenology in cropmodels can have a large impact
on the simulations of other crop processes. When simulating grain
yields with a ‘fixed phenology’, modellers were asked to fix their
simulated anthesis and maturity dates as close as possible to the
observed dates (that is, root mean square relative error (RMSRE)
for anthesis and maturity dates were close to zero (Supplementary
Table 4)) to override any inbuilt errors from phenology simulations.
Fixing phenology when simulating grain yields had a surprisingly
minor effect, and subsequent ensemble yields hardly changed (Sup-
plementary Fig. 10). Furthermore, small errors in simulated phenol-
ogy did not necessarily translate into errors in yield, particularly if
there was compensation between the modelling of pre- and post-
anthesis processes. This trade-off between pre-anthesis growth and
post-anthesis stress exposure is well-documented in late-in-season
drought environments17 and can be managed by altering sowing
dates, cultivar choice and fertilizer inputs. In well-fertilized, irri-
gated systems without initial water stress, a later-flowering crop will
accumulate more biomass and a potentially higher yield, but if it is
then exposed to more heat late in the season, grain filling and final
grain yield will be reduced. Many models simulated this interaction
correctly, compensating for other errors which may disguise erro-
neous model structures or parameters.

We have shown with the large range of observed data that the
simulated wheat crop model ensemble median consistently has
better skill in reproducing the observed temperature response than
singlemodels and that the level of information on cultivars had little
effect on the ensemble median accuracy. Therefore, this 30-model
ensemble provides the most accurate estimate of wheat yield
response to increased temperature (Fig. 2). Although improvements
in technology and management have led to increasing wheat
yields around the world, wheat model simulations over the main
global wheat-producing regions can isolate the climate signal by
holding inputs and management constant with the exception of
climate information. Simulated yields declined between 1981 and
2010 (Fig. 2a) at 20 of the 30 representative global locations
(Supplementary Figs 11–13) owing to positive temperature trends
over the same period (Supplementary Fig. 1). The simulatedmedian
temperature impact on yield decline varied widely across 30 global
locations and the 30-year average yields decreased by between 1%
and 28% across sites with an increase of 2 ◦C in temperature and
between 6% and 55% across sites with an increase of 4 ◦C (Fig. 2b,c).

For locations at low latitudes the increase in simulated yield
variability with higher temperature was more marked than at high
latitudes, because the relative yield decline was greater owing to the
higher reference temperatures1 (Fig. 2c). However, yield variability
expressed in absolute terms hardly changed (Supplementary
Fig. 14). Similarly, the year-to-year variability increased at some
locations with temperature increases because of greater relative
yield reductions in warmer years and lesser reductions in cooler
years (Fig. 3a). The increase in year-to-year yield variability is
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Figure 2 | Simulated global wheat grain yield change in the past and with higher temperatures. a, Grain yield trends for 1981–2010 based on the median
yield of a 30-model ensemble. b,c, Relative median grain yield for+2 ◦C (b) and+4 ◦C (c) temperature increases imposed on the 1981–2010 period for the
30-model ensemble using region-specific cultivars. Simulation model uncertainty was calculated as the coe�cient of variation (CV%) across 30 models
and plotted as circle size. The larger the circle, the less the uncertainty.

critical economically as it could decrease some regional—and hence
global—stability in wheat grain supply18, amplifying market and
price fluctuations19.

About 70% of present global wheat production comes from
irrigated or high rainfall regions20. The global temperature impact
simulations were carried out for region-specific cultivars, including
spring and winter wheat cultivars (Supplementary Table 3), at key
locations in irrigated or high-rainfall regions. All locations had a
model ensemble median yield loss on average over 30 years with
increasing temperatures (Fig. 2), mainly as a result of a reduced
growing period with fewer grains per unit land area (Fig. 3b),
also supported by field experiments11. Mediterranean-type and
arid environments have been studied with single models. Under
rain-fed and water- and nitrogen-limited conditions, it was found
that seasonal temperature increases of up to 2 ◦C increased yields by
avoiding water and heat stress at the end of the season21. However,
other experimental evidence suggests that increased temperature

