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Abstract. Predicting the drivers of incursion and expansion of vector-borne diseases as part of early-warn-
ing strategies (EWS) is a major challenge for geographically extensive diseases where spread is mediated by
spatial heterogeneity in climate and other environmental drivers. Geospatial data on these environmental
drivers are increasingly available affording opportunities for application to a predictive disease ecology para-
digm provided the data can be synthesized and harmonized with fine-scale, highly resolved data on vector
and host responses to their environment. Here, we apply a multi-scale big data—model integration approach
using human-guided machine learning to objectively evaluate the importance of a large suite of spatially dis-
tributed environmental variables (>400) to develop EWS for vesicular stomatitis (VS), a common viral vector-
borne vesicular disease affecting livestock throughout the Americas. Two temporally and phylogenetically
distinct events were used to develop disease occurrence—environment relationships in incursion (2004) and
expansion years (2005), and then to test those relationships (2014, 2015) at two scales: (1) local and (2) land-
scape to regional. Our results show that VS occurrence at a local scale of individual landowners was related
to conditions that can be monitored (rainfall, temperatures, streamflow) or modified (vegetation). On-site
green vegetation during the month of occurrence and higher rainfall four months prior combined with either
cool daytime (expansion) or nighttime (incursion) temperatures one month prior were indicators of VS occur-
rence. Distance to running water (incursion) and host density based on neighboring ranches (expansion) with
infected animals were also important in individual years. At landscape-to-regional scales, conditions that
favor specific VSV biological vectors were indicated, either black flies in incursion years or biting midges in
expansion years. Changes in viral genetic lineage were less important to patterns in VS occurrence than fac-
tors affecting the host-vector-environment interactions. In combination with our onset map based on lati-
tude, elevation, and long-term annual precipitation, this year- and scale-specific information can be used to
develop strategies to minimize effects of future VS events. This big data approach coupled with expert
knowledge and machine learning can be applied to other emerging diseases for improvement in understand-
ing, prediction, and management of vector-borne diseases.

Key words: artificial intelligence; continental scale; expert knowledge; insect vectors; livestock; phylogeography;
regional scale; RNA virus; vesicular stomatitis virus.
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INTRODUCTION

Vector-borne diseases that spread over regio-
nal to continental scales pose threats to public
health, food security, and national and interna-
tional trade (Tomley and Shirley 2009). Predict-
ing the factors whose variation explains patterns
of disease as part of early warning strategies
(EWS) for arthropod-borne diseases (ar-
boviruses) is challenging because different hosts
(livestock, humans, or wildlife), vectors, and dis-
persal mechanisms can be involved as a disease
system encounters a spatially heterogeneous
environment through time (Racloz et al. 2012,
Altizer et al. 2013, Stewart-Ibarra and Lowe 2013,
Parham et al. 2015). Arboviruses with endemic
and epidemic life cycles, such as West Nile, Rift
Valley fever, and Venezuelan equine encephalitis,
are directly and indirectly influenced by environ-
mental variability at multiple spatial and tempo-
ral scales that often result in different processes
governing dynamics as spatial extent changes
(Woolhouse et al. 2013). Focusing on one or a
few factors or processes at the exclusion of others
can lead to devastating and surprising conse-
quences for human and livestock health (Jacquot
et al. 2017, Mayer et al. 2017, Sule et al. 2018). For
many diseases, there is often insufficient infor-
mation about the environmental factors and pro-
cesses that interact to govern dynamics leading
to multi-scale patterns in spread (Escobar and
Craft 2016). It is thus necessary to first develop
data-intensive, process-based approaches using a
disease system where datasets are readily avail-
able for the full suite of potential environmental
factors across its spatial domain (Michael et al.
2017). Developing scale-dependent, analytics-
based approaches will facilitate the implementa-
tion of more cost-effective early warning mitiga-
tion strategies for geographically extensive
diseases (Han and Drake 2016).

Traditional approaches to identifying pro-
cesses governing spread of disease have had lim-
ited success in examining multiple potential
environmental factors as the spatiotemporal
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conditions change. Local-scale disease processes
examined in response to environmental condi-
tions are traditionally studied in the laboratory;
however, these results cannot be extrapolated to
other spatial extents and field conditions unless
stability and stationarity in fine-scale pattern—
process relationships are assumed (Althouse
et al. 2012, 2016, Michael et al. 2017). Likewise,
studies of multi-scale correlations cannot easily
infer the importance of different processes
(Cohen et al. 2016), and case studies at regional
scales often fail to provide a mechanistic under-
standing of disease dynamics at finer scales
(Ginsberg et al. 2009, Messina et al. 2014, Walsh
and Haseeb 2015, Faria et al. 2017). Climate-dri-
ven models can examine the role of multi-scale
climatic variation on disease dynamics (Morin
and Comrie 2013), but not the relative effects of
the full suite of environmental factors that vary
across geographic space. Few studies have quan-
tified the multi-scale relationships among more
than one environmental factor and the habitat of
a vector-borne disease in attempts to elucidate
processes (Lo lacono et al. 2018), or to develop a
generalized strategy that can be applied to other
diseases globally (National Academies of
Sciences Engineering and Medicine 2016). Recent
advances in data science and online availability
of geo-referenced, multi-scale climate and envi-
ronmental datasets combined with the develop-
ment of trans-disciplinary approaches provide
opportunities to develop EWS that are both con-
text-dependent at a local scale and generalizable
across the geographic extent of a disease (Han
and Drake 2016).

