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Abstract: This article reviews procedures for estimating surface storage in surface irrigation volume balance calculations. Those procedures
are based on the assumption of a power law relationship for flow depth as a function of distance along the stream. The analysis uses zero-
inertia simulation and a system of dimensionless variables to examine how the depth profile varies as a function of hydraulic conditions when
infiltration is given by the empirical extended Kostiakov equation. Alternatives for approximating the exponent of the depth profile power law
(β) are suggested. The magnitude of the resulting errors relative to zero-inertia model predictions is quantified. Results show that the range of
variation for the parameter β increases with field slope, with increasing advance length relative to the maximum advance distance, and when
infiltration rates are relatively constant with time during the irrigation event. Estimating β as a function of advance distance is most chal-
lenging under these conditions. Potentially large errors in the determination of β do not undermine the proposed procedures when the surface
volume represents only a small fraction of the applied volume. Users of volume balance procedures need to be aware of conditions in which
uncertain surface volume calculations can lead to potentially large volume balance errors and, thus, in which results need to be interpreted
carefully. DOI: 10.1061/(ASCE)IR.1943-4774.0000461. © 2012 American Society of Civil Engineers.
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Introduction

Volume balance calculations used in surface irrigation analyses es-
timate surface storage Vy at a given time t [T] as follows:

VyðtÞ ¼ σy · A0ðtÞ · xAðtÞ ð1Þ

In Eq. (1), A0½L2� = upstream flow area; σy [dimensionless] = shape
factor that relates the average flow area to A0; and xA½L� = distance
advanced by the stream. The equation applies to the advance phase
of the irrigation and to the runoff phase in open-end systems.
Typical applications of Eq. (1) assume normal depth to compute
A0 and a constant σy, typically a value in the range 0.7–0.8. Those
assumptions can lead to substantial errors because both the
upstream depth y0 and σy are functions of the unsteady flow.
The volume balance model and its limitations is discussed in
Strelkoff and Clemmens (2007).

Valiantzas (1993) proposed the following expression for evalu-
ating y0 (and, thus, A0) in border irrigation

� β
y0
xA

¼ S0 �
q20 n2

c2u y10∕30

ð2Þ

Eq. (2) was derived by combining the following equations and
evaluating the resulting expression at x ¼ 0

∂y
∂x ¼ Sf � S0 ð3Þ

yðxÞ ¼ y0ð1� x∕xAÞβ ð4Þ

Sf ¼
q20n

2

y10∕3c2u
ð5Þ

Eq. (3) is the zero-inertia equation (Strelkoff and Clemmens 2007),
which is a statement of balance between the pressure gradient force
(represented by the depth gradient ∂y∕∂x), the weight component
of the fluid acting in the direction of flow (represented by the field
bottom slope S0½L∕L�), and the friction force (represented by the
friction slope Sf ½L∕L�). Eq. (4) is an empirical power relationship
for flow depth y½L� as a function of distance x½L� along the stream.
Eq. (5) is the Manning hydraulic resistance equation (for a channel
of unit width). Other variables are y0 = upstream flow depth [L];
β = power law exponent [-]; q0 = inflow rate per unit width ½L3∕L�;
n = Manning roughness coefficient [L1∕6]; and cu = units
coefficient, 1.0 in the metric system and 1.486 in the English sys-
tem. For S0 > 0, Eq. (2) approximates the normal depth with in-
creasing xA.

Valiantzas (1993) also recognized that integration of Eq. (4) as a
function of distance leads to an expression for Vy and, hence, for
σyðxAÞ. Therefore, for borders and basins

VY ¼ W
Z

x¼xA

x¼0
y0ð1� x∕xAÞβdx ¼ W

�
1

β þ 1

�
y0xA ð6Þ

whereW ½L� = basin width and other variables have been previously
defined. Because Wy0 ¼ A0, it follows that
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σy ¼
1

β þ 1
ð7Þ

When dealing with furrow irrigation systems, Eq. (2) is expressed
as follows:

� β
y0
xA

¼ S0 �
Q2

0n
2

c2uA2
0R

4∕3
0

ð8Þ

where R0 = upstream hydraulic radius [L] and other variables are as
previously defined.

The geometry of a furrow cross-section can be described by a
parabola or a trapezoid. A parabolic geometry can be defined with
the power law

T ¼ cym; A ¼
Z

y

0
Tds ¼ c

mþ 1
ymþ1 ð9Þ

where T = top width; and c ½L∕Lm� and m [dimensionless] = em-
pirical parameters. Combining Eqs. (4) and (9) and integration over
the stream length yields

VY ¼
�

1
βðmþ 1Þ þ 1

��
c

mþ 1
ymþ1
0

�
xA ¼ σyA0xA ð10Þ

This result was previously presented by Scaloppi et al (1995).
The corresponding equations for a symmetrical trapezoidal furrow
cross-section with side slope SS and bottom width BW are

A ¼ yðBW þ ySSÞ ð11Þ

VY ¼ xA

�
y0BW
β þ 1

þ y20SS
2β þ 1

�
ð12Þ

and

σy ¼
1
A0

�
y0BW
β þ 1

þ y20SS
2β þ 1

�
ð13Þ

Gillies and Smith (2005) applied Eq. (4) to the postadvance
phase (prior to cutoff) in open-end systems by assuming that ad-
vance extends beyond the end of the field. A power advance law
can be used to extrapolate the advance distance, but only for a lim-
ited time. The extrapolated advance distance, xPA, substitutes xA in
Eq. (4) and, thus, in in the relationships for y0 and σy. However,
shape factors for the postadvance phase are calculated by integrat-
ing Eq. (6) or its furrow counterparts between x ¼ 0 and Lf , the
field length. The result for borders is

σy ¼
1

β þ 1
xPA
Lf

�
1�

�
1� Lf

xPA

�
βþ1

�
ð14Þ

The corresponding expressions for parabolic and trapezoidal
furrows are, respectively

σy ¼
1

βðmþ 1Þ þ 1
xPA
Lf

�
1�

�
1� Lf

xPA

�
βðmþ1Þþ1

�
ð15Þ

σy ¼
xPA
A0Lf

�
y0BW
β þ 1

�
1�

�
1� Lf

xPA

�
βþ1

�

þ y20SS
2β þ 1

�
1�

�
1� Lf

xPA

�
2βþ1

��
ð16Þ

Eq. (15) was previously presented by Gillies and Smith (2005).
The practical difficulty in using the previously discussed rela-

tionships is that β is a function of system properties and evolves

with time and advance distance. Valiantzas (1993) proposed the
following relationship for β:

β ¼ 0:45
ð1þ PÞ0:2 ð17Þ

Eq. (17) was developed from graphical results presented in
Katopodes and Strelkoff (1977), who examined the variation of
y0 and σy in border irrigation systems using the zero-inertia simu-
lationmodel. These authors expressed the evolution of y0 and σy with
advance distance as a function of two dimensionless parameters, the
exponent a [-] of the empirical Kostiakov infiltration equation

z ¼ kτa ð18Þ
and P [-], given by

P ¼ q0S0ðyn∕kÞ1∕a
y2n

ð19Þ

In these expressions, z = infiltrated volume per unit area [L]; k =
empirical infiltration constant ½L∕Ta�; and τ = infiltration opportu-
nity time [T]. Katopodes and Strelkoff (1977) presented a series of
curves for σy as a function of dimensionless advance distance for a
single value of a (0.5). Those curves suggest that σy is relatively
constant for small values of P, but variable when P is large. Never-
theless, Valiantzas (1993) derived Eq. (17) from the average value
of each curve presented in Katopodes and Strelkoff (1977). Hence,
it is important to emphasize that Eq. (17) is based only on border
irrigation results, with infiltration given by the Kostiakov equation
(and with a ¼ 0:5) and that it assumes a constant exponent β for a
given value of P.

The surface irrigation software WinSRFR (Bautista et al. 2009)
uses Eqs. (2) and (8) for the calculation of y0 in parameter estima-
tion, design, and operational analysis. The program currently re-
quires user-provided estimates for σy. A constant β ¼ 0:45 was
adopted in WinSRFR for the calculation of y0. This choice was
made on the basis of results presented by Bautista et al. (2008),
who applied different constant values of β to calculate the upstream
depth y0 and then determined the relative error in comparison with
y0 values computed with the zero-inertia simulation model. The
analysis was limited to border irrigation with infiltration given
by the Kostiakov equation and did not examine the impact of this
recommendation on the value of σy and, ultimately, Vy. Recom-
mendations provided in previous studies for β (Valiantzas 1993;
Scaloppi et al. 1995, Gillies and Smith 2005) are not based either
on an analysis of the resulting volume balance errors.

Valiantzas (1997) and Monserrat and Barragan (1998) examined
the variation of σy (and, thus, indirectly of β), but similar to pre-
vious studies, their results are based on the Kostiakov infiltration
equation. Valiantzas (1997) proposed relationships for σy, but be-
cause his analysis was based on the kinematic wave model, those
relationships can be applied only when the flow is kinematic.

The objectives of this study are, first, to examine the behavior of
the exponent β in Eq. (4) as a function of hydraulic conditions. In
contrast with previous studies, the analysis assumes that infiltration
is given by the extended Kostiakov equation

z ¼ kτa þ bτ ð20Þ
The study also aims to develop an understanding of system fac-

tors that most influence the behavior of this parameter and to sug-
gest values for use in routine surface volume calculations. Lastly,
the study examines the volume balance errors that can result
from using reasonable estimates of β. The analysis deals mostly
with furrow irrigation, but limited results are presented for border
irrigation.
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Methodology

Similar to Katopodes and Strelkoff (1977), Valiantzas (1997), and
Monserrat and Barragan (1998), this analysis uses a dimensionless
formulation of the irrigation problem. This approach reduces the
number of governing parameters and facilitates generalizing and
displaying the results. A brief explanation of systems of dimension-
less variables follows

In the governing equations of surface irrigation, the dependent
surface-flow variables, Q and y, are functions of x and t, of param-
eters that describe the field geometry, hydraulic resistance, and in-
filtration characteristics, and of the boundary conditions (inflow
rate). Nondimensional expressions for the variables and parameters
(represented with the superscript *) are obtained by dividing the
dimensional expressions by an appropriate reference variable
(represented by the subscript R), a nonzero constant with the same
dimensions.

x� ¼ x
XR

; t� ¼ t
TR

; Q� ¼ Q
QR

; y� ¼ y
YR

;

A� ¼ A
AR

; τ� ¼ τ
TR

; z� ¼ z
YR

; S�0 ¼
S0
S0R

ð21Þ

Different dimensionless systems can be derived depending on
the type of irrigation system (graded furrow, graded border, level
basin) and the choice of reference variables (Strelkoff and
Clemmens 1994). This analysis uses the reference system proposed
by Strelkoff (1985) for graded furrows

QR ¼ Q0; YR ¼ yNðQ0Þ; XR ¼ YR

S0R
; TR ¼ XRY2

R

QR

ð22Þ

In these expressions, Q0 = average unit inflow rate ½L3∕T �; yN =
normal depth (calculated with the Manning equation, based on the
reference slope) for the givenQ0; and S0R = reference bottom slope,
for convenience equal to the average slope. With these definitions
and with nR, a reference Manning n, dimensionless Q�, n�, and S�0
are all equal to unity. Assuming negligible wetted perimeter effects
on infiltration, infiltration volume per unit length (Z) is the product
of the furrow spacing (W) and the infiltration volume per unit
length and per unit furrow spacing (z)

Z ¼ Wz ¼ Wðkτa þ bτÞ ð23Þ
It follows from Eqs. (21)–(23) that dimensionless advance as a

function of dimensionless time is a function of four dimensionless
parameters

xAðt�Þ ¼ f ðK�; a;B�;D�
0Þ ð24Þ

Expressions for the dimensionless parameters are

K� ¼ WkTa
R

Y2
R

; B� ¼ WbTR

Y2
R

; D�
0 ¼

AðYRÞ
Y2
R

�
RðYRÞ
YR

�
nR
n
2∕3

ð25Þ
In Eq. (25), D�

0 = parameter related to the channel conveyance
and, therefore, a function of the cross-sectional geometry, the refer-
ence depth YR, and the dimensionless roughness characteris-
tics, n∕nR.

A difficulty with using dimensionless formulations is that arbi-
trary dimensionless parameter combinations may not represent
realistic physical systems. To avoid this problem and facilitate
the interpretation of results, a limited set of scenarios was devel-
oped on the basis of a realistic range of physical conditions.

A basic set of 16 dimensionless scenarios was defined in terms
of combinations of four slopes and four infiltration conditions, as
given in Table 1. The table provides an identifier for each scenario,
which are used subsequently in this article to label graphical results.
The smallest slope value used in the analysis (0.00001) is smaller
than the accuracy of practical land leveling operations and, thus, as
nearly represents the case of zero-slope (because the dimensionless
formulation employed in this paper uses normal depth for YR, it
cannot be applied to cases with zero-slope). Infiltration conditions
were defined on the basis of the time treq needed to infiltrate a pre-
scribed application depth zreq. An additional constraint on the in-
filtration parameters values was imposed by defining the infiltration
parameter b as follows

b ¼ λ
zreq
treq

ð26Þ

In this expression, λ = parameter that determines the relative
contribution of b to the infiltrated depth at treq. When λ ¼ 0,
Eq. (20) reduces to the Kostiakov equation, whereas λ ¼ 1 implies
a constant infiltration rate throughout the irrigation event.

