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Simulation modelers increasingly require greater flexibility for model implementation on diverse operat-
ing systems, and they demand high computational speed for efficient iterative simulations. Additionally,
model users may differ in preference for proprietary versus open-source software environments. These
issues necessitate the development of strategies to maximize model compatibility across operating sys-
tems, to ensure numerically accurate simulations for alternative compiler selections, and to understand
how these choices affect computational speed. We developed an approach to evaluate model perfor-

Iéfg Wiiisd:el mance using diverse Fortran compilers on multiple computer operating systems. A single desktop com-
G%p puter with five identical hard drives was designed to permit meaningful comparisons between five
Gfortran operating systems while minimizing differences in hardware configuration. Three Fortran compilers

Linux and relevant software development tools were installed on each operating system. Both proprietary
Open source and open-source versions of compilers and operating systems were used. Compatibility and performance
Windows issues among compiler and operating system combinations were assessed for an example case: the Crop-
ping System Model (CSM) as implemented in version 4.5 of the Decision Support System for Agrotechnol-
ogy Transfer (DSSAT). A simulation study that included 773 simulations and assessed the full suite of crop
growth modules within DSSAT-CSM was conducted for each compiler and operating system configura-
tion. For a given simulation, results were identical for anthesis date (ADAT), maturity date (MDAT),
and maximum leaf area index (LAIX) regardless of the compiler or operating system used. Over 94% of
the simulations were identical for canopy weight at maturity (CWAM) and cumulative evapotranspira-
tion at maturity (ETCM). Differences in CWAM were predominantly less than 2 kg ha~! and were likely
the result of differences in floating point handling among compilers. Larger CWAM discrepancies high-
lighted areas for improvement of the model code. Model implementations with the Intel Fortran compiler
on the Linux Ubuntu operating system provided the fastest simulations, which averaged 9.0 simula-
tions s~'. Evaluating simulation models for alternative compiler and operating system configurations is
invaluable for understanding model performance constraints and for improving model robustness, por-
tability, usefulness, and flexibility.
Published by Elsevier B.V.

1. Introduction

With recent advancements in computational power and capabil-
ity, computer simulation models are becoming more widely uti-
lized for analysis of biophysical processes in a variety of research
disciplines. However, the applicability of a model is often limited
to the computing environment on which it was developed and
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tested. This paper presents a methodology to test and compare sim-
ulation model performance, in terms of numerical accuracy and
computational speed, when implemented using a variety of source
code compilers on multiple operating systems. There are several
compelling reasons to develop such a methodology. Primarily, the
methodology is useful for comparing model performance across a
variety of computing environments, each having unique advanta-
ges for model implementation and use. Second, because various
compilers (and compiler options) handle numerical processing
differently, the methodology can identify numerical discrepancies
between compilers, which can lead to source code improvements
that strengthen model robustness and reliability. Third, even if
numerical consistency is not a major problem, the methodology is
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useful for comparing computational speed among compiler and
operating system combinations and identifying approaches for
improving the computational efficiency of the model. Finally, the
methodology can support efforts to develop models in an ‘open-
source’ software development paradigm, which emphasizes not
only the provision of model source code, but also its usability with
a complete suite of programming tools that are often, themselves,
open-source.

An appropriate computing environment for model implementa-
tion depends heavily on the specific modeling application. For
example, because of its prevalence on modern desktop computers,
the Microsoft Windows operating system (Microsoft Corporation,
Redman, Washington) is appropriate for most routine modeling
tasks that require only moderate numbers of simulations. However,
many modeling applications, such as optimization problems (Veith
et al., 2003), model uncertainty analyses (Nol et al., 2010), model
parameter estimation (Braga and Jones, 2004), data assimilation
routines (Quaife et al., 2008), and spatial modeling applications
(Thorp et al., 2007), require iterative calculations that can take
many hours of time on desktop systems. Therefore, efforts to under-
stand options for increasing the computational speed of iterative
simulations on desktop systems is both useful and informative.
The most intensive simulation analyses, however, are likely to be
conducted in a high performance computing cluster, such as those
available on many university campuses. One website (http://
www.top500.org/stats/list/37/osfam) reports that 456 of the 500
fastest supercomputers in the world use the Linux operating sys-
tem, while only 6 run Windows. Thus, simulation models devel-
oped for use only on Windows can not be readily implemented
on most of the world’s fastest computers. Efforts to broaden a mod-
el’s applicability across a range of computing environments, specif-
ically Linux, will likewise broaden its versatility, usefulness, and
flexibility to function in a manner best suited for the modeling
application at hand.

With improvements in computing technology over the past few
decades, scientists are spending more time writing custom soft-
ware. However, a recent survey of 2000 researchers showed that
only 47% understood software testing protocols and only 34%
thought that formal training in software development was impor-
tant (Merali, 2010). Even corporate software giants have been crit-
icized, as Knusel (2005) lamented the persistent numerical
inaccuracies in statistical computations of Microsoft Excel. Simi-
larly, Keeling and Pavur (2007) compared nine software packages
for accuracy of statistical computations. Newer versions of the
tested software demonstrated substantial improvements as com-
pared to older versions, but they still found many areas where com-
monly used statistical packages could be improved. They concluded
that software testing studies resulted in improved numerical
robustness and reliability of statistical software. The same is very
likely true for simulation models, many of which have been devel-
oped by scientists and graduate students with little formal software
development training. The methodology presented herein provides
a software testing environment to compare the effects of source
code compilers and compiler settings on the numerical output of
simulation models. Because compilers are inherently different, we
propose a model development strategy that aims to minimize
numerical differences among different compilations of the same
model source code. Such efforts will broaden the model’s versatility
and reliability within a wider range of programming environments,
which is an important characteristic for model development in the
open-source paradigm.

As compared to traditional proprietary software development,
the open-source software phenomenon has radically altered how
software is developed and distributed (Hauge et al., 2010). Key dif-
ferences include the adoption of software licenses that freely pro-
vide source code to end users and the establishment of developer

communities whose members freely and collectively contribute
to the project. Mockus et al. (2002) hypothesized that successful
open-source software projects, such as Mozilla, have lower defect
density than commercial software, because several testing teams
have been established to maintain test cases and report defects.
They also hypothesized that a lack of resources devoted to finding
and repairing defects will ultimately lead to project failure. The
open-source paradigm offers great opportunity for future develop-
ment of simulation models, yet challenges and pitfalls clearly
abound. Systematic testing procedures, such as the methodology
presented herein, can facilitate open-source software development
by identifying defects and other areas for coding improvement and
by insuring model compatibility across a range of computing and
programming environments.