Recently, Peters et al. (2018) developed a big
data—model integration (BDMI) approach guided
by expert knowledge to identify and evaluate the
relative importance of a large and diverse suite
of all known environmental factors and life-his-
tory variables to patterns in vector-borne patho-
gen incursion and expansion. This framework
uses a trans-disciplinary team to coherently inte-
grate: (1) fine-scale, process-based data and
understanding of vector and host responses to a
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pathogen and to the local environment, (2) geo-
referenced disease incidence and virus phyloge-
netic relationships, and (3) fine-scale patterns in
climate, land surface properties, and host density
for a multi-decadal temporal period across the
continental extent of a disease. This approach dif-
ferentiates drivers (e.g., climate, topography)
from specific variables within each driver that
are chosen for their ecological meaning in the
system under study (e.g., daily minimum tem-
perature, annual precipitation, elevation). The
approach considers potential effects of many
environmental variables on disease processes,
both individually and their interactions, within
and across spatiotemporal scales when little is
known about the ecology of a particular system.
The approach focuses on pattern—process rela-
tionships in the neighborhood of an individual
premise leading up to the time of disease. Both
key local (potential vertical transmission, hori-
zontal transmission, possible insect overwinter-
ing, contact spread between animals, insect
transmission to animals) and spatial processes
(dispersal of hosts and vectors) are used to iden-
tify major drivers that typically influence disease
systems. The relative influence of one or more
variables within each driver is assessed in a mul-
ti-model analysis based on expected relation-
ships from literature and team expertise with
responses in one or more processes, ultimately
leading to patterns in disease occurrence. This
approach allows comprehensive examination of
a large number of potential variables across a
range of scales, but then restricts analysis to
those variables that are biologically meaningful.
A trans-disciplinary team is used to develop the
conceptual model of the system, identify the vari-
ables, and then harmonize, analyze, and inter-
pret the data. Here, the utility of this approach is
illustrated using incursions into North America
by vesicular stomatitis New Jersey virus
(VSNJV), a model system for other vector-borne
diseases caused by RNA viruses.

The VS disease system

VSNJV is a vector-borne, zoonotic RNA virus
in the family Rhabdoviridae that causes readily
observed vesicular lesions on wildlife and
domestic livestock. In some species (ruminants,
pigs), these lesions are clinically indistinguish-
able from foot-and-mouth disease (FMD), one of
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the most devastating exotic diseases in livestock
that was eradicated from the United States in
1929. VS is the most reported vesicular disease
affecting livestock (domestic horses, cattle, pigs)
throughout the Americas (Rodriguez 2002), and
although VS is less severe than FMD, there is no
cure and no vaccine. Economic costs of VS
through loss of milk and meat production and
through regulatory repercussions (e.g., quaranti-
nes, limited movement, and sale of animals and
animal products) can be significant (e.g., losses
totaled> $14 M in the United States in 1995).

Despite decades of documented patterns of
occurrence (Rodriguez et al. 2000) and multiple
epidemiological studies, there is limited under-
standing about factors governing patterns in the
spread of VS through time. A VS event originat-
ing in Mexico has occurred every decade in the
Western United States since 1906 with a com-
bined spatial extent over> 1.1 M km? from 2004
to 2016 (Fig. 1a, b). Major disease cycles occur at
ca. 10-yr intervals that consist of the following:
(1) failed incursion years (defined as initial dis-
ease spread into the United States) where disease
is limited to southern states bordering Mexico
and stops after one year (e.g., 2012), (2) success-
ful incursion years with initially limited spatial
distribution (e.g., 2004; Fig. 1c) followed by
widespread expansion in subsequent years (de-
fined as proliferation and spread) (e.g., 2005;
Fig. 1d), and (3) extinction years where few or no
cases occur in a limited geographic area follow-
ing expansion (e.g., 2006). Recent analyses show
that each cycle of events has been caused by sin-
gle distinct viral genetic lineages that originated
in southern Mexico (Rodriguez et al. 2000, Rain-
water-Lovett et al. 2007, Velazquez-Salinas et al.
2014).

Landscape-scale patterns of disease have been
related to one or a few factors, such as elevation,
monthly  precipitation, or stream flow
(Rodriguez et al. 1996, McCluskey et al. 2003,
Elias et al. 2019). Host density and environmen-
tal conditions affecting the life cycle and disper-
sal of relevant VSV biological vectors (e.g., black
flies, biting midges, sand flies) are believed to
play a major role in VS occurrence based on field
observations and laboratory experiments (Wal-
ton et al. 1987, Kramer et al. 1990, Cupp et al.
1992). The Western United States is particularly
rich in climate, stream flow, vegetation, and
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(a)
VS Number of
Outbreak Counties Premises
Year States Infected Infected
2004 CO, NM, TX 43 294
2005 AZ, CO, ID, MT, 71 445
NE, NM, TX UT,
WY
2006 WY 3 13
2009 NM, TX
2010 AZ 1
2012 CO, NM, TX 12 36
2014 AX CO, NE, TX 32 435
2015 AZ, CO, NE, NM, 79 823
SD, TX UT, WY
2016 none 0 0
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Fig. 1. Location of VS confirmed cases in the United States (a) all cases from 2004-2015 by year, states, counties,
and premises infected, (b) 2004-05 (shades of blue) and 2014-15 (shades of green), (c) 2004, and (d) 2005 cases
showing general trend from south to north by colored areas developed using inverse distance measures with
kriging (data from www.aphis.usda.gov; USDA-APHIS-VS databases).

other biophysical data relevant to different com-
ponents of the disease transmission system
(Table 1). However, a multi-scale analysis of the
potential suite of factors that could affect insect
population dynamics and disease transmission
across the spatial extent and temporal domain of
this disease has not been conducted, and these
factors have not been examined under natural
conditions. Thus, the range of conditions for each
environmental variable where the VS disease
occurs has not been quantified, and the
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mechanisms mediating disease emergence and
expansion remain elusive.

Furthermore, VS can be a model system for
other vector-borne diseases because of the fol-
lowing: (1) the complexity and importance of the
reportable disease, (2) the epidemiological
knowledge of VS, yet lack of ecological under-
standing about the natural cycle and spread of
this disease, (3) the accessibility of co-located dis-
ease occurrence, viral phylogenetic, and environ-
mental data through time, and (4) the availability
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Table 1. Source, temporal, and spatial resolution of input data.

PETERS ET AL.