All scenarios were generated with zreq ¼ 0:1 m,W ¼ 1 m, SS =
1.5, n ¼ 0:04. The initial set was developed for a ¼ 0:5 and
λ ¼ 0:4 (i.e., 40% of the infiltration is contributed by the steady
infiltration rate). Thus, for each treq in Table 1 (2, 4, 8, and 16 h),
the corresponding b values are 20, 10, 5, and 2:5 mm∕h (Table 2).
Given these inputs, the inflow for each scenario was calculated as
follows. A spreadsheet was constructed containing all the needed
dimensional inputs (S0, zreq, treq, λ, W , SS, and n) for all 16 sce-
narios, the infiltration relationships [Eqs. (23) and (26)], and the
dimensionless relationships [Eqs. (22) and (25)]. Reasonable initial
values for Q and BWwere assumed for scenario 1 (4 l∕s and 0.2 m,

Table 1. Identifiers for the 16 Furrow Irrigation Scenarios

treq (h)

S0

0.00001 0.0001 0.001 0.01

2 1 5 9 13

4 2 6 10 14

8 3 7 11 15

16 4 8 12 16

Table 2. Dimensionless Parameters for the Furrow Irrigation Scenarios:
λ ¼ 0:4; a ¼ 0:5

S0

0.00001 0.0001 0.001 0.01

(K� ¼ 6:5;

D�
0 ¼ 2:1)

(K� ¼ 2:7;

D�
0 ¼ 3:65)

(K� ¼ 1:14;

D�
0 ¼ 8:0)

(K� ¼ 0:05;

D�
0 ¼ 22:5)

treq (h) b(mm∕h) B�

2 20 3.88E+01 2.28E+00 1.28E-01 6.90E-03

4 10 2.65E+01 1.56E+00 8.70E-02 4.70E-03

8 5 1.81E+01 1.06E+00 6.00E-02 3.30E-03

16 2.5 1.25E+01 7.38E-01 4.10E-02 2.20E-03

L�
2 20 1.29E-02 2.19E-01 3.91E+00 7.22E+01

4 10 1.88E-02 3.20E-01 5.71E+00 1.05E+02

8 5 2.75E-02 4.67E-01 8.34E+00 1.54E+02

16 2.5 4.01E-02 6.82E-01 1.22E+01 2.24E+02

JOURNAL OF IRRIGATION AND DRAINAGE ENGINEERING © ASCE / AUGUST 2012 / 717

J.
 I

rr
ig

. D
ra

in
 E

ng
. 2

01
2.

13
8:

71
5-

72
6.

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

E
du

ar
do

 B
au

tis
ta

 o
n 

08
/0

1/
12

. F
or

 p
er

so
na

l u
se

 o
nl

y.
N

o 
ot

he
r 

us
es

 w
ith

ou
t p

er
m

is
si

on
. C

op
yr

ig
ht

 (
c)

 2
01

2.
 A

m
er

ic
an

 S
oc

ie
ty

 o
f 

C
iv

il 
E

ng
in

ee
rs

. A
ll 

ri
gh

ts
 r

es
er

ve
d.



respectively). This selection yielded a value close to 6.5 for K� and
2.1 for D�

0. The values of K
� and D�

0 were then rounded to 6.5 and
2.1, respectively, by adjusting Q and BW. Starting from the same
initial guesses as for scenario 1, Q and BW were adjusted for sce-
narios 2–4 (with the same slope) to force K� ¼ 6:5 and D�

0 ¼ 2:1.
The values of Q and BW obtained for scenario 1 were copied to
scenario 5, representing the same treq conditions. Adjustments were
then made to Q and BW in scenarios 5–8 to force K� and D�

0 to the
same constant values (2.7 and 3.65, Table 2). This set of compu-
tations was repeated for scenarios 9–12, and 13–16. The resulting
Q and BW are provided in Table 3. Because increasing treq values
imply decreasing infiltration rates, B� decreases as treq increases
for any K�.

For each scenario, the dimensionless furrow length L�f (Table 2)
was determined as L�f ¼ λð1∕B�Þ. The corresponding dimensional
lengths Lf (Table 3) were then determined as Lf ¼ L�f XR. In the first
calculation, the ratio 1∕B� is the maximum advance distance,
i.e., the advance distance at which the inflow rate matches the
steady infiltration rate over the wetted length of the furrow. In di-
mensional terms, this maximum distance is given by the ratio
Q0∕bW . The approach used to determine L�f , expressed as a func-
tion of λ (the relative contribution of the steady infiltration rate),
results in realistic infiltration depths (relative to the infiltration tar-
get zreq) when inflow is cut off at the final advance time (Table 3).
As an aside, the advance problem becomes poorly posed (predic-
tions are very sensitive to small changes in inputs) when the wetted
furrow length approximates 1∕B�. Hence, this maximum distance
cannot be attained either in practice or computationally (except in
the theoretical case λ ¼ 1:0).

Four additional sets of scenarios were examined. Two of those
sets were generated with a ¼ 0:5, but with λ ¼ 1:0 and λ ¼ 0:1.
The corresponding dimensionless parameters are given in Tables 4

and 5, respectively. Because the values of the infiltration exponent
a and D�

0 were not modified with respect to the first set of sce-
narios, and the dimensionless field lengths were defined again as
L�f ¼ λ · ð1∕B�Þ, these new scenarios represent the same combina-
tions of dimensional input variables as before (Table 3) except for the
values of b and k. Irrigated soils typically exhibit a declining infil-
tration rate; nevertheless, scenarios with λ ¼ 1:0 were included to
illustrate the maximum range for β. The last two sets were developed
with λ ¼ 0:4, but with a ¼ 0:3 and 0.7. These changes have no ef-
fect on B�, D�

0, and L�f (Table 2) and the corresponding dimensional
variables, but they affect K�, which is no longer constant for scenar-
ios with the same slope (Table 6). For this new set of scenarios, cutoff
at the final advance time produces final infiltration depths that are
only slightly different from those given in Table 3 (not shown).

Each scenario was simulated with the zero-inertia engine of the
WinSRFR program (Bautista et al. 2009). WinSRFR calculates σy
at each time step [using Eq. (1)]. These values were entered into
Eq. (13) to solve for β.