The Fortran code of the Cropping System Model (CSM), cur-
rently packaged with the Decision Support System for Agrotech-
nology Transfer (DSSAT), has been developed over several
decades by many agricultural scientists and their students (Jones
et al., 2003; Hoogenboom et al., 2010). Many of the developers
are self-taught programmers with minimal formal software devel-
opment training. Yet, the effort has resulted in a software product
that is used globally to address complex scientific problems, such
as global climate change, water and nutrient cycling, and risk
assessments for crop production (Boote et al., 1996, 2010; Tsuji
et al., 1998). Increasingly, applications of the DSSAT-CSM are com-
putationally intensive and iterative in nature, requiring hours or
days to complete the simulations. For example, iterative tech-
niques have been necessary for evaluation of precision nitrogen
fertilization strategies (Paz et al., 1999), for estimation of cultivar
coefficients (Anothai et al., 2008), and for assimilation of remotely
sensed leaf area index (Thorp et al., 2010). The DSSAT-CSM devel-
opment team recently decided to migrate the development of the
software to the constructs of an open-source software project
(Hoogenboom et al., 2011). Such action will provide a formal pro-
tocol for international collaboration on DSSAT-CSM development,
and it will formalize the copyright and licensing of DSSAT-CSM
to provide free access to the science contained within. However,
the developers must insure that the freedoms of going open-source
do not impair the scientific robustness of the product. These char-
acteristics make the DSSAT-CSM an excellent example case for
development and demonstration of our proposed methodology.

Our objective was to develop a methodology to compare the
performance of simulation models across a variety of programming
and computing platforms. Specifically, the methodology was used
to evaluate model performance for alternative configurations of
source code compilers and operating systems. Comparisons of
numerical accuracy and computational speed among various com-
piler and operating system combinations provided guidance for
improvement of model source code and suggested model imple-
mentation options that increase simulation speed. The methodol-
ogy was effectively demonstrated using the DSSAT-CSM as an
example case. Although the results of the analysis are necessarily
specific to the DSSAT-CSM, the methodology itself has broad appli-
cability to a wide range of simulation models and other software
tools used for agricultural and environmental applications.

2. Materials and methods
2.1. The DSSAT-CSM example

The Cropping System Model (ver. 4.5.1.005) is a set of Fortran
code that programatically synthesizes current knowledge of agro-
ecosystem functionality. The model utilizes mass balance principles
to simulate the carbon, nitrogen, and hydrologic processes and
transformations that occur within agroecosystems. Simulations of
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crop development and growth for over 25 crop species are possible.
The CSM calculates agroecosystem processes within a homoge-
neous area on a daily time step, and certain subprocesses are com-
puted hourly. Crop development proceeds through a series of
growth stages based on photothermal time or heat unit accumula-
tion from planting to harvest. Photosynthesis is computed using a
radiation use efficiency approach in the CERES family of crop
growth modules, including maize, wheat and other cereals. The
CROPGRO family of crop modules, including soybean, peanut, dry
bean, tomato, cotton, and many other crops, calculates leaf-level
photosynthesis using a hedge-row approach for light interception.
Assimilated carbon is partitioned to various plant parts, including
leaves, stems, roots, and grain. Simulated plant growth responds
to variation in management practices, cultivar selection, soil prop-
erties, and meteorological conditions. Management inputs required
for model execution include plant population, row spacing, seed
depth, planting dates, fertilizer application amounts and dates,
and irrigation application amounts and dates. Cultivar parameters
define day length sensitivity, heat units needed to progress through
growth stages, and growth potentials for specific plant parts. Soils
are defined by their water retention and conductivity characteris-
tics, bulk density, pH, and initial conditions for water, inorganic
nitrogen, and organic carbon. Daily inputs for minimum and
maximum temperature and solar radiation are required for Priest-
ley-Taylor calculations of evapotranspiration. Additional measure-
ments of dew point temperature and wind speed allow for
evapotranspiration calculations using FAO-56 methods. An energy
balance approach for evapotranspiration calculation is also avail-
able when using the CROPGRO implementation. The model simu-
lates plant stress effects from deficit and excess soil water
conditions and from deficit soil nitrogen conditions, which feed-
back on the daily plant growth simulation.

The CSM Fortran code is complex, having 185,611 lines in 323
files. It is usually compiled with the Intel Fortran compiler (Intel
Corporation, Santa Clara, CA) on a Microsoft Windows operating
system (Microsoft Corporation, Redman, Washington). It is distrib-
uted with the Decision Support System for Agrotechnology Trans-
fer (DSSAT) software (Hoogenboom et al., 2010), an agricultural
decision support system designed for use on Microsoft Windows.
DSSAT includes multiple software tools for creating input files for
the CSM simulation model, for creatively implementing the CSM
to answer agroecological questions, and for viewing and analyzing
output from the CSM. Most importantly for the present study,
DSSAT includes a broad set of management, cultivar, soil, and
weather input files, developed using data from field experiments
conducted around the world, for running all the various compo-
nents of the CSM. We used this set of input files to test CSM perfor-
mance for alternative Fortran compiler and operating system
configurations. We also used the CSM version that is currently
distributed with DSSAT 4.5, which was compiled with Intel Fortran
on a separate Microsoft Windows 7 machine, as the baseline for
comparison against our locally compiled CSM versions.

2.2. Computer hardware

To permit rapid testing of multiple operating systems, a cus-
tom-built desktop computer was used to conduct the simulations
for this study. The computer was equipped with a TYAN mother-
board (Tomcat K8E S2865, TYAN Computer Corporation, Taipei,
Taiwan) and the central processing unit (CPU) was a 2.01 GHz,
dual-core AMD Opteron (170, Advanced Micro Devices, Inc.,
Sunnyvale, California). Although a dual-core processor was avail-
able, the DSSAT-CSM code is not optimized for multi-core process-
ing. Any parallelization of model simulations is thus dependent on
the compiler and its settings. Four GB of random-access memory
(RAM) were installed in the system. A swappable hard drive rack

allowed for rapid, manual switching among hard drives, so multi-
ple operating systems could be tested on the same computer hard-
ware. Five identical 320 GB, serial ATA, internal hard drives
(Barracuda 7200, Seagate Technology LLC, Scotts Valley, California)
were placed in the trays designed for the swappable rack.