Spatial Component
Input data Source of data Temporal resolution resolution Variables|| or Processt
VSN]JV case AM Pelzel-McCluskey Daily data (2003-2016) point NA Host
occurrencef (USDA-APHIS-VS
databases)
VSN]JV lineagef  LL Rodriguez Daily data (2003-2015) point NA Virus
Animals§ https://quickstats.nass. 2002, 2007, 2012 data county  Horse (density) Dispersal
usda.gov/ (D, C, H)
Animal https://quickstats.nass. 2002, 2007, 2012 data county  Farm and ranch Dispersal
premises§ usda.gov/ (density) (D, C, H)
Pedology{ http://www.soilinfo.psu.edu/  Static maps [STATSGO] 900 m  Soil properties: % Biting
index.cgi?soil_data clay, AWCH# midge (V)
&conus&data_covéfract
[NRCS]
Hydrology https://www.scienceba Static maps 30 m Location of water Black fly (V)
se.gov/catalog/item/ bodies
51360134e4b03b8ec4025bfa
[USGS]
https://waterdata.usgs.gov/  Daily data (2003-2016) 30 m Stream flow Black fly (V)
nwis/sw [USGS]
http://giovanni.gsfc.na Monthly data (2003- 12 km  Runoff (cm); Soil Black fly
sa.gov/giovanni/ [NASA] 2016) moisture (%) (V); biting
midge (V)
Topographyq http://www2 jpl.nasa.gov/ Static DEM 900 m  Elevation (m) Oow, v
srtm/ [NASA]
Climatology http://www.prism.oregonsta  Daily, monthly data 4 km Minimum, OowW,V;V,H
te.edu/normals/ [OSU] (2003-2016); long-term maximum
average data (1981- temperature (°C);
2010) precipitation (cm)
Climatology http://climate.colostate.edu/ ~ Monthly data (2002- 12 km  Evaporative demand V, H
~drought [NOAA] 2015) drought index
(EDDI)
Land surface https://lpdaac.usgs.gov/ Monthly imagery; 5.6 km Vegetation V, H
properties, node/78 [NASA] MODIS (2003-2016) greenness (NDVI)

Note: Agencies in square brackets [ ] are the U.S. state or federal government agency with data.
+ Predominant process(es) expected to be important. Abbreviations are: D, dispersal; C, contact transmission; H, horizontal
transmission; V, vertical transmission; OW, overwintering (other processes are either less important or there is insufficient data

on importance).
I Response variable.

§ Host factors: Linear extrapolation was used to estimate values in years without sampling.

9 Environmental drivers.

# Available water holding capacity.

| Variable classes used in Fig. 3.

+1 See Table 2 for temporal variables.

of scientific and technological expertise. In addi-
tion, occurrences of the disease are known to be
associated with the presence of the virus because
our case definition is clinical signs of disease con-
firmed by laboratory detection of the virus or
immunological evidence of recent infection.

We had two objectives: (1) to identify the fac-
tors governing spatial variability in VS occur-
rence at the landscape-to-regional scale and (2) to
assess how local-scale environmental conditions
differ between years when animals become
infected compared to years without infection,
considering incursion years when neighboring
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premises are not infected separately from expan-
sion years when neighboring premises contain
infected animals. Addressing these objectives
will inform the development of scale-dependent
early-warning strategies for VS in the Western
United States given that some of the conditions
for disease spread at a larger scale can be modi-
fied at the local scale.

We used our multi-scale framework to test
hypotheses at two spatial scales. (1) At the land-
scape-to-regional scale, we hypothesized that spa-
tial patterns are determined by either (a) viral
genetic  determinants alone, such that
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relationships developed between VS occurrence
and explanatory variables in 2004, an incursion
year, can be successfully applied to explain pat-
terns in an expansion year with similar virus
phylogeny (2005) (virus hypothesis) or (b) envi-
ronmental variables such that relationships
developed in one incursion (e.g., 2004) or expan-
sion year (e.g., 2005) can explain patterns in
another incursion (or expansion, respectively)
year with a different phylogeny (incursion—ex-
pansion hypothesis). To test these alternative
hypotheses, we compared variables related to
occurrence patterns in two separate incursion-ex-
pansion events separated by a decade (2004—
2005, 2014-2015) in which viral phylodynamics
have been characterized.

(2) At the local scale of individual premises, we
focused on vector-environment interactions
because information on host immunity was
unavailable. We expected a sequence of condi-
tions would precede infection that are related to
processes that increase the abundance of compe-
tent and infected insect vectors; different condi-
tions in incursion and expansion years should
indicate that different vectors are involved in
each year. We tested this hypothesis using a
detailed temporal analysis (1-4 weeks and 1-
12 months prior to infection) to compare the
importance of factors to VS occurrence at indi-
vidual premises.

METHODS

Approach to variable selection and harmonization
The trans-disciplinary team consists of experts
in this disease, ecologists, and ecoinformatics
experts, including people with experience in big
data analytics and machine learning (Fig. 2). Our
approach focuses on pattern—process relation-
ships in the neighborhood of an individual pre-
mise leading up to the time of disease. The
spatiotemporal resolution of a neighborhood is
assumed to depend on the relationship between
a variable and the vector or host process with the
potential to influence infection. Both key local
(potential vertical transmission, horizontal trans-
mission, possible insect overwintering, contact
spread between animals, insect transmission to
animals) and spatial processes (dispersal of hosts
and vectors) were used to identify six environ-
mental drivers a priori (pedology, hydrology,
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topography, climate, drought, land surface prop-
erties) that typically influence disease ecology
systems based on the literature (Table 1). Within
each driver, we used expert knowledge in the VS
system to select one or more variables expected
to influence patterns or responses in one or more
disease processes (Table 1), ultimately leading to
patterns in VS occurrence. This approach allows
comprehensive examination of a large number of
potential variables, but then restricts analysis to
those variables that are biologically meaningful
(Tables 1, 2). We then identified a data source for
each variable to cover the spatial and temporal
extent of our study location, the contiguous
watersheds in the Western United States where
VS occurred between 2004 and 2015 (www.a
phis.usda.gov) (Fig. 1b).

After variables and corresponding datasets
were identified (Table 1), harmonization was
used to facilitate synthesis and integration
(Fig. 2). The VS disease occurrence data were
converted from a geographic coordinate system
to an equal area projection system (e.g., Albers
Equal Area Conic) to ensure cell sizes remained
the same (1 km?) throughout the large spatial
extent (~1.1 M km?) of the study area. All other
variables were harmonized to the projection,
geographic origin, and cell size of this VS
occurrence base map. The type of the native
structure of the source data (raster, vector,
polygon) determined the harmonization proce-
dure and format of the analysis. For raster data
(e.g., gridded PPT at a 4 km x 4 km resolu-
tion), harmonization consisted of resampling
maps to 1 km x 1 km. Vector data (e.g., points,
lines) were converted to raster, harmonized to
the base layer, and then translated into distance
maps. Polygons were rasterized by calculating
average properties and then harmonized to the
base layer. All spatial data were manipulated
with ArcGIS v.10.3 to assist in the harmoniza-
tion procedure. The variable selection proce-
dure resulted in 472 raster layers, which were
collated into a harmonized data cube to enable
calculations and predictions to be carried out in
geographical space.