Relationships among dimensionless variables, and between di-
mensionless and dimensioned variables, merit further discussion.
First, in the dimensionless formulation employed in this paper,
K� and B� are independent governing parameters. In the proposed
scenarios, these parameters are linked through treq, a, and λ.
Hydraulically related scenarios, but with substantially different val-
ues of K� and B�, can be created for a given treq by altering the
values of λ and/or a (Tables 4–6). Second, with these scenarios,
the order of magnitude of B� is largely determined by the field
slope. Consider for example, scenarios 1 (S0 ¼ 0:00001,
B� ¼ 3:88E þ 01) and 13 (S0 ¼ 0:01,B� ¼ 6:90E � 03) in Table 2.
B� differs by four orders of magnitude. Dimensioned scenarios with
S0 ¼ 0:00001 and B� ¼ 6:90E � 03 can be generated, but that
would require a near-zero value of b (hence, a different infiltration

Table 3. Discharge, Bottom, Width, and Furrow Length for the Furrow
Irrigation Scenarios

S0

0.00001 0.0001 0.001 0.01

treq (h) Qðl∕sÞ
2 4.12 4.09 4.09 4.00

4 2.49 2.48 2.47 2.42

8 1.51 1.50 1.49 1.46

16 0.91 0.90 0.90 0.88

BW(m)

2 0.215 0.215 0.216 0.216

4 0.18 0.180 0.179 0.179

8 0.150 0.150 0.148 0.148

16 0.120 0.120 0.122 0.122

Lf ðmÞ
2 296.5 294.3 294.5 288.4

4 358.3 355.7 355.9 348.3

8 432.9 429.6 430.0 420.8

16 522.8 518.9 519.1 508.3

Average infiltrated depth (mm)

2 111 106 86 66

4 97 92 76 61

8 86 81 68 57

16 78 73 62 55

Table 4. Dimensionless Parameters for the Furrow Irrigation Scenarios:
λ ¼ 1:0; a ¼ 0:5

S0

0.00001 0.0001 0.001 0.01

(K� ¼ 0;

D�
0 ¼ 2:1)

(K� ¼ 0;

D�
0 ¼ 3:65)

(K� ¼ 0;

D�
0 ¼ 8:0)

(K� ¼ 0;

D�
0 ¼ 22:5)

treq (h) b(mm∕h) B�
2 50 9.70E+01 5.70E+00 3.20E-01 1.73E-02

4 25 6.62E+01 3.89E+00 2.19E-01 1.19E-02

8 12.5 4.53E+01 2.66E+00 1.50E-01 8.13E-03

16 6.25 3.13E+01 1.84E+00 1.03E-01 5.57E-03

Table 5. Dimensionless Parameters for Furrow Irrigation Scenarios with
λ ¼ 0:1, a ¼ 0:5

S0

0.00001 0.0001 0.001 0.01

(K� ¼ 9:75;

D�
0 ¼ 2:1)

(K� ¼ 4:05;

D�
0 ¼ 3:65)

(K� ¼ 1:17;

D�
0 ¼ 8:0)

(K� ¼ 0:75;

D�
0 ¼ 22:5)

treq (h) b(mm∕h) B�
2 5 9.70E+00 5.70E-01 3.20E-02 1.70E-03

4 2.5 6.62E+00 3.89E-01 2.19E-02 1.20E-03

8 1.25 4.53E+00 2.66E-01 1.50E-02 8.00E-04

16 0.625 3.13E+00 1.84E-01 1.03E-02 6.00E-04
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behavior from the one assumed in this analysis). Lastly, a constant
K� imposes a relationship between treq and Q for scenarios with a
common slope. This relationship constrains the physical field
lengths considered in the analysis and the resulting average infil-
tration depths to values close to zreq (Table 3).

Results

Variation of β with Advance Distance

Fig. 1 displays β as a function of x�A(in logarithmic scale) for each
scenario. The curves are labeled according to the identifiers of
Table 1. Because L�f is a function of 1∕B� and values of B� gen-
erated for a given K� are of a similar order of magnitude (Table 2),
curves generated for the same K� plot in the same x�A range.

Results illustrate the fundamental behavior of β. During early
advance, flow rate differences along the stream are small. As a re-
sult, flow depth is rising rapidly everywhere and is relatively uni-
form except near the front of the stream, where it is changing
rapidly. Because the profile is steepening, β decreases initially.
As the stream elongates, cumulative infiltration losses cause in-
creasing inflow rate differences and more gradual depth variations
with distance. Hence, during later advance, β increases with x�A.

Relevant to the objectives of this study is the range of β.
In Fig. 1, the range of β increases with decreasing K� and to a lesser
degree with decreasing B�. However, as was noted before, a
constant K� imposes a relationship between infiltration and dis-
charge for a given slope. Thus, results show that the range of β
is strongly dependent on slope, at least for realistic combinations

of dimensioned inputs. With mild slopes, a relatively large depth
gradient is needed to drive the flow. Thus, β varies over a narrow
range. β attains smaller values and varies over the widest range at
short advance distances when the slope is steep because normal
flow is attained rapidly and depth varies abruptly near the front
of the wave.

Numerical limitations of these results need to be noted. The ini-
tial value of β depends on the spatial weighting factor used to dis-
cretize the governing flow equations. The influence of that initial
value persists for a few time steps in the calculations. Development
of the curves for K� ¼ 0:5 ðS0 ¼ 0:01Þ present another numerical
problem. When the field bottom slope is sufficiently steep, the flow
is essentially kinematic and flow depth variation near the advancing
front are also steep. The zero-inertia model cannot describe
adequately these pronounced depth variations (a criterion that
can be used to determine when the flow is kinematic is provided
in Strelkoff and Clemmens 2007). As a result, the computed y0, and
thus β, oscillates at small x�A. A smooth relationship for βðx�AÞ,
which is depicted in the figure, was generated by solving for σy
with Eq. (1) but using the normal flow area An instead of the
A0 computed with the zero-inertia model. An alternative approach
is to compute the flow with the kinematic wave model. However,
that approach changes substantially the βðx�AÞ relationship at small
values of x�A because the kinematic wave model assumes a nonzero
depth at the wave front. A nonzero depth at the tip is incompatible
with Eq. (4), and thus, with Eqs. (2) and (8).