2.3. Operating systems

Five operating systems were installed on the hard drives. We
tested three versions of Microsoft Windows (Microsoft Corporation,
Redman, Washington), including Windows XP Professional (Service
Pack 3, 32-bit), Windows XP Professional x64 Edition (Service Pack
2, 64-bit), and Windows 7 Professional (64-bit). Two versions of
Linux operating systems, Linux Ubuntu (the Karmic Koala, ver.
9.10, 64-bit) and Linux Fedora (Sulphur, Release 9, 64-bit), were
also tested. All of these operating systems support multithreading
with a dual-core processor.

2.4. Photran under Eclipse

The Eclipse software (Helios, ver. 3.6; www.eclipse.org) was
used to manage the compilations of the CSM Fortran code. Eclipse
is an open-source software development platform that supports
open-source integrated development environments (IDE) for mul-
tiple programming languages, including Java, Fortran, C/C++, Py-
thon, and others. The strength of Eclipse lies in its plug-in
system, which is used to extend its functionality. An added advan-
tage for the present study was its availability for both Windows
and Linux operating systems.

Photran (ver. 6.0.3; www.eclipse.org/photran) is an IDE exten-
sion that provides a source code editor and debugging interface
for Fortran programming in Eclipse. Fortran 77, 90, 95, and 2003
code is supported. Photran utilizes makefile-based compilation,
so a makefile must be supplied to compile and build programs.
Photran invokes a ‘make’ utility, which subsequently invokes the
compiler commands within the makefile. Photran does not supply
the make utility or the Fortran compiler directly. This gives the
programmer flexibility to work with various Fortran compilers un-
der the same IDE. To work with the CSM Fortran code in the pres-
ent study, we installed the Photran IDE under Eclipse on each of the
five operating systems.

2.5. Fortran compilers

Several Fortran compilers were used to compile the CSM code in
this study. On the two Linux operating systems, we installed the
Intel Fortran compiler for Linux (Composer XE, ver. 2011.3.174, In-
tel Corporation, Santa Clara, CA), the open-source ‘g95’ Fortran
compiler (ver. 0.92; www.g95.org), and the open-source ‘gfortran’
compiler within the GNU compiler collection (ver. 4.5.1;
gcc.gnu.org). The GNU (GNU’s Not Unix, www.gnu.org) software
system has resulted from a mass collaborative software develop-
ment endeavor, ongoing since 1983, to provide an open-source,
Unix-like, computer operating system. The GNU compiler collection
(GCCQ)is one software package resulting from this collaboration. The
gfortran compiler within GCC resulted from a fork in development
of the g95 compiler in 2003. The g95 compiler is not included in the
GCC. The gfortran and g95 Fortran compilers have similar roots but
have diverged significantly since the fork in development.

On the three Microsoft Windows operating systems, we installed
the Intel Fortran compiler for Windows (Professional Edition, ver.
2011.1.127, Intel Corporation, Santa Clara, CA), the open-source
‘gfortran’ compiler distributed with MinGW (Minimalist GNU for
Windows, ver. 20100909; www.mingw.org), and the open-source
‘g95’ compiler built for use with MinGW (www.g95.org). An instal-
lation of Microsoft Visual Studio 2008 (Microsoft Corporation,
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Redman, Washington) was a prerequisite for installing the Intel
Fortran compiler on the Windows operating systems. We installed
Visual Studio, but still used Photran under Eclipse to manage the
Intel compiler. To implement the g95 and gfortran compilers on
Windows, we installed MinGW on each Windows operating system.
MinGW contains several open-source GNU software components,
including the GCC, the GNU make utility, and GNU binutils, for com-
piling code in multiple programming languages. Additionally,
MinGW exploits the standard Microsoft system DLL files to provide
the C-runtime and Windows application programming interface
(API). Thus, MinGW provides a completely open-source program-
ming tool set for development of native Microsoft Windows applica-
tions that do not depend on third party C-runtime DLLs.

2.6. Compiler options

Each Fortran compiler has many options for controlling how
programs are assembled, which ultimately determines the perfor-
mance of the program in terms of numerical accuracy and compu-
tational speed. Most of the options were unique to each compiler,
although desired effects of particular options were theoretically
equivalent. For example, an important consideration is how the
program should handle floating point exceptions: what should
the program do if there is an attempt to divide by zero or take
the square root of a negative number? In the distribution version
of the DSSAT-CSM, the ‘/fpe:0’ compiler flag in Intel Fortran is used
to halt processing in case of overflow, divide-by-zero, and invalid
floating point exceptions. In case of underflow or denormal num-
bers, the result is set to zero. We attempted to set compiler flags
for g95 and gfortran to mimic the effect of the ‘/fpe:0’ compiler flag
in Intel Fortran. For the primary simulation scenarios (Table 1), the
three compilers were invoked within the makefiles using the fol-
lowing commands for Intel, g95, and gfortran, respectively:

o ifort -fpe0 -02 -c -0 (obj) (src)

e 295 -02 -c -0 (obj) (src)

e gfortran -fd-lines-as-comments
flow -02 -c -0 (obj) (src)

-ffpe-trap=invalid,zero,over-

where (obj) is the name of the object file and (src) is the name of
the source file. The Linux-style form of the Intel floating point han-
dling flag (‘-fpe0’) was required even on the Windows operating

Table 1
Summary of primary simulation scenarios to compare various Fortran compilers and
operating systems.”