For landscape-to-regional-scale analysis, the R
package MaxentVariableSelection (Jueterbock
2015) was used to control model complexity,
avoid collinearity among predictor variables, and
optimize parameters for analysis. Variables were
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1. Based on observed
patterns & processes, build
the trans-disciplinary team.

9. Refine
conceptual
model.

/

8. Develop mitigation
strategies and field-
test hypotheses

7. Use results to
develop Early
Warning Strategies
(EWS)

2. Develop conceptual
model, identify processes
and environmental drivers.

4

Repeat for each
variable, process,
and driver

—

|

3. For each process, develop
hypotheses to identify specific
variables (and data sources) for each
driver to explain observed patterns.

v

4. For each selected variable,

access/download dataset at

appropriate temporal resolution
and spatial extent

!

5. Standardize and harmonize
all datasets with geo-
referenced VS occurrence data

Ve

Human guided-
machine learning
(ML)

6. Conduct ML & statistical
analyses to test hypotheses
about patterns in VS
occurrence

/

\

6a. Landscape to
regional patterns

6b. Localscale patterns

Fig. 2. Workflow showing the major steps in our approach to predictive disease ecology that includes an inte-
gration of big data with models, expert knowledge, and machine learning. Expert knowledge from disease

experts and ecologists are shown in blue boxes, ecoinformatics expertise is shown in pink boxes, and human-

guided machine learning is shown in yellow boxes.

removed from the analysis whose contribution to
the model was <5% and whose correlation with
another variable was >0.7. The resulting model
typically had <20 uncorrelated variables, and <10
variables with contribution >5%. For the local-
scale analysis, a tabular dataset was generated
from the raster maps such that fine-scale relative
temporal relationships (weeks or months prior to
a VS occurrence) were preserved between occur-
rence and environmental variables, and arbitrary
classifications (e.g., month, season) at broad spa-
tial scales were masked. Cell size (4 km?) was
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selected to characterize the environment sur-
rounding a VS occurrence. All spatial data
exported to tabular data were extracted from ras-
ter maps (118 variables) by calculating the mean
of values extracted from a 100-point grid cen-
tered on a VS occurrence location. The number of
candidate variables for multivariate analysis was
reduced to 20 using an iterative, human learning
procedure to identify those variables with the
strongest univariate relationship to VS occur-
rence to avoid collinearity among predictors
>70%. All tabular data processing and analyses
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Table 2. Derived temporal variables for landscape- and regional-scale (noted by a superscript “1”) and local-scale

(noted by a superscript “2”) analyses.+

Variables with temporal Weekly”  Monthly'? mean  Seasonal' mean ASeasonal’ Annual'? mean
resolution (from Table 1) (n=4) (n=12) (n=4) mean (n = 4) (n=1or2)
Surface water properties}

Runoff X X X

Soil moisture X X X

Streamflow X X
Air temperature}

Minimum X X X X

Maximum X X X X
Precipitation} X X X X
Drought index (EDDI)} X X X
Vegetation greenness (NDVI)} X X X
Horse (density)§ X9
Properties with horses (density)§ Xq

Notes: “Monthly” refers to January to December. “Seasonal” refers to winter, spring, summer, and fall.
+ Each of 4 yr analyzed separately (2004, 2005, 2014, and 2015).

1 Environmental variables.
§ Biotic factors.

9 Linear extrapolation used for non-sample years; temporal analysis included prior and current year.

were conducted in SAS v.9.4: SAS Institute, Cary,
NC USA.

Identification of variables and data sources

VS occurrence data.—Records of VS occurrence
(2004 through 2016) were obtained from USDA
Animal Plant Health Inspection Service (APHIS).
The USDA-APHIS policy of mandatory report-
ing of VS occurrence by doctors of veterinary
medicine resulted in accurate identification of
VSN]JV-infected animal, onset date, and premise
location. Occurrence data represent the clinical
onset of VS lesions. Since only occurrences were
reported, premises where VSV did not occur (i.e.,
absence data) were unavailable for analysis. We
focused on two VS events that represented 96%
(n = 1550) of recorded occurrences from 2003 to
2015: 20042005 for model development, and
2014-2015 for validation and hypothesis testing.

Virus phylogenetic data.— Viral genetic variabil-
ity evaluated with a phylogenetic analysis using
partial genomic sequences (P gene hypervariable
region) have been previously described for the
2004-2006 and 20142015 outbreaks (Rainwater-
Lovett et al. 2007, Velazquez-Salinas et al. 2014).
Phylogenetic analyses were based on near full-
length genomic sequences of representative viral
strains from the two outbreaks. Alignments were
conducted using the ClustalW algorithm imple-
mented in MEGA v7.0.18 (Kumar et al. 2016).
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Models of nucleotide substitution were evaluated
using the Model Testing tool in CLC Genomics
Workbench where various statistical analyses
were assessed (hLRT, BIC, AIC, and AICc) and
the GTR + G model was implemented in a maxi-
mum likelihood (ML) phylogenetic reconstruc-
tion (www.qiagenbioinformatics.com).

Livestock density.—To capture host population
densities, two livestock variables were acquired:
number of horses and number of horse premises
from tabular county census data in available
years (2002, 2007, 2012) (Table 1). Broad-scale
and long-term patterns were evaluated using the
mean of yearly census data while fine-scale pat-
terns were evaluated by linearly interpolating
annual values. Lastly, county livestock density
(number of horses or premises with horses per
km?; Table 2) was calculated as the average or
yearly number of animals or premises divided
by county area. Only the horse data for VS had
sufficient numbers for analysis in all four years;
data for other animals were too sparse for multi-
year analyses. These averages were rasterized
and included in the raster dataset and yearly val-
ues were incorporated into the tabular dataset.