Effect of λ and a

The parameter λ determines the advance distance at which β will
attain its final and maximum value, xAmax ¼ 1∕B�. Thus, β will
vary over a wide range if a field is long relative to 1∕B�, but over
a narrow range in the opposite case. The βðx�AÞ relationships de-
picted in Fig. 2 (λ ¼ 1:0) Fig. 3 (λ ¼ 0:1) illustrate primarily
the effect of relative length. Again, the curves are numbered accord-
ing to the identifiers of Table 1. The curves of Fig. 2 (λ ¼ 1:0) show
a much wider range than in Fig. 1, primarily because L�f ¼ 1∕B�

with these scenarios. The curves of Fig. 3 exhibit a much narrower
range because L�f is only a tenth of 1∕B�. In these cases, β continues
to increase with longer fields.

Although not as evident, λ affects also the minimum value of β.
Advance will be faster and require less inflow volume for a given
distance when the infiltration rate is relatively constant (i.e., when λ
is large). Under those conditions, and with a large slope, a steep
wave front will persist for longer advance distances. As was noted
before, β cannot attain small values with mild slopes. Thus, the
curves of Fig. 2 attain smaller minimum values than in Fig. 1,
but the effect is noticeable only for scenarios 9–16. With a smaller

Table 6. K� for the Furrow Irrigation Scenarios: λ ¼ 0:4; a ¼ 0:3; and
a ¼ 0:7

S0 0.00001 0.0001 0.001 0.01

treq (h) K�ða ¼ 0:3Þ
2 2.71 2.46 2.33 2.36

4 3.15 2.86 2.71 2.74

8 3.66 3.32 3.15 3.19

16 4.26 3.87 3.66 3.71

K�ða ¼ 0:7Þ
2 15.61 2.97 0.559 0.1062

4 13.42 2.55 0.480 0.0913

8 11.54 2.19 0.413 0.0785

16 9.92 1.89 0.355 0.0675

Fig. 1. β as a function of x�A for furrow irrigation scenarios with
λ ¼ 0:4, a ¼ 0:5

Fig. 2. β as a function of x�A for furrow irrigation scenarios with
λ ¼ 1:0, a ¼ 0:5

JOURNAL OF IRRIGATION AND DRAINAGE ENGINEERING © ASCE / AUGUST 2012 / 719

J.
 I

rr
ig

. D
ra

in
 E

ng
. 2

01
2.

13
8:

71
5-

72
6.

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

E
du

ar
do

 B
au

tis
ta

 o
n 

08
/0

1/
12

. F
or

 p
er

so
na

l u
se

 o
nl

y.
N

o 
ot

he
r 

us
es

 w
ith

ou
t p

er
m

is
si

on
. C

op
yr

ig
ht

 (
c)

 2
01

2.
 A

m
er

ic
an

 S
oc

ie
ty

 o
f 

C
iv

il 
E

ng
in

ee
rs

. A
ll 

ri
gh

ts
 r

es
er

ve
d.



λ (Fig. 3), the minimum value of β shifts upward, but the effect
is minor.

Similar to the value of λ, infiltration rates become more constant
with time as the exponent a increases (for times less than treq.) As a
result, and in comparison with the results computed with a ¼ 0:5
(Fig. 1), the range of the βðx�AÞ relationships narrows when a ¼ 0:3
(Fig. 4) but widens when a ¼ 0:7 (Fig. 5). However, the βðx�AÞ re-
lationships of Fig. 4 are shifted downward in comparison with
those of Fig. 1 (and also of Fig. 3). Thus, a smaller exponent a
produces steeper wave fronts for the advance distances considered
in the analysis (likely because infiltration rates and flow rates are
varying most rapidly near the front of the wave). In contrast, the
βðx�AÞ relationships of Fig. 5 (a ¼ 0:7) are shifted upward (albeit
slightly) with respect to those of Fig. 1, but only for mild slopes
(scenarios 1–8).

The practical implication of these results is that a large variation
in the value of β as a function of advance distance can be expected
when infiltration rates are relatively constant with time and the field
length is close to the theoretical maximum advance distance. Such
conditions are more likely to be encountered in practice when λ is
large and a ¼ 0:5 or larger, i.e., with light soils. Characterizing
βðx�AÞ is most difficult under those conditions, especially if the
slope is large. By the same token, β can be expected to be relatively
constant when infiltration rates vary substantially during the course
of the irrigation event, leading to a small contribution by the steady-
state term. Such conditions occur when λ is small and a ¼ 0:5 or
less, which is typical of heavier soils. In those cases, β will vary
over a narrow range even for long fields relative to the maximum
advance distance, especially for mild slopes. If infiltration is as-
sumed to follow the Kostiakov equation (λ ¼ 0), then the range
for β is unrelated to 1∕B� because advance is theoretically infinite.
Independently of the fact that it reveals a relationship between β
and 1∕B�, the extended Kostiakov equation should be used for
practical analyses of irrigation systems because it imposes limits
on the maximum distance that water can advance down a field
and should lead to more conservative design and operational
recommendations.

Proposed β Relationships

An explicit relationship for β as a function of K�, a, B�, and x�A is
desirable for routine volume balance calculations. Such a relation-
ship cannot be defined easily from Figs. 1–5, and even if available,
it would be of limited value when applying the volume balance
method to parameter estimation problems (because K�, a, and
B� are unknown). Of interests, then, is to suggest simple estimates
of β that can be used for routine calculations.

Relationships for β as a function of S0 alone are proposed, of the
form

βðS0Þ ¼ b0 þ m · log10ðS0Þ ð27Þ

Parameters for Eq. (27) were determined for each group of sce-
narios (Figs. 1–5) by determining a representative point for each
curve and fitting from those points. The midpoint between the mini-
mum and final β values was selected as that representative point.
The implications of using an alternative representative point are
discussed subsequently. Regression parameters for each group of
scenarios, including the coefficient of determination r2, are pre-
sented in Table 7.

Fig. 3. β as a function of x�A for furrow irrigation scenarios with
λ ¼ 0:1, a ¼ 0:5

Fig. 4. β as a function of x�A for furrow irrigation scenarios with
λ ¼ 0:4, a ¼ 0:3

Fig. 5. β as a function of x�A for furrow irrigation scenarios with
λ ¼ 0:4, a ¼ 0:7

Table 7. Regression Parameters and r2 for the Proposed βðS0Þ
Relationships [Eq. (27)] for Each Scenario Set, and Predicted Values
of βðS0Þ

Scenario set

λ ¼ 0:4 λ ¼ 1:0 λ ¼ 0:1 λ ¼ 0:4 λ ¼ 0:4

a ¼ 0:5 a ¼ 0:5 a ¼ 0:5 a ¼ 0:3 a ¼ 0:7

Parameters Regression values

m �0:0588 �0:0886 �0:0563 �0:0611 �0:0671

b0 0.18 0.1281 0.1595 0.0984 0.1903

r2 0.96 0.91 0.95 0.93 0.95

S0 Predicted β

0.00001 0.474 0.571 0.441 0.404 0.526

0.0001 0.415 0.483 0.385 0.343 0.459

0.001 0.356 0.394 0.328 0.282 0.392

0.01 0.298 0.305 0.272 0.221 0.325
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y0 and σy values derived with the βðS0Þ estimates will be, to a
lesser or greater degree, inaccurate relative to the zero-inertia
model. Differences will result, first, from the assumption of a con-
stant β for any advance distance and, second, from the choice of
βðS0Þ relationship, which may be inadequate for a given field. The
subsequent paragraphs analyze the potential magnitude of the dif-
ferences and the implications for volume balance analyses. The
analysis is limited by the range of hydraulic characteristics exam-
ined in Figs. 1–5, but still should give us an idea of conditions
under which reliable volume balance results can be generated with
simple β estimates and conditions under which those estimates
need to be refined.