Identifier Compiler Operating system

D45" -XP32 Intel Fortran Windows XP

D45-XP64 Intel Fortran Windows XP x64 Edition
D45-WIN7 Intel Fortran Windows 7

INT-XP32 Intel Fortran Windows XP

INT-XP64 Intel Fortran Windows XP x64 Edition
INT-WIN7 Intel Fortran Windows 7

INT-UBUN Intel Fortran Linux Ubuntu 9.10
INT-FEDO Intel Fortran Linux Fedora 9
G95-XP32 295 Windows XP

G95-XP64 g95 Windows XP x64 Edition
G95-WIN7 95 Windows 7

G95-UBUN £95 Linux Ubuntu 9.10
G95-FEDO 95 Linux Fedora 9
GFT-XP32 gfortran Windows XP

GFT-XP64 gfortran Windows XP x64 Edition
GFT-WIN7 gfortran Windows 7

GFT-UBUN gfortran Linux Ubuntu 9.10
GFT-FEDO gfortran Linux Fedora 9

2 All primary scenarios were implemented from the hard disk drive with anti-
virus disabled, strict floating point handling enabled, and a compiler optimization
setting of ‘-02.

" Indicates the compiled model distributed with DSSAT 4.5.

systems, because Eclipse used the MinGW libraries to compile
the model. For gfortran, the ‘-fd-lines-as-comments’ flag instructed
the compiler to treat debug lines (‘D’ in the first column) as com-
mented lines, and the ‘-ffpe-trap’ flag dictated the floating point
exceptions on which the program should halt. With gfortran,
options were set to halt processing on overflow, invalid operations,
and division by zero. We did not identify an option for flushing
denormal numbers and underflows to zero with the gfortran com-
piler. Instead of using compiler flags, floating point exceptions with
the g95 compiler are handled at run-time using environment vari-
ables. We set the g95 environment variables such that the program
would halt on overflow, invalid operations, and division by zero
and would flush denormal numbers to zero. We explicitly set the
optimization flag (‘-O2’) to be identical for each compiler, since
the default optimization flag varied among them. Additional simu-
lation scenarios (Table 2) tested the effects of setting alternate
values for the optimization and floating point handling flags.

2.7. Simulation study

A simulation study was performed for the various combinations
of operating system and Fortran compiler. For each tested combi-
nation, we ran all the sample scenarios that are distributed with
DSSAT 4.5. A total of 773 simulations were conducted for each
combination of compiler and operating system (Table 1). Batch
files were created to run all the sample scenarios for each crop type
(Table 3). After each set of batch simulations, we extracted from
the file output the simulation results for anthesis date (ADAT),
physiological maturity date (MDAT), and maximum leaf area index
(LAIX). These outputs were used as indicators to address the
numerical accuracy of crop phenology and leaf area development
simulations. We also extracted the output for canopy weight at
maturity (CWAM) and cumulative evapotranspiration at maturity
(ETCM). These two outputs were used as indicators of numerical
accuracy in the biomass growth and hydrologic components of
the model. Evaluating CWAM instead of grain yield allowed us to
compare across the full suite of DSSAT-CSM crop modules, some
of which do not produce grain yield outputs. Evaluating ETCM as-
sessed the water balance in the pathway most likely to have the
largest water fluxes. Any differences in the water balance simula-
tion would likely cause discrepancies in the nitrogen balance as
well. Together, ADAT, MDAT, LAIX, CWAM, and ETCM provided a

Table 2

Summary of secondary simulation scenarios to test specific conditions, including
antivirus status, floating point handling options, optimization settings, and usage of
random-access memory (RAM) disks.?

Identifier Compiler Operating system Test condition
INT-XP32-AV Intel Fortran ~ Windows XP Antivirus on
INT-XP64-AV Intel Fortran ~ Windows XP x64 Edition  Antivirus on
INT-XP32-FH Intel Fortran ~ Windows XP No ‘~fpe0’
INT-XP64-FH Intel Fortran ~ Windows XP x64 Edition = No ‘-fpe0’
INT-WIN7-FH Intel Fortran ~ Windows 7 No ‘~fpe0’
INT-XP32-0d Intel Fortran ~ Windows XP ‘-0d’ flag
INT-XP32-01 Intel Fortran ~ Windows XP ‘-01’ flag
INT-XP32-03 Intel Fortran ~ Windows XP ‘-03’ flag
G95-XP32-00  g95 Windows XP -00’ flag
G95-XP32-01  g95 Windows XP ‘-01’ flag
G95-XP32-03  g95 Windows XP ‘-03’ flag
GFT-XP32-00  gfortran Windows XP -00’ flag
GFT-XP32-01 gfortran Windows XP ‘-01’ flag
GFT-XP32-03 gfortran Windows XP ‘-03’ flag
INT-XP32-RD Intel Fortran ~ Windows XP RAM disk
G95-XP32-RD  g95 Windows XP RAM disk
GFT-XP32-RD  gfortran Windows XP RAM disk

2 Unless noted otherwise, scenarios were implemented from the hard disk with
antivirus disabled, strict floating point handling enabled, and a compiler optimi-
zation setting of ‘-02.’
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Table 3
Number of simulations for each crop type included in the
primary scenario simulations.?

Crop Count
Bahia grass 23
Barley 13
Brachiaria 24
Cabbage 31
Cassava 16
Chickpea 36
Cotton 5
Cowpea 15
Dry bean 65
Faba bean 6
Fallow 12
Green bean 5
Maize 58
Millet 6
Peanut 63
Pepper 5
Potato 14
Rice 39
Sorghum 6
Soybean 255
Sugar cane 16
Sweet corn 10
Tomato 10
Velvet bean 12
Wheat 28
Total 773

2 Definitions of primary scenarios are found in Table 1.

well-rounded assessment of numerical performance for the com-
plete cropping system simulation. For each batch simulation, we
used the computer clock to measure the simulation duration. This
provided an estimate for the computational speed of the model for
the alternative compiler and operating system configurations.
These activities were managed using a Python script within the
Eclipse IDE on each operating system.