Since proximity to VS occurrences and horse
density are likely to facilitate transmission, we
calculated the number of neighbors with VSV
using the following procedure for the local analy-
sis. For each VS occurrence, the number of horses
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with VSV in the neighborhood was counted dur-
ing the occurrence year, defined as 1 March
through February, and during the prior year. A
neighborhood was defined by centering a
36 km x 36 km grid (9 x 9 cells) on an occur-
rence location.

Pedology.—Two variables were used to capture
soil properties that influence small pools of
standing water and favorable conditions for bit-
ing midges. Available water content (AWC) and
percentage clay content in the top 20 cm were
extracted from STATSGO (Table 1) and summa-
rized by calculating weighted means by area
from all soil components in each map unit. The
polygon data were then rasterized and incorpo-
rated into the raster and tabular datasets.

Hydrology.—Three variables were used to cap-
ture hydrological conditions expected to lead to
favorable environments for black flies. Daily
stream flow data (streamflow: Table 1) were
used to estimate the presence of water in ephem-
eral watercourses and to quantify the rate of flow
(in cubic feet per second [cfs]). Distance to non-
zero monthly, annual, and mean annual flow
data, measured as Euclidean distance, were
incorporated into the raster and tabular dataset.
Euclidean distance to major rivers and lakes
(USGS 2017) was included in the raster dataset
only. Lastly, mean monthly stream flow calcu-
lated from the closest gauges (mean = 18.7 km)
for the 11 months prior to a VS incident was
incorporated into the tabular dataset.

Surface runoff and soil moisture were included
(Table 1) to identify favorable conditions for
black fly reproduction. Daily runoff (in kg/m?)
and soil moisture (in kg/m?) values averaged for
each month, season, and year were included in
the raster dataset. Monthly averages for the prior
11 months were calculated and incorporated into
the tabular dataset.

Topography.—Elevation (in m) was used to cap-
ture ecosystem variability resulting from topocli-
matic processes. Elevation derived from digital
elevation models (Table 1) was incorporated into
the raster and tabular datasets.

Climatology.—Daily and monthly total precipi-
tation (mm) and average maximum and mini-
mum temperature (°C) data were used to
calculate seasonal, annual, and 30-yr means to
explore macro-scale climatic relationships with
disease occurrence. In addition, weekly averages,
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calculated from daily data, and monthly aver-
ages relative to VS incident date (i.e., prior weeks
or months) were extracted for each VS occur-
rence and incorporated into the tabular dataset.
Severe departure from normal climatic condi-
tions resulting in drought was captured by the
evaporative demand drought index (EDDIL
Table 1). Seasonal, annual, and long-term values
were calculated with the longest available data-
set following the same procedure used for the
PRISM data and incorporated into the raster and
tabular datasets.

Vegetation.— Variation in vegetation growth
may be important to both host and vectors. To
capture variability in green vegetation biomass,
we included normalized difference vegetation
index from MODIS (NDVI: Table 1).

Normalized environmental variables

In addition to raw data values, normalized val-
ues were calculated to limit sensitivity to differ-
ences in magnitude. Deviations from seasonal
long-term means were calculated using 30-yr
means for climate from the PRISM database for
temperature and precipitation. For other vari-
ables, such as livestock density, streamflow,
EDDI, NDV], soil moisture, and runoff, the long-
term averages were calculated over the duration
of the time period of VSNJV incidence data
(2004-2015).

Hypothesis testing

Objective 1: Landscape-to-regional-scale
analysis.—We used Maxent (Phillips et al. 2006,
Phillips and Dudik 2008) to model annual distri-
butions of VS and to calculate relative occurrence
rates (RORs) across the study area. Maxent has
been used extensively to create and evaluate spe-
cies distributions in covariate space, often repre-
sented geographically, across a broad range of
biological applications using presence-only data
(Elith et al. 2011). This machine-learning
approach, based on the principle of maximum
entropy, enables fitting of complex non-linear
relationships and performs similarly or better
than traditional general linear modeling
approaches, particularly when only occurrence
data are available (Elith et al. 2006).

For each Maxent analysis, 10 replicates were
conducted using a 90% random subsample of the
occurrence data for model training which were
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then averaged together to create the final model.
Because Maxent settings were optimized using
the R package MaxentVariableSelection (Jueter-
bock et al. 2016), we were able to compare multi-
ple models of annual VS occurrence using AIC.
Model performance was assessed using the cor-
rected Akaike information criterion (AICc) which
provides a relative measure of model quality
considering fit and complexity (Akaike 1998).
Model selection criteria, such as AIC, are
designed to minimize overfitting by penalizing
excess complexity (Boxand Draper 1987, Burn-
ham and Anderson 2004) which can result in
poor model transferability (Chatfield 1995, Sarle
1995). Underfitting can also reduce transferabil-
ity, especially when indirect predictor variables
are incorporated in a model (Wenger and Olden
2012). Multi-model inference was applied in the
development of annual models and only the best
performing model was projected into the valida-
tion years. To ensure that models were suffi-
ciently parsimonious but not underfit, we
assessed the best performing model’s transfer-
ability by non-randomly partitioning our data
into temporally distinct subsets (years), which
were then used for training (2004 and 2005) and
validation (2014 and 2015). Our results provide
insight into how the model will perform (trans-
ferability) under subsequent environmental sce-
narios (Vaughan and Ormerod 2005). We
followed previous recommendations by inter-
preting the Maxent output as relative occurrence
rate (ROR) (Merow et al. 2013). We evaluated
variable importance using jackknife plots, vari-
able response curves, and frequency distribution
plots to test hypotheses about VSNJV occurrence.

To evaluate support for our virus or incursion—
expansion hypotheses, variability in annual
VSNJV occurrence patterns was explored by
developing separate models for VS occurrences
in 2004 (incursion) and 2005 (expansion). The
2004 and 2005 models were then cross-evaluated
by projecting each onto 2014 and 2015 environ-
mental conditions. The ability of each model to
predict subsequent events and event specificity
(e.g., whether or not an incursion model [2004]
can predict a future phylogenetically unrelated
incursion event [2014] or a phylogenetically
related expansion event [2005]) was then evalu-
ated using the mean predicted ROR values at
occurrence and randomly selected background
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locations and by visually inspecting the geo-
graphic representation of ROR. Degree of niche
similarity between models was determined using
Schoener’s D and Warren'’s I.