For each group of scenarios, y0, and σy were calculated as a
function of x�A using, respectively, Eqs. (8) and (12). Initial calcu-
lations used the βðS0Þ relationship derived specifically for that set
of scenarios, but additional calculations were carried out also with
the relationship derived from a different set of scenarios. Those re-
sults were then used to determine the relative y0 error (Ey0), relative
σy error (Eσy), and the volume balance error (EVB), which are de-
fined as

Ey0 ¼ ðyβ0 � yZI0 Þ∕yZI0 ð28Þ

Eσy ¼ ðσβ
y � σZI

y Þ∕σZI
y ð29Þ

EVB ¼ ðVβ
y � VZI

y Þ∕VZI
app ð30Þ

In these expressions, the superscript β refers to variables calcu-
lated with the volume balance procedures; the superscript ZI refers
to variables simulated with the zero-inertia model; and Vapp =
applied volume (sum of the infiltrated and surface volume). In this
discussion, error denotes systematic differences between volume
balance and zero-inertia calculations and not necessarily the errors
that may result in practical volume balance calculations, which ul-
timately depend on the ability to characterize pertinent system
inputs.

Errors were computed for the scenarios of Fig. 1 using the βðS0Þ
relationship specific to those scenarios (with the regression param-
eters of column a ¼ 0:4, λ ¼ 0:4 in Table 7). The errors (Ey0—
dashed line; Eσy —dash-dot line; and EVB—solid line) are plotted
in Fig. 6 as a function of a new dimensionless variable, the relative
advance distance x�A∕x�Amax ¼ x�AB

�. Given that L�f ¼ λ · ð1∕B�Þ, the
maximum value of x�AB

� for each plot is λ ¼ 0:4.
Four things need to be noted about the results of Figure 6. First,

Eq. (8) is sensitive to β when S0 is small, but becomes increasingly
insensitive as flow depth approaches its normal value, which is
more likely with increasing slope and advance distance. Eq. (12)
is unaffected by these variables. Thus, y0 estimates derived with a
rough estimate of β are more reliable than estimates of σy especially
with large slopes and advance distances. Second, │EVB│ can be

Fig. 6. Relative depth error Ey0 (dashed line), relative shape factor error Eσy (dash-dot line), and volume balance error EVB (solid line) for furrow
irrigation scenarios with λ ¼ 0:4, a ¼ 0:5
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very large at short advance distances, not only because both │Ey0│
and │Eσy│ are large, but also because surface storage is a large
fraction of the applied volume. The impact is greatest with steep
slopes, as shown by scenarios 13 and 16 in Fig. 6, for which
│EVB│ is nearly 10% when x�AB

� < 0:1. Third, although │Eσy│
can be very large, its effect on │EVB│ decreases with x�AB

� because
the surface volume grows slowly in comparison with the applied
and infiltrated volumes as the advance slows down. This is particu-
larly true with steep slopes, because flow depths are small. Lastly,
the errors of Fig. 6 depend on the representative value used to de-
rive the βðS0Þ relationship. If the final value of βðx�AÞ curves (Fig. 1)
had been chosen instead of the midpoint as the representative value,
the error curves of Fig. 5 would shift downward, i.e., errors would
be greater at smaller x�AB

� and smaller near x�AB
� ¼ 0:4. Choosing

the minimum value of the βðx�AÞ curves as the representative point
would have the opposite effect and increase the errors for large
x�AB

�. Overall, the midpoints seem like a reasonable choice, espe-
cially considering that the sensitivity of EVB to β decreases with
advance distance.

Fig. 7 presents the errors computed for the scenarios of Fig. 2.
As with the previous figure, the βðS0Þ relationship developed from
this set of scenarios was used in the calculations (parameters given
in the column λ ¼ 1:0, a ¼ 0:5 in Table 7). As expected, the rel-
ative errors are greater than in Fig. 6 because of β varies over a

larger range when λ ¼ 1:0 than with λ ¼ 0:4. In the figure,
│EVB│ exceeds 10% with mild slopes and 20% with steep slopes.
More importantly, because the applied volume grows slowly rela-
tive to surface storage (i.e., the infiltration volume for a given ad-
vance distance is much less than for the scenarios of Fig. 6), the
potential for a large EVB does not decrease with advance distance.
Accurate β estimates are always needed under these conditions.

Figs. 8–10 present the errors computed for the scenarios of
Figs. 3–5. In each case, a first set of results (a) was calculated with
the βðS0Þ relationship specific to that group of scenarios and a sec-
ond (b) with the βðS0Þ relationship developed for λ ¼ 0:4, a ¼ 0:5.
The graphs present EVB alone and include only one scenario from
each slope group (1, 6, 11, and 16).

In Fig. 8(a), │EVB│ is less than 1% except at very short advance
distances. Small errors were expected given the narrow range of
βðx�AÞ when λ ¼ 0:1. Much larger errors were calculated for sce-
narios 1 and 6 when using the βðS0Þ relationship developed from
(λ ¼ 0:4, a ¼ 0:5) [Fig. 8(b)]. These absolute errors are nearly an
order of magnitude greater than in Fig. 8(a) (but still less than 5%).
The choice of βðS0Þ relationship has little or no effect on the mag-
nitude of the errors when the flow is near or fully kinematic (sce-
narios 11 and 16, respectively). The errors illustrated in Fig. 8(b)
may be acceptable considering the uncertainty of other inputs re-
quired for the calculations; still, it should be clear that greater care

Fig. 7. Relative depth error Ey0 (dashed line), relative shape factor error Eσy (dash-dot line), and volume balance error EVB (solid line) for furrow
irrigation scenarios with λ ¼ 1:0, a ¼ 0:5
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must be exercised when selecting a βðS0Þ relationship with small
slopes.