has negative impacts regardless of water22 (Supplementary Figs 15
and 16) and N supply23 (Supplementary Fig. 17). Therefore, the
simulated temperature impacts are possibly applicable to most
cropping systems beyond those that are irrigated or that receive
high rainfall. To attempt a global temperature impact estimate, we
extrapolated the simulated temperature impacts of the 30 chosen
experimental locations to all regional wheat production using
country statistics (http://www.fao.org) and disaggregated global
mean surface temperature increases to regional surface temperature
changes24 (see Supplementary Methods and Table 3). For each ◦C
increase in global mean temperature, there is a reduction in global
wheat grain production of about 6%, with a 50% probability of be-
tween−4.2% and−8.2% loss, based on the multi-model ensemble.
Considering present global production of 701Mt of wheat in 2012
(http://www.fao.org) and impacts of temperature only, and assum-
ing no change in production areas or management25, 6% means a
possible reduction of 42Mt per ◦C of temperature increase. To put
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Figure 3 | Variability, uncertainty and causes of simulated wheat grain
yield decline with increasing temperature. a, Coe�cient of variation (%)
for simulated grain yields according to location and year variability and
model uncertainty. In each box plot, horizontal lines represent, from top to
bottom, the 10th percentile, 25th percentile, median, 75th percentile and
90th percentile of 900 simulations for present climate (grey),+2 ◦C
(green) and+4 ◦C (red). b, Box plots of simulated multi-model ensemble
medians (of 30 models) of 30-year averages for each location of relative
change in grain yield, grain number, grain size and harvest index per ◦C
increase. Red lines indicate the simulated mean for 30 locations (not
weighted for cropping area). Zero is indicated as a dotted line.

this in perspective, the amount is equal to a quarter of global wheat
trade, which reached 147Mt in 2013 (http://apps.fas.usda.gov).
Contrary to some single-model assessments on temperature
impacts21,26 and a recent multi-model global gridded impact assess-
mentwhich considered several climate factors together8, in response
to global temperature increases grain yield declines are predicted
for most regions in the world. By extensively ground-truthing
models with field measurements and significantly reducing model
uncertainty by usingmodel ensemblemedians, we demonstrate that
wheat yield declines in response to temperature impacts only are
likely to be larger than previously thought1 and should be expected
earlier, starting even with small increases in temperature (Fig. 2).

This study, based on a multi-model ensemble and linked to
field data, provides a comprehensive global temperature impact
assessment for wheat production. There are several adaptation
options to counter the adverse effects of climate change on global
wheat production—and for some regions this will be critical.
Ensemble crop modelling could be an important exploratory tool
in breeding for identified genetic targets27 to extend grain filling,
delay maturity and improve heat tolerance in wheat cultivars and
other cereals.

Methods
We systematically tested multiple models against field and artificial heating
experiments, focusing only on temperature responses. Thirty wheat crop
simulation models, 29 deterministic process-based simulation models and one
statistical model (Supplementary Tables 1 and 2), were compared with two
previously unpublished data sets from quality-assessed field experiments from

sentinel sites (see Supplementary Methods) within the Agricultural Model
Intercomparison and Improvement Project28 (AgMIP; http://www.agmip.org).
The first data set was from a ‘Hot Serial Cereal’ (HSC) experiment with the wheat
cultivar Yecora Rojo sown on different dates with artificial heating treatments
under well-irrigated and fertilized field conditions11. The second data set was
from International Maize and Wheat Improvement Center (CIMMYT)
experiments testing several cultivars in seven temperature regimes with full
irrigation and optimal fertilization and with different sowing date treatments29.
Using the 30 models, the temperature responses were then extrapolated in a
simulation experiment with 30 years of historical climate data from 30 main
wheat-producing locations (see Supplementary Methods). Model simulations
were executed by individual modelling groups.
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