Objective 2: Local-scale analysis.— A tabular data-
set was developed from the raster maps (118
variables) such that fine-scale relative temporal
relationships (weeks or months prior to a VS
occurrence) were preserved between occurrence
and environmental variables. Cell size (4 km?)
was selected to characterize the environment sur-
rounding a VS occurrence and included only the
weekly and monthly data associated with the
1393 unique combinations of sampling locations
and “occurrence” month-week. To capture the
degree of deviation from normal conditions, we
analyzed the standardized values:

standardized value; =

(v, - vv%lvzf“_l (x; — %)

where V represents a variable at time interval ¢
and x represents each value of the dataset. Stan-
dardization enabled comparison among years at
the same location, reduced problems associated
with input scale, reduced issues with multi-
collinearity, and allowed interpretation in the
normal manner since regression coefficients are
identical. All spatial data were exported to tabu-
lar data by calculating the mean of values from a
100-point grid centered on a VS occurrence loca-
tion.

This process was performed for two purposes.
First, to compare individual contributions of
explanatory variables in order to explain tempo-
ral variation of VSNJV occurrence. We conducted
logistic regression of VSNJV occurrence (1 or 0)
against one explanatory variable at a time to
select 20 explanatory variables with highest max-
imum rescaled R?. Correlated explanatory vari-
ables (Pearson’s r > 0.7) were prevented from co-
occurring in the multivariate model. Second, daily
occurrence data were converted to Julian month,
and least-squares regression was used to evalu-
ate the relationship between county occurrence
and latitude, elevation, and long-term precipita-
tion. Predictor variables were selected based on
the highest R?. The resulting model was used to
generate a map of estimated onset dates for the
entire study area at 1-km” resolution using the
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rasterized environmental data. All local-scale sta-
tistical analyses were conducted in SAS v.9.4.

REsuLTs AND DiscussioN

Landscape-to-regional-scale analysis

Spatial distribution models based on human-
guided machine learning and constructed using
the geo-referenced, harmonized maps showed
that of the 472 possible variables (Table 1), only
four environmental drivers and host density
were needed to explain patterns in VS occurrence
in 2004 and 2005 (Table 3). Remarkably, these
drivers represent all but one of the possible
classes of environmental drivers included in the
analysis; only large-scale drought is missing
when both years are combined (Fig. 3, Table 3).
Hydrology, vegetation, and climate were impor-
tant in both years, and elevation was important
in 2004 while soil properties were important in
2005. These few drivers and the variables con-
tained within them provide both technological
and biological complexity that yield new insight
into factors governing spatial patterns in VS
occurrence.

First, there is high diversity in data sources
and types in these variables that required a big
data approach of creating derived data products
using decisions about spatial or temporal aggre-
gation and harmonization of online national
datasets prior to analysis. Detailed climate data
in time and space, digital elevation models, digi-
tal soil maps and accompanying properties,
remotely sensed imagery for vegetation, and dis-
tance calculations from each premise to the near-
est stream were handled differently before
analysis and often required domain technical
expertise for interpretation. Although most pre-
vious studies typically included one or a few of
these variables, and most studies focused on cli-
mate or elevation (e.g., Rodriguez et al. 1996,
McCluskey et al. 2003), our findings clearly show
the importance of including all of these variables
in a trans-disciplinary approach to vector-borne
diseases across large spatial extents.

Second, these few drivers are associated with
different processes, multiple levels of biological
organization (host, vectors), and different vectors
that reflect different variables (Table 1). High
horse density, proximity to streams with water,
and high green vegetation during the summer
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were important to VS occurrence in both the
incursion (2004) and expansion years (2005)
(Tables 3, 4). These variables may define general
habitat characteristics for VS based on horses as
known hosts, and black flies, a known vector,
that are biologically bound to flowing streams
for oviposition, hatching, and larval develop-
ment (Adler and McCreadie 1997). In the arid
and semiarid Western United States, an increase
in green vegetation during pre-monsoonal sum-
mer months is often found spatially distributed
along streams and other water bodies.

Because 2004 and 2005 have similar viral phy-
logenies (Rainwater-Lovett et al., 2007), we were
able to test whether spatial patterns are deter-
mined either by viral genetic determinants alone
(viral hypothesis) or whether environmental
variables are needed to explain different patterns
in occurrence in incursion (e.g., 2004) vs. expan-
sion years (e.g., 2005) (incursion—expansion
hypothesis). Results show that different environ-
mental variables were needed to explain patterns
of VS occurrence in each year (Table 3), in sup-
port of the incursion-expansion hypothesis. In
2004, high horse density (0.82 animals/km?),
locations at moderately high elevations
(mean = 1642 m) with low spring, prior winter,
and prior fall precipitation, and close proximity
to streams (17 km) were the most important vari-
ables to patterns in VS occurrence (Tables 3, 4).
Elevation has been implicated as an explanatory
variable for landscape-scale variation in VS
occurrence in Mexico and may be a surrogate for
a combination of vector-environment interac-
tions (Rodriguez et al. 1996) or may contribute to
stream flow dynamics that affect the black fly life
cycle. Hydrological patterns are also related to
patterns in VS occurrence in the Western United
States (Elias et al. 2019). The combination of these
factors and the limited spatial distribution of VS
occurrences in 2004 are consistent with the
hypothesis that black flies might be the principal
vector dispersing VS northward along streams or
flowing water canals in incursion years.

In 2005, summer conditions of low precipita-
tion, cooler than average temperatures, and high
green vegetation along with higher than average
rainfall in the fall, close proximity to streams,
and soils with moderately high available water
holding capacity (AWC) were the most impor-
tant variables associated with VS cases (Tables 3,
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Table 3. Significant variables in VS occurrence patterns in incursion (2004) and expansion (2005) years.