Similar to the previous set of results, the absolute errors in
Fig. 9(a) vary over a narrow range (less than 2% for most advance
distances) when using β values specific to the scenarios presented
in that figure (λ ¼ 0:4, a ¼ 0:3). In Fig. 9(b), so-called incorrect β
estimates (derived assuming λ ¼ 0:4, a ¼ 0:5) lead to absolute er-
rors that are nearly four times greater than in Fig. 9(a). Again, the
potential for large errors increases with increasing slope and de-
creasing relative advance distances (x�AB

� < 0:2Þ. Errors were also
calculated for this group of scenarios using the βðS0Þ relationship
of the previous example (λ ¼ 0:1, a ¼ 0:5). Those errors, which
are not illustrated, were less than in Fig. 9(b). Thus, if the soil is
heavy and/or the final infiltration rate is expected to be small for a
particular analysis, β values should be derived from Figs. 3 and 4.

Fig. 10 depicts the errors computed for the scenarios of Fig. 5
(λ ¼ 0:4, a ¼ 0:7). Comparison of Figs. 10(a) and 10(b)– shows
that the potential for large errors is substantial at small advance
distances (x�AB

� < 0:1) and especially with a steep slope (scenario
16). Absolute errors [Fig. 10(a)] are as much as 15% when using
βðS0Þ estimates derived from the scenarios with λ ¼ 0:4, a ¼ 0:7
and, in fact, improve slightly when using the βðS0Þ estimates de-
rived from the scenarios with λ ¼ 0:4, a ¼ 0:5. For longer advance
distances (x�AB

� > 0:2), EVB values are generally less than 3%, even
when using the βðS0Þ estimates derived from Fig. 1 [Fig. 10(b)].
Errors are much greater when using the βðS0Þ relationship derived
from Fig. 4 (results not shown). In principle, the curves of Figs. 5 or
1 can be used with lighter soils, as those soils are associated with
larger values of a and λ. However, the resulting Vy estimates cannot
be expected to be reliable except for long advance distances.

Fig. 8. Volume balance errors for furrow irrigation scenarios with λ ¼ 0:1, a ¼ 0:5

Fig. 9. Volume balance errors for furrow irrigation scenarios with λ ¼ 0:4, a ¼ 0:3

Fig. 10. Volume balance errors for furrow irrigation scenarios with λ ¼ 0:4, a ¼ 0:7
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Relationships for Border Irrigation

βðx�AÞ was examined for a limited number of border irrigation sce-
narios, with the goal of contrasting the relationships with the furrow
cases. A dimensionless system of variables for borders (Strelkoff
and Clemmens 1994), similar to the one described in this paper,
was used to develop the border irrigation scenarios. For borders,
advance is a function of three dimensionless variables, k�, b�,
and the infiltration exponent a. Expressions for the parameters are
provided in that reference. The dimensionless k� and b� used in this
analysis are given Table 8. These parameter values were developed
from dimensioned scenarios, using the same bottom slope and treq
combinations of Table 1, with zreq ¼ 100 mm, n ¼ 0:2, a ¼ 0:5,
and with the unit flow rates given in Table 9. Dimensionless length
was calculated as L�f ¼ λ∕b�, which with the given inputs translates
into a dimensional value of Lf ¼ 360 m for all of these scenarios.

The βðx�AÞ relationships for borders (Fig. 11) are very similar to
the ones developed for furrows (Fig. 1), despite the difference in
cross-sectional geometry and the larger value of n used in this set of
calculations. This suggests that βðx�AÞ relationships for other furrow
geometries and roughness values (i.e., other D�

0 values based on
realistic combinations of dimensioned variables) are not very dif-
ferent from the ones presented in Figs. 1–5. Hence, the βðS0Þ re-
lationships proposed in this paper should provide reasonable
estimates for borders and other furrow configurations.

Practical Example

Perea (2005) reported four furrow irrigation evaluation data sets
that include depth hydrograph measurements along the field. Those
measurements can be used to determine surface volumes as a func-
tion of time. The data set identified in his dissertation as Furrow
1 was used for this example. Relevant data are the following:
Lf ¼ 168:5 m; S0 ¼ 0:00018; Qavg ¼ 1:41 l∕s; cross-section =
trapezoidal; B0 ¼ 0:07 m; and SS = 2.7. The data are available
from the first author upon request. Surface volume as a function

time and the Manning n were determined from the depth hydro-
graphs using the procedures described in Strelkoff et al. (1999).
Eq. (8) was used to estimate y0, whereas Eqs. (12) and (16) were
used to calculate σy during the advance phase and postadvance
phases, respectively. A power law derived from the advance data
was used to compute xPA at selected postadvance times (xPA ¼ ptr ,
with p ¼ 0:394 m∕minr , r ¼ 0:64). The soil for the test is a sandy
loam and exhibits a fairly large near-steady infiltration rate. Thus,
Eq. (27) with the parameters derived from Fig. 1 was used to de-
termine β ¼ 0:4. Data and calculations are summarized in Table 10.
With trapezoidal furrows, σy is a function of y0. Thus, the computed
σy varies with time even if β is constant. The estimated Vy tracked
reasonably well the observed values for times less than 200 min.
The last column in Table 10 presents the calculated volume balance
errors, which are very reasonable during advance, but which in-
crease during the postadvance phase. Clearly, the standard volume
balance assumptions (upstream normal depth, σy ¼ 0:77) would
result in much larger differences than shown in the table. The loss
of accuracy during the postadvance phase is explained by the
extrapolation of advance distance. In the first author’s experience,
the Gillies and Smith (2005) procedure for predicting surface stor-
age during the postadvance phase yields reasonable results when
the inflow rate is constant and the advance trajectory is extrapolated
for less than twice the final advance time. For longer times, advance
rate can be expected to decline sharply and, thus, xPA should be
assumed to remain constant. The extrapolation is particularly inad-
equate for this problem because the inflow rate delivered to the field
declined after the water reached the end of the field.

Discussion

The proposed relationships of Figs. 1–5 can be used to derive β
estimates for routine volume balance analyses. If the characteristics
of the problem are such that the potential for large volume balance
errors is large, then the volumes derived with the procedures pre-
sented in this paper need to be compared with the volumes com-
puted with an unsteady simulation model. Simulation model results
can then be used to adjust the β values used in the volume balance
calculations. A procedure for carrying out those adjustments is de-
scribed in a companion paper (Bautista et al. 2012). That procedure
can also be used to adjust the shape factor for the infiltrated profile,
which is another source of error in volume balance analyses.