All primary simulation scenarios were implemented from the
hard disk drive with antivirus software disabled, strict floating
point handling enabled, and a compiler optimization setting of
‘-02.” Several secondary simulation scenarios were subsequently
designed to test the effect of these characteristics on numerical
accuracy and computational speed (Table 2). First, since antivirus
software is known to require substantial computer resources and
reduce performance of other programs, we conducted the simula-
tions with an enabled antivirus program (Symantec Endpoint
Protection, ver. 11.0.6005.562, Mountain View, California) using
the model compiled with Intel Fortran on two of the Windows
operating systems. Second, we included three scenarios using the
Intel Fortran compiler without the ‘-fpe0’ floating point handling
flag. These simulations were conducted on the three Windows
operating systems. Third, we tested the effect of compiler optimi-
zation settings with the Intel, g95, and gfortran compilers on the
Windows XP system. Each compiler had four optimization levels
from ‘-00’ to ‘-03.” For Intel, the ‘-O0’ optimization level was in-
stead ‘-Od.’ Optimization allows the compiler to alter the code to
make it faster, although numerical calculations may be affected
in subtle ways and the details of optimization implementation
may differ among compilers. Fourth, we used RAM disk software
(RAMDisk ver. 3.5.130, DATARAM, Princeton, NJ) to establish a
2.5 GB system drive in RAM on Windows XP. The model executable
file, input files, and batch files were then copied to the RAM drive,
and simulations were conducted to test the effect of RAM disks on
computational performance. These additional scenarios provided
further understanding of model performance as affected by factors
known to influence numerical processing and computational
speed.

In a final test, sequential simulations with the CSM-CROPGRO-
Soybean model were used to assess the effect of simulation length
(number of years) on computational speed. Since the model acces-
ses the weather file information only periodically during sequen-
tial simulations, we expected different results depending on the
simulation length. Thirty-five iterations of this test were conducted
to assess variability in computational speed. These CSM-CROPGRO-
Soybean simulations were also used to test the effect of full versus
minimum file output on computational speed. We used this ap-
proach to understand differences in file system efficiency among
the operating systems.

3. Results and discussion
3.1. Numerical accuracy

Among all of the primary scenarios, simulation results for ADAT,
MDAT, and LAIX were identical regardless of the Fortran compiler
or operating system used (results not shown). For CWAM and
ETCM, 94% of the 773 total simulations were identical (Table 4).
Differences for CWAM and ETCM were more frequent among dif-
ferent compilers, because these model outputs were obtained from
daily integration of canopy weight gains and evapotranspiration
losses. Differences in floating point handling among compilers
sometimes resulted in different CWAM and ETCM values as the
model accumulated the daily fluctuations in mass flows.

Various groups of configurations provided identical results
among themselves. For example, all simulations with the DSSAT
4,5 distribution version of the model gave identical results for
CWAM and ETCM regardless of the Windows operating system
used. Simulations with the model compiled in-house using the In-
tel Fortran compiler for Windows were also identical to the DSSAT
4.5 distribution version, regardless of the Windows operating
system. When comparing the Intel Fortran compiler on Windows
versus Linux operating systems, 13 simulations of CWAM and 4
simulations of ETCM were different. This was likely due to the dif-
ference in Intel compiler versions that we obtained for Windows
and Linux. Simulations with the g95-compiled model were identi-
cal among the three Windows operating systems; however, 76
simulations of CWAM and 8 simulations of ETCM were different
as compared to the DSSAT 4.5 distribution version of the model.
This highlighted differences in the way the g95 and Intel Fortran
compilers were interpreting the code on the Windows operation
system. In comparing results for the g95 compiler between Win-
dows and Linux operating systems, there were 71 differences in
CWAM and 7 differences in ETCM. However, results were identical
for simulations with the g95-compiled model on the Linux Ubuntu
and Linux Fedora operating systems. Similar to g95, simulations
with the gfortran-compiled model were identical on the three
Windows operating systems, but differences were noted in com-
paring gfortran on Linux versus gfortran on Windows. These differ-
ences are likely due to the fact that the both the gfortran and g95
compilers are built and distributed uniquely for Windows and
Linux operating systems. Since we had to download separate
installation files for g95 and gfortran depending on whether it
was for a Linux or a Windows operating system, there was no
way to ensure that the two versions of each compiler were in fact
identical. On the two Linux operating systems, both the g95-com-
piled model and the gfortran-compiled model gave identical re-
sults for CWAM and ETCM. Nevertheless, there were still a few
differences between the simulations on Linux and the simulations
with the DSSAT 4.5 distribution version of the model on Windows.

Of all the model outputs evaluated, CWAM typically had
the greatest number of differing results among the operating
system and Fortran compiler configurations. For a majority of the
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Table 4

Number of simulations (out of 773 total) having different values for canopy weight at maturity (CWAM; upper right section) and cumulative evapotranspiration at maturity

(ETCM; lower left section) for the primary simulation scenarios.?

D45-XP32 INT-XP32 INT-UBUN INT-FEDO G95-XP32 G95-UBUN G95-FEDO GFT-XP32 GFT-UBUN GFT-FEDO

D45-XP32° - 0 13 13 76 38 38 78 38 38
INT-XP322 0 - 13 13 76 38 38 78 38 38
INT-UBUN 4 4 - 0 80 43 43 81 43 43
INT-FEDO 4 4 0 - 80 43 43 81 43 43
G95-XP32° 8 8 8 8 - 71 71 32 71 71
G95-UBUN 7 7 9 9 7 - 0 73 0 0
G95-FEDO 7 7 9 9 7 0 - 73 0 0
GFT-XP32° 7 7 9 9 2 6 6 - 73 73
GFT-UBUN 7 7 9 9 7 0 0 6 - 0
GFT-FEDO 7 7 9 9 7 0 0 6 0 -

¢ Definitions of primary scenarios are found in Table 1.
b Identical results for all three Windows operating systems.

simulations with differences, the deviation in CWAM did not exceed
2 kg ha . Considering that CWAM values often exceed 5000 kg ha !
and considering the likelihood of other causes for uncertainty in
model simulations, this deviation due to compiler or operating sys-
tem factors was of minor concern. For 10 of the 773 total simula-
tions, deviations in CWAM were greater than 10 kg ha™!, and the
maximum deviation was 213 kg ha~!. These larger deviations were
confined to simulations for wheat, barley, bahia grass, and brachia-
ria. By examining the behavior of the model state variables that ulti-
mately determine CWAM, we were able to identifying poor coding
practices, explained below, that led to the larger CWAM deviations
for these crops. Coding modifications and improvements that elim-
inate these discrepancies will ensure the robustness of the model
and increase confidence for its use on a wider range of computer
platforms.