2004+ 20057
Percentage 2004 Percentage 2005
Temporal contribution = Permutation ~Sum  contribution Permutation = Sum
Variable unit (rank) importance  (rank) (rank) importance§ (rank)
Horse density 5-yr interval survey 32 (1) 18 50 (1) 8(7) 3 11
(animals/km?) data
Elevation (m) static DEM 16 (2) 16 36 (3)
Distance to nearest static maps 15 (5) 6 21 (5) 10 (5) 8 18 (5)
stream (km)
AWC (cm) static maps 8 (6) 3 11
Vegetation greenness summer 11 (4) 15 26 (3)
[dev], summer 7 (7) 7 14
Precipitation spring 14 (3) 19 26 (4)
(mm/month)
summer 0 29 (1) 28 57 (1)
winter 14 (4) 33 47 (2)
fall 7 (6) 1 8
[dev], fall 13 (3) 31 44 (2)
Temperature — [dev], summer 15 (2) 10 25 (4)
maximum (°C)
[dev], winter 6 (8) 1 7

Notes: The percentage contribution (with rank of importance in parentheses) and permutation importance of each variable
from MaxEnt analysis in explaining spatial variation in each year are shown. AWC, available water holding capacity of the soil;
dev, deviation from long-term mean.

+ Beta multiplier = 3.0 optimized from the R package and run in MaxEnt; (rank).

1 Beta multiplier = 2.5 optimized from the R package and run in MaxEnt; (rank).

§ The permutation contribution is the decrease upon removal of a variable from the model. A large decrease indicates that
the model depends heavily on that variable. Values are normalized to sum to 100.

2005
A Horse VDistance  A'NDVI ¥ PPT A Tmax APPT A Tmax
density TAWC to water  (summer) (summer) (A summer) (Afall) (A winter)
] I
Host factors Soil Hydrology Vegetation Climate
2004
AHorse VDistance tnDvi ¥pPT Yppr  ¥pPPT
density Elevation to water (A summer)  (spring) (winter) (fall)
| | -l
Host factors Topography Hydrology Vegetation Climate
0 25 50 75 100

Contributon (%)

Fig. 3. Significant variables in VS occurrence patterns by driver class in incursion (2004) and expansion (2005)
years. The relative percentage contribution of each variable in explaining spatial variation in each year is shown.

4) These conditions would promote an additional habitat (e.g., biting midges; Culicoides spp.) (Mul-
insect vector that requires small patches of shal- lens and Rodriguez 1988). Numbers of compe-
low water or waste-enhanced mud along the tent female midges peak in late summer and
edges of bodies of water for successful breeding early fall (Mullens and Rodriguez 1988, Mullens

ECOSPHERE % www.esajournals.org 12 June 2020 % Volume 11(6) ** Article e03157



MACROSYSTEMS ECOLOGY

PETERS ET AL.

Table 4. Mean predicted relative occurrence rates for important variables (from MaxEnt analysis in Table 1) in
occurrence (0) and background (bg) locations for incursion (2004, 2014) and expansion (2005, 2015) years.

2004 2005 2014 2015

Variable Temporal unit o bg o bg o bg o bg

Horse density 5-yr interval survey data 0.82 0.36 0.49 0.36 1.11 0.36 0.66 0.36
Elevation static DEM 164194 1384 1536.32 1384 137513 1384 1657.15 1384
Distance to nearest stream static maps 17.35b 2880 16.05b 28.80 22.57a 28.80 17.87b  28.80
AWC static maps 1210 1067 1251 1067 1317 1067 1218  10.67
Vegetation greenness summer 0.45 0.38 0.43 0.40 0.51 0.38 0.49 0.41
[dev], summer 0.02b  0.003 0.02b  0.02 0.03b 0.0006 0.04a  0.03
Precipitation spring 40.70 4150 3485 4397 5156  36.11 65.86  69.60
summer 54.63a 5439 27.17c 4791 5528a 55.85 49.28b 5249
winter 15.40c 2620 24.90a  36.0 16.5c 1772 209> 2745
fall 37.63a 59.08 2791b 2951 37.38a 4195 31.22b 48.18

[dev], fall 8.89a 1958 0.84c -998  3.28b 2.45 140c  8.68

Temperature, maximum [dev], summer -1.25¢ -1.06  -0.36a 0.08 -0.67b -0.06 -0.32a -0.11
[dev], winter 0.26 -0.12 1.58 0.79 -1.01 -0.31 1.23 0.83

Note: Variables are defined in Table 1.

1989, Pfannenstiel and Ruder 2015), and have
been associated with variations in local climate
(Stallknecht et al. 2015). Thus, we hypothesize
that these differences in important variables
between years is a shift from an insect vector
(black flies) in incursion years where moving
water is needed for successful breeding and
transport of eggs and larvae, and could explain
patterns in disease concentrated along rivers, to
multiple insect vectors (e.g., black flies and
midges) in expansion years that would allow
widespread expansion of disease throughout the
geographic area.

We further tested our hypotheses by compar-
ing distribution models constructed from 2004
(or 2005) environmental data and VS occurrence
data with a second event a decade later (2014
incursion; 2015 expansion) caused by a phyloge-
netically different viral lineage (R. M. Palinski, S.
J. Pauszek, N.D. Burruss et al., unpublished data).
Our results show that the two incursion years
(2004, 2014) were most similar, and the two
expansion years were most similar in environ-
mental conditions (Fig. 4f). The model created
using 2004 environmental data (i.e., incursion
model; Fig. 4a) had the highest ROR (0.57;
Fig. 4f) and the greatest degree of niche overlap
(Schoener’s D = 0.46, Warren’s [ = 0.74) with the
2014 (Fig. 4b) environmental data in predicting
VS occurrences in that year more so than with
data from the same viral lineage in an expansion
year (2005; Fig. 4c) or with a different viral
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lineage (2015; Fig. 4d). Using the 2005 model
(Fig. 4c), the highest ROR (0.33) and greatest
niche overlap (Schoener’s D = 0.74, Warren's
I = 0.82) were found with 2015, the other expan-
sion year, yet with a different viral lineage
(Fig. 4d). Both incursion years (2004, 2014) had
lower winter precipitation, higher summer and
fall precipitation, and cooler long-term summer
maximum temperatures compared with both
expansion years (2005, 2015) (Fig. 5). These
results indicate that changes in viral genetic lin-
eage were less important to patterns in VS occur-
rence than factors affecting the host—vector—
environment interaction in incursion (2004, 2014)
and expansion (2005, 2015) years. Thus, vector—
environment interactions had a stronger control
on patterns in disease occurrence than viral phy-
logeny.