The previously discussed analysis focuses on the differences be-
tween zero-inertia and volume balance calculations. It should be
clear that erroneous determinations of pertinent inputs will lead
to larger volume balance errors than shown in this paper. In prac-
tical applications of the previously noted procedures, a particular

Table 8. Dimensionless Parameters for the Border Irrigation Scenarios:
λ ¼ 0:4; a ¼ 0:5

S0

0.00001 0.0001 0.001 0.01

(K� ¼ 3:162) (K� ¼ 1:0) (K� ¼ 0:316) (K� ¼ 0:1)

treq (h) b(mm∕h) B�

2 20 5.57E+01 2.79E+00 1.40E-01 7.01E-03

4 10 3.67E+01 1.84E+00 9.23E-02 4.63E-03

8 5 2.42E+01 1.21E+00 6.09E-02 3.05E-03

16 2.5 1.60E+01 8.01E-01 4.02E-02 2.01E-03

Table 9. Unit Flow Rates for the 16 Border Irrigation Scenarios: λ ¼ 0:4;
a ¼ 0:5

S0

0.00001 0.0001 0.001 0.01

treq (h) Qðl∕s∕mÞ
2 5.00 5.00 5.00 5.00

4 2.50 2.50 2.50 2.50

8 1.25 1.25 1.25 1.25

16 0.63 0.63 0.63 0.63

Fig. 11. β as a function of x�A for the border irrigation scenarios with
λ ¼ 0:4, a ¼ 0:5
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challenge is the determination of the roughness coefficient. Thus,
determinations of surface volume need to incorporate sensitivity
and/or error analyses to test primarily the effect of the uncertain
roughness.

Previous studies (Esfandiari and Maheshwari 1997) have shown
that large field undulations relative to the average slope cause sub-
stantial variation in the depth profile. Such conditions may compli-
cate or altogether invalidate the application.

Conclusions

In surface irrigation volume balance analyses, upstream flow depth
and the surface shape factor can be calculated by assuming that the
surface depth profile varies as a power law. Such an approach re-
quires prior knowledge of the exponent of that power law, β. The
variation of β as a function of advance distance and system proper-
ties was examined using a system of dimensionless variables using
unsteady flow simulation. β varies over a narrow range and, thus,
can be assumed constant with advance distance in practical volume
balance calculations, when the field bottom slope is small, infiltra-
tion rates vary widely as a function of opportunity time, and the
field length is short relative to the maximum distance that water
can advance with the given flow. In contrast, β varies widely with
advance distance when the slope is steep, when infiltration rates are
relatively constant during the event, and with long fields (relative to
the maximum advance distance). Estimating β as a function of ad-
vance distance is most challenging under these latter conditions.

Practical relationships for β as a function of field slope only are
proposed. These relationships will result in reasonable estimates for
the flow depth, but not necessarily for the surface shape factor. Be-
cause surface storage as a fraction of the applied volume decreases
with increasing advance distance, these errors may have a small
effect on the accuracy of volume balance calculations. This is par-
ticularly true with large field slopes. Very large volume balance
errors are possible with large field slopes, however, if the distance
advanced by the water is small and if the infiltration rate is a rel-
atively constant term and the field length is close to the maximum
distance that water can advance with the given flow. In those cases,
the infiltrated volume grows slowly relative to the applied volume.
Users of volume balance procedures need to be aware of conditions

in which these systematic errors are large and more sophisticated
determinations of β are needed.

Notation

The following symbols are used in this paper:
a = empirical infiltration exponent;

A0 = upstream flow sectional area;
b, B = empirical infiltration steady-infiltration rate constant;
B� = dimensionless furrow irrigation parameter;

BW = bottom width for a trapezoidal furrow;
c = constant of the power law relationship for top width as a

function of flow depth;
D�

0 = dimensionless furrow irrigation parameter;
FS = furrow spacing;

k, K = empirical infiltration constant;
K� = dimensionless furrow irrigation parameter;
Lf = field length;
m = exponent of the power law relationship for top width as a

function of flow depth;
n = Manning roughness coefficient;

Q0 = inflow rate;
R = hydraulic radius;
Sf = friction gradient;
SS = side slope for a trapezoidal furrow;
S0 = field bottom slope;
T = top width;
t = time;

tco = cutoff time;
treq = time required to infiltrate the required infiltration depth

zreq;
tx = advance time to distance x;

Vin = inflow volume;
Vy = surface storage volume;
VZ = infiltration volume;
x = distance along stream;
xA = advance distance;
y = flow depth;
yn = normal flow depth;
y0 = upstream flow depth;
Z = infiltration volume per unit length;

Table 10. Inputs and Calculations for Practical Example

Pred. Meas.

t min xA m xPA m Vin cum Qin l∕s Vro m3 β y0 cm A0 m2 σy Vy m3 Vy m3 EVB (%)

(E-02)

0.00

9 30.5 0.84 1.56 0.00 0.40 7.07 1.84 0.60 0.34 0.17 20.1%

20 61.0 1.85 1.51 0.00 0.40 7.72 2.15 0.60 0.78 0.71 3.8%

35 91.4 3.20 1.51 0.00 0.40 8.14 2.36 0.59 1.28 1.11 5.4%

55 121.9 4.98 1.45 0.00 0.40 8.31 2.45 0.59 1.77 1.87 2.0%

77 152.4 6.90 1.45 0.00 0.40 8.52 2.55 0.59 2.31 2.48 2.5%

91 168.6 8.11 1.43 0.00 0.40 8.55 2.57 0.59 2.57 2.79 2.7%

100 168.6 179.0 8.89 1.44 0.09 0.40 8.62 2.61 0.62 2.74 2.88 1.5%

120 168.6 201.2 10.63 1.43 0.54 0.40 8.70 2.65 0.67 3.00 3.06 0.6%

149 168.6 231.1 13.03 1.34 1.40 0.40 8.60 2.60 0.72 3.15 3.17 0.2%

180 168.6 260.8 15.54 1.35 2.33 0.40 8.69 2.65 0.75 3.37 3.24 0.8%

210 168.6 287.9 17.95 1.32 3.23 0.40 8.71 2.66 0.78 3.49 3.22 1.5%

235 168.6 309.4 19.93 1.32 3.98 0.40 8.75 2.68 0.80 3.59 2.96 3.2%

Note: Vro = Runoff volume; Pred = Predicted; Meas = Measured. All other variables as previously defined.
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z = infiltration volume per unit area;
zreq = required infiltration depth;
β = exponent of the power law relationship for y(x);
λ = relative contribution of the steady-state infiltrati; on term

to zreq in treq; and
σy = surface shape factor.
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