As shown by our secondary simulation scenarios, numerical
accuracy was not affected by antivirus status or RAM disk usage
(Table 5). However, when the Intel compiler was used to compile
the model without the floating point handling option (‘-fpe0’) on
Windows, 14 simulations of CWAM and 5 simulations of ETCM
were different from the corresponding simulations with ‘-fpe0’ en-
abled. This highlights the importance of the ‘-fpe0’ compiler option
to appropriately handle floating point exceptions during model
simulations. Results also demonstrated numerical discrepancies
depending on the optimization flag used with the Intel, g95, and

Table 5

Number of simulations (out of 773 total) having different values for canopy weight at
maturity (CWAM) and cumulative evapotranspiration at maturity (ETCM) for each
secondary scenario as compared to its corresponding primary scenario.?

Test CWAM ETCM
INT-XP32-AV 0 0
INT-XP64-AV 0 0
INT-XP32-FH 14 5
INT-XP64-FH 14 5
INT-WIN7-FH 14 5
INT-XP32-0d 37 8
INT-XP32-01 37 7
INT-XP32-03 3 0
G95-XP32-00 62 8
G95-XP32-01 29 1
G95-XP32-03 0 0
GFT-XP32-00 67 6
GFT-XP32-01 37 3
GFT-XP32-03 21 4
INT-XP32-RD 0 0
G95-XP32-RD 0 0
GFT-XP32-RD 0 0

2 Definitions of primary and secondary scenarios are found in Tables 1 and 2,
respectively.

gfortran compilers. Usage of an ‘-O3’ optimization flag provided
identical results to the ‘-02’ flag with the g95 compiler and re-
sulted in only three problematic CWAM simulations for the Intel
compiler. More discrepancies were found with gfortran at the
‘-03’ optimization level. When ‘-00’, ‘-Od’ or ‘-O1’ optimization
was used, there were from 29 to 67 CWAM simulations and from
1 to 8 ETCM simulations with numerical discrepancies for all three
compilers as compared to ‘-02’ optimization. Not only are simula-
tion results compiler dependent (Table 4), but they are also depen-
dent on the compiler options used (Table 5). Thus, to maintain
confidence in the numerical accuracy and repeatability of simula-
tion results when a simulation model goes open-source, software
development efforts must focus on minimizing the numerical
discrepancies that result from alternative compilations of the mod-
el. At a minimum, model developers must provide the makefiles or
communicate the compiler options they use for rigorous model
evaluation against field data. This highlights a major difference be-
tween open-source simulation models and other open-source soft-
ware projects, where the details of numerical processing are not as
critical in light of the software’s overall purpose.

3.2. Computational speed

Table 6 provides the list of primary simulation scenarios sorted
by mean computational speed (simulations s~!). With average
speeds of 8.3 simulations s~! and above, simulations were fastest
when compiled with the Intel Fortran compiler and run on a Linux
operating system. Relatively quick performance, 6.7 simula-
tions s~! on average, was also obtained with the g95 compiler on
Linux. The Intel Fortran compiler generally provided the fastest
model for Windows operating systems with speeds around
6.0 simulations s~ . In particular, the more recent Windows 7 oper-
ating system offered an advantage over the two Windows XP oper-
ating systems. Compiling with g95 on Windows offered a clear
speed advantage over compiling with gfortran on Windows. It is
interesting to note that simulations with the DSSAT 4.5 distribu-
tion version of the model on Windows were slower than the ver-
sions of the model that we compiled in-house using an identical
Intel compiler. These differences may be caused by internal set-
tings of the Intel compiler that optimize the code for the particular
machine on which it is compiled. Simulations with the gfortran-
compiled model under MinGW on all three Windows operating
systems were substantially slower than other compiler and operat-
ing system combinations.

Minimizing the number of output files written to the hard drive
increased computational speed by an average of 9.8 simulations s~!
across all primary scenarios (Table 6). With full file output, simula-
tions on the Linux operating systems were clearly faster than those
on the Windows operating systems. With minimum file output,
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Table 6
Computational speed (simulations per second) for the primary simulation scenarios.”

All simulations

CROPGRO only®

Full Minimum
Mean (sim s~ 1) Min (sim s~1) Max (sim s ') Output (sim s~ 1) Output (sim s~ 1)
INT-UBUN 9.0 2.5 34.8 129 21.6
INT-FEDO 8.3 23 31.8 11.8 211
G95-FEDO 6.8 2.1 225 10.9 159
G95-UBUN 6.7 2.1 235 10.8 15.8
INT-WIN7 6.4 1.8 183 5.7 19.9
INT-XP32 5.8 19 20.7 5.5 20.5
GFT-UBUN 5.7 1.5 23.0 8.5 16.0
G95-WIN7 5.7 1.7 17.7 6.7 14.6
D45-WIN7 5.6 1.7 16.6 5.4 17.2
G95-XP32 5.6 1.7 19.1 6.9 15.0
INT-XP64 5.2 14 19.1 4.3 20.3
G95-XP64 5.0 1.7 17.9 4.7 15.0
GFT-FEDO 5.0 13 21.6 7.5 15.2
D45-XP32 43 13 14.6 49 17.2
D45-XP64 4.1 1.2 14.6 4.6 16.3
GFT-WIN7 2.1 0.6 10.0 2.9 11.6
GFT-XP32 2.0 0.5 11.7 3.0 119
GFT-XP64 1.7 0.5 9.9 2.8 11.7
@ Definitions of primary scenarios are found in Table 1.
b Simulations were conducted with the CSM-CROPGRO-Soybean model.
computational speed on Linux did not more than double. However, Table 7

with minimum file output on the Windows operating systems,
computational speed more than tripled in many cases. This sug-
gests that the Linux operating systems managed file access more
efficiently than the Windows operating systems. With minimum
file output, simulations with the Intel Fortran compiler were over
5.0 simulations s~ faster than simulations with the g95 or gfortran
compilers on the same operating system. This further supports the
idea that the Intel Fortran compiler may internally optimize the
code for the particular machine on which it is compiled. For the In-
tel models compiled without the ‘-fpeQ’ flag, the computational
speeds were more comparable to that for g95 and gfortran (not
shown). Thus, the ‘-fpe0’ flag itself may be responsible for the opti-
mized performance. When disk access was minimal, this was an
advantage because CPU and RAM characteristics likely governed
the speed of computation, and the code may have been optimized
for those characteristics. However, when the model required full
disk access, the less efficient disk handling of the Windows operat-
ing system overrode any advantage gained by optimizing to the
specific machine. This highlights the need to understand the effects
of compiler options on the computational speed of software pro-
grams. Finally, the frequency with which a software program acces-
ses the file system is of greater concern on Windows than on Linux.