Local-scale conditions preceding VS incursion and
spread

Similar to the large-scale analysis, there was
some overlap in on-site environmental condi-
tions that represent incursion and expansion
years, but there were also distinct differences
(Fig. 6). These results provide further support for
two vectors: black flies predominating in the
incursion phase when few infected animals were
present, and biting midges being the dominant
vector in the expansion phase when far more
infected animals were present. This relationship
with the host has been observed previously as
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Fig. 4. Distribution of VS occurrences compared with MaxEnt modeled distributions at the landscape-to-re-
gional scale. Model parameters are treated as traits to calculate niche overlap. (a) 2004 modeled values (colors)
with 2004 VS occurrence point data, (b) 2004 modeled values (colors) using 2014 environmental data showing
2014 VS occurrence point data points for validation, (c) 2005 modeled values (colors) with 2005 VS occurrence
point data, (d) 2005 modeled (colors) using 2015 environmental data showing 2015 VS occurrence point data for
validation, and (e) phylogenetic tree reconstructed using isolates from recent US outbreaks. The subtree labeled
P1 contains the isolates from 2004-2005 indicated by black dots in (a) and (c) while the subtree labeled P2 con-
tains the isolates from 2014-2015 indicated by red dots in (b) and (d). (f) Assessment of each model’s ability to
predict future events was evaluated with mean (and standard error [SE]) predicted relative occurrence rates
(ROR) at VS locations during subsequent years of infection. Degree of niche similarity between models based on
Schoener’s D (lower left triangle) and Warren’s I (upper right triangle).
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Fig. 5. Comparisons of mean environmental conditions between incursion (2004, 2014; filled bars) and expan-
sion years (2005, 2015; open bars) at VS occurrence locations: horse density, elevation, distance to nearest stream,
vegetation greenness in summer, normalized vegetation greenness in summer, spring precipitation, summer pre-
cipitation, winter precipitation, fall precipitation, normalized fall precipitation, normalized maximum summer
temperature, and (normalized maximum winter temperature. Letters indicate significant differences between

2004 2005 2014 2015

years (P < 0.05).
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Early Warning Strategy Steps

1. Determine onset month for
location.

2. Are VS infections locally
present?

Onset Month Model

Onset Month =

0.21 * latitude (°)

+ 0.0005 * elevation (m)

+ 0.003 * longterm PPT (cm/y)

3. Monitor local conditions of 2 —-2.01

monthly indicators relative to ENovge ™ w.

long-term average at site. HDec ¥, R2 = 0.27

4. Make management decisions - \ ‘ﬂ_ 1P <0.001

to reduce probability of disease. A n = 1491
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Fig. 6. The sequence of events that precedes the occurrence of VS at scale of an individual premise in incursion
(lower) and expansion years (upper panel). Mean VS onset month calculated for any location in the region based
on latitude, elevation, and long-term precipitation (R2 =0.27, P < 0.001, n = 1491). Given this date, a livestock or
equine owner can monitor their local conditions to determine the likelihood that VS will occur in each month of
that year. Univariate plots illustrate the relationship between predicted probability of occurrence (P) and stan-
dardized environmental conditions.

horses (and other livestock) within 0.4 km of risk of contracting VS (Hurd et al. 1999, McClus-
running water (which presumably placed them key et al. 1999). On-site green vegetation during
at higher exposure to black flies) had a greater the month of occurrence and higher rainfall four
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months prior combined with either cool daytime
(expansion) or nighttime (incursion) tempera-
tures one month prior were common indicators
of VS occurrence in both years (Fig. 6). The
remainder of the variables were related to the
putative vector: either black flies in incursion
years (stream flow [2 months prior], surface run-
off [3 months prior]) or midges in expansion
years (soil moisture [3 months prior]) (Fig. 6).
Our results are consistent with studies on black
flies showing that numbers of viable eggs and
larvae that survive the winter are dependent on
dynamics of early season stream flow, water and
air temperature, atmospheric humidity, and
other factors (Mullens and Rodriguez 1988).

Developing early warning strategies for VS and
other vector-borne diseases

Our multi-scale findings showed a temporal
sequence of early warning indicators supported
by a spatial analysis of important vectors that
veterinarians and livestock owners can use as
early warning strategies for VS occurrence
throughout the Western United States. These
indicators do not depend on knowledge of envi-
ronmental variables that vary geographically, but
rather depend on conditions relative to average
conditions on a premise. Recently, an EWS was
proposed using computer-based searches that
relies on the public response triggered by the
occurrence of the initial outbreaks (Wang et al.
2018). Our EWS consist of a statistical relation-
ship to first estimate onset month of VS for a pre-
mise (Fig. 6), and then a set of indicators is
selected based on disease phase (incursion,
expansion) and vector identity (black fly, biting
midges) (Fig. 6). Predictions that do not consider
disease phase or vector identity are likely to be
too general for use at finer spatial and temporal
scales. Proactive measures to reduce exposure to
vectors can then be implemented in advance,
such as reducing on-site vegetation in years with
cool summer temperatures, relocating suscepti-
ble animals away from streams and housing
them in structures guarded from biting insects
(Hurd et al. 1999) or implementing aggressive
vector habitat mitigation strategies in locations
with a high probability for VS expansion.

Prior to this analysis, specific knowledge about
vector-environment interactions in incursion vs.
expansion phases, and the identity of these early
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warning indicators were not available for VS.
The hypotheses generated by this analysis are
being used to guide field studies to sample vec-
tors for VSV across environmental gradients in
the Western United States. Collection of new
data about vector-environment relationships, in
particular in different years of a VS event, will
improve future model predictions and ultimately
aid in the refinement of the conceptual model
under development for the VS system (Peters
et al. 2018).

This big data approach coupled with human
and machine learning can be applied to other
emerging diseases for improvement in under-
standing, prediction, and management of vector-
borne diseases (National Academies of Sciences
Engineering and Medicine 2016). Translation of
this knowledge can be made to improving ani-
mal and human welfare, and aiding food secu-
rity to assist in development of early warning
strategies that are currently based primarily on
climate (Munoz et al. 2016) or environmental
predictions based on only a few variables (Lo
Tacono et al. 2018).
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