The change in computational speed for each secondary simula-
tion scenario as compared to its corresponding primary scenario is
given in Table 7. As expected, running the model with antivirus
enabled reduced simulation speed as compared to simulations
with antivirus disabled. An average speed reduction of 1.7 simula-
tions~! was observed. Removing the floating point handling flag
(‘-fpe0’) with the Intel compiler resulted in slower code by about
1.0 simulations s~' as compared to the Intel model with ‘-fpe0’ en-
abled. Likewise, the ‘-02’ optimization flag produced the fastest
code with all three compilers, because use of other optimization
flags tended to reduce computational speed. Fig. 1 shows the mean
computational speed for model simulations on Windows XP using
the four optimization settings for each of the three compilers. For
Intel and g95, the ‘-02’ optimization flag provided the fastest sim-
ulations. For gfortran, the optimization flag did not have a large im-
pact on speed, which may indicate limitations of the gfortran
compiler when used under MinGW on Windows.

Since file output substantially reduced computational speed on
the Windows systems (Table 6), we implemented a RAM disk as

Change in mean computational speed (simulations per
second) for each secondary scenario as compared to its
corresponding primary scenario.?

Test A Speed
INT-XP32-AV -1.7
INT-XP64AV -1.7
INT-XP32-FH -1.2
INT-XP64-FH -0.8
INT-WIN7-FH -0.9
INT-XP32-0d -1.8
INT-XP32-01 -0.3
INT-XP32-03 -0.1
G95-XP32-00 -0.7
G95-XP32-01 -0.4
G95-XP32-03 -0.4
GFT-XP32-00 -0.1
GFT-XP32-01 +0.1
GFT-XP32-03 -0.1
INT-XP32-RD +1.0
G95-XP32-RD -0.7
GFT-XP32-RD -0.4

2 Definitions of primary and secondary scenarios are
found in Tables 1 and 2, respectively.

an alternative method to reduce hard drive access. For the Intel
compiler on Windows XP, use of a RAM disk increased mean com-
putational speed by 1.0 simulations s~! (Table 7), and computa-
tional speed for full output simulations was increased by
4.1 simulations s~! (not shown). These increases made the Intel
simulations on Windows XP competitive with g95 simulations on
Linux (Table 6). Again, the speed increase may be related to the
‘-fpe0’ compiler flag optimizing the code specifically for RAM char-
acteristics, such that simulations on a RAM disk would be expected
to improve. Simulations with g95 or gfortran on a Windows RAM
disk did not improve computational speed as compared to simula-
tions from the hard drive. Implementation of RAM disks offer some
computational advantages for the Intel compiler on Windows sys-
tems. However, it may be quite impractical to reinitialize the
RAM disk and reload the model and associated input files each time
the computer is restarted. Using the Intel compiler on Linux sys-
tems offers greater computational advantages than using Intel with
RAM disks on Windows.
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Fig. 1. Mean computational speed (simulations per second) of the DSSAT-CSM
when compiled using four optimization settings with the Intel Fortran, g95, and
gfortran compilers on Microsoft Windows XP.

Simulations of continuous cropping sequences for varying num-
bers of years illustrated additional issues affecting simulation
speed (Fig. 2). Results are given for 35 iterations of the model com-
piled with Intel Fortran on Windows XP (INT-XP32). Simulations
that specified minimal output to the hard drive were again sub-
stantially faster than those with full output. The standard deviation
in computational speed among the 35 iterations for a given simu-
lation length was not greater than 1.3 simulations s~!, indicating a
consistent performance no matter if full or minimum output was
specified. These results further support the expectation that mini-
mum output simulations are limited mainly by CPU and RAM per-
formance characteristics. Slower computational speed for full

25 1
“n 0000000
[7,]
c L 2
o PO 4
2 204 ¢ T34
ki o**
3 L 4
£
«2
b o] 15 .
g A Full Output
a Min O
© ¢ Min Output
£ 10 - P
.0
=}
©
5 A
o A A
g ./ a A“A AAA AAAAAL A A A
S
=
©
()
E 0 T T T T T T 1

0 10 20 30 40 50 60 70
Simulation Length (years)
Fig. 2. Mean computational speed (annual simulations per second) versus the

number of years of sequential simulations for 35 iterations with the DSSAT-CSM
compiled with Intel Fortran on Microsoft Windows XP.

output simulations indicate a dependence on slower computer sys-
tem processes, particularly hard drive accessibility.

Minimizing simulation output resulted in computational speeds
that followed a cumulative exponential distribution function as the
simulation length increased from 2 to 22 years. Since the model
reads multiple years of weather data at a time, there was an initial
expense to accomplish this task. As the simulation length in-
creased, there was a gradual increase in computational speed per
simulation year because the weather data for the additional years
had already been loaded in RAM. After 22 years, computational
speed decreased, because the model had to fetch an additional
block of weather data from the hard drive. Simulations with full
output did not demonstrate a trend in computational speed with
simulation length. Repeated hard drive access limited the speed
of the full output simulations rather than any effect of the simula-
tion length.

3.3. Lessons learned

The methods presented herein demonstrate a strategy for eval-
uating the performance of simulation models to prepare them for
implementation using diverse compilers on multiple operating
systems. The strategy has been used to improve the programming
style, portability, robustness, and flexibility of the DSSAT-CSM.
Several years ago, this study was initiated out of the lead author’s
desire to compile the DSSAT-CSM with open-source Fortran com-
pilers and to utilize the DSSAT-CSM on Linux operating systems.
Since DSSAT-CSM was not developed for use in these environ-
ments, neither gfortran nor g95 would compile the model, and
both identified multiple errors throughout the code. Over a period
of weeks, the lead author modified the code to address the issues
deemed problematic by g95 and gfortran. Many of the issues in-
volved the use of functions that were intrinsic to the Intel Fortran
compiler, such as the end-of-file (EOF) function for testing whether
a file pointer was at the end of a file. The EOF function was not
intrinsic to g95 or gfortran and thus caused an error at compile
time. As another example, the Intel compiler interpreted argu-
ments for the ‘GETARG’ function, which is used to read command
line arguments, differently than g95 and gfortran. The g95 com-
piler also halted compilation when the code specified the use of
a REAL variable as the index for control structures (‘DO’ loops),
while the Intel compiler permitted this practice. The simple solu-
tion was to change the data type for the control structure index
variable to INTEGER. Another issue was the preference of the g95
compiler to have parentheses around negative exponents and ne-
gated variables. To address these and other issues, the code was
modified in a way that would satisfy multiple compilers without
affecting the overall functionality of the code. The result was a
more portable and more versatile DSSAT-CSM.

In addition to detecting errors at compile time, software testing
with multiple compilers is useful for detecting coding bugs at run
time. For example, one of the simulations in the present study pro-
duced an access violation with the g95-compiled model but not
with the Intel-compiled model. We were able to track the problem
to a module that had not implemented the SAVE command. As a
result, one of the array index variables was not properly saved,
and this caused an exception when the model tried to access mem-
ory beyond the allocated bounds of the array. Another run-time er-
ror occurred when the g95-compiled model attempted to read a
single decimal point (*.") from a model input file as a REAL variable.
Such an operation was permissible with the Intel-compiled model,
but not with the g95-compiled model. The solution was to modify
the input file to contain actual real numbers, such as ‘-99’ (for
missing value) or ‘0.0’ as appropriate. These examples further sup-
port the value of using multiple compilers to improve the portabil-
ity, accuracy, and versatility of simulation models. In particular, we
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found the g95 compiler to be substantially less forgiving than the
Intel compiler. If the objective is to produce robust, versatile code,
we deem this a positive quality.

Even when multiple compilers successfully compiled the code
and the model was able to run without error, further areas for cod-
ing improvement were identified when comparing the simulation
results for different compiled versions of the model (Table 4). As
an example, we tracked the crop growth state variables for the
simulation that resulted in the largest difference in CWAM
(213 kg ha™!) between the Intel- and g95-compiled versions of
the model on the 32-bit Windows XP operating system. This issue
occurred in the wheat growth module of the DSSAT-CSM. The root
of the problem was identified in the leaf weight state variable
(LFWT), which gives the weight of leaves on an individual wheat
plant each day and was typically less than 2.0 g plant™! for this
particular wheat growth simulation. Several coding issues were
identified in conditional ‘IF’ statements where the LWFT variable
was evaluated against quantities such as ‘0’, ‘0.0’, or ‘0.000001".
Due to differences in handling of floating point values between
the compilers, some of these conditional statements were evalu-
ated differently, thus resulting in different daily calculations of leaf
weight. The problem was exacerbated by the fact that LFWT typi-
cally held a relatively small positive real number, such that differ-
ences in LFWT at the sixth to eighth decimal place had greater
effect on the overall simulation. These differences were magnified
by the nature of the model to add or subtract small amounts of
mass to the LFWT variable repeatedly on a daily basis over the
wheat growing season. Since the model uses the leaf weight of
an individual wheat plant (LFWT) to scale up to CWAM (kg ha™!)
based on the planting density, it is easy to understand how a
CWAM discrepancy of 213 kg ha~! is possible without careful float-
ing point accounting in the LFWT state variable. One solution may
be to discontinue the use of the REAL data type in the DSSAT-CSM
code and instead define all floating point variables as DOUBLE PRE-
CISION. This should eliminate differences in the way separate com-
pilers handle the REAL data type. Use of multiple compilers can
help to identify and correct poor coding practices that create model
output variability that is solely compiler dependent. To maintain
robustness of computer code used for scientific purposes, research-
ers and model developers must strive to minimize such problems,
especially when model users have reason to implement the model
with diverse compilers on multiple operating systems. The meth-
odology presented herein can be used for this purpose.

Further suggestions for improvement of the DSSAT-CSM arose
from its implementation on Linux operating systems. The main is-
sue was the case sensitivity of the Linux file system, whereas the
file system of Windows operating systems is not case sensitive.
To run the model on the Linux systems, we had to insure that there
were no case discrepancies between the file name strings gener-
ated in the code and the actual file name in the file system. The
easiest way to handle this problem was to change the file name
in the file system to match what the model expected. This is an-
other important consideration to ensure model compatibility be-
tween Windows and Linux.

4. Conclusions

We have demonstrated a methodology for evaluating simula-
tion models using various compilers on multiple operating sys-
tems. Using the DSSAT-CSM as an example case, we showed how
the methodology can be used to broaden the model’s applicability
within multiple programming and computing environments, an
important precursor to model development within the open-
source paradigm. The methodology was also useful for improving
model code to reduce numerical discrepancies between compilers

and for identifying model implementation strategies that increase
computational speed. Although the results focus specifically on the
DSSAT-CSM, we believe the following methodology is applicable
for improving the robustness and performance of other simulation
models and software tools:

e Design a desktop computer system with a swappable hard drive
rack to facilitate rapid testing of multiple operating systems.

e Use the Eclipse integrated development environment to identi-
cally manage diverse compilers on various operating systems.

e Assess model performance with multiple compilers and operat-
ing systems for your model and programming language of
choice.

e Track model state variables that are regularly incremented by
small floating point values to address issues of floating point
handling and numerical accuracy between compilers.

e Improve the model code to reduce numerical differences result-
ing from alternate compilations.

This basic approach can be used to guide model development toward
reliable implementation in multiple software environments.

For scientists who pursue computationally intensive modeling
applications, our methodology can be used to facilitate model
implementation in both Windows and Linux environments. This
offers several computational advantages, such as faster perfor-
mance on Linux desktop machines and ability to implement the
model on Linux-based high performance computing clusters. For
researchers who lack access to advanced computing systems, the
following considerations will likely increase simulation speed on
standard desktop computers:

e Minimize read and write operations to the hard drive, especially
on Windows operating systems.

e Disable antivirus programs and other programs that interrupt
disk access.

e Use strict floating point handling to halt programs on floating
point exceptions.

o Implement Fortran programs with the Intel Fortran compiler on
a Linux operating system.

The real value of testing simulation models with different compil-
ers and operating systems is its ability to facilitate model imple-
mentation by a broader audience and for a wider range of
computer environments. These assessments are readily extended
to examine issues related to computational speed, which may
identify bottlenecks that would not be anticipated by most users.
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