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Introduction

Traditionally, in multivariate regression, the residual mod-
elled error [for example, the standard error of calibration (SEC); 
the standard error of cross-validation (SECV); the standard 
error of performance (SEP)] is used to select the “best” model. 
Comparisons may be among different numbers of latent vari-
ables, different pre-treatments, or different model types alto-
gether [partial least squares (PLS) or principal component 
regression (PCR), artificial neural networks (ANN), etc.]. 
In the fi rst case, commercial multivariate analysis programs 

often utilise a heuristic test to balance the choice between the 
lowest standard error with a model that possesses a slightly 
larger error, but with fewer factors. Recent efforts have been 
made to codify these selection procedures in a statistical basis. 
Indahl and Næs1 developed a two-way analysis of variance 
(ANOVA) procedure that uses the squared or absolute values 
of the residuals, with sample number (a random effect) as 
one level and method type (six model types examined) as the 
second level. This procedure was used to evaluate six differ-
ent transformations that reduced two-dimensional image data 
to one-dimensional spectra. Non-parametric test evaluation 
of models was suggested by Thomas,2 in which the signs of 
the differences of corresponding sample residuals of a pair of 
models were used, with and without ranking of the difference, 
to compare models with a varying number of latent vari-
ables. Another procedure evaluates cross-validation error by 
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It is common to use data pre-treatments such as scatter correction, derivatives, mean centring and variance scaling prior to the 
development of near- and mid-infrared spectral calibrations. As a result, it is possible to generate a multitude of calibrations, many 
of which will have similar statistical properties, as measured by the coeffi cient of determination (R2) and the residual error. With 
respect to validation data sets, calibration equations have a tendency to provide the most optimistic modelling statistics on the set 
of data to which they were developed; however, the pre-treatment that was optimal for one set of samples may not be the best for 
future samples and, therefore, not the most robust calibration. If several calibrations are found to be statistically the same, then 
other criteria could be used to determine which one to use (for example, one with fewest partial least squares (PLS) factors or based 
on past experience) or further investigations could be carried out on the more limited set of calibrations deemed to represent the best 
of all those originally developed. However, there has been no single accepted statistical procedure for determining which calibrations 
are statistically the same and which are not from a large group of calibrations. This study describes the use of least squares means 
multiple comparisons testing of squared reference-versus-predicted residuals for determining the statistical similarity of multiple 
PLS calibrations. A program has been developed using common commercial statistical software (SAS, Mixed procedure) which 
computes and summarises comparisons of PLS calibrations. This method is also applicable to other multivariate regression methods 
as it only requires a list of reference and predicted values from each calibration as input.
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 determining an acceptance region for which errors of models 
that are simpler than a model of minimum error are evaluated 
by a chi-square distribution.3 In a recently published study, the 
ANOVA and Wilcoxon signed-rank tests, along with another 
non-parametric test, the Friedman test, were compared using 
four unrelated spectral datasets, with the general conclusion 
that the ANOVA test on the absolute value of residuals was the 
most suitable method for evaluating models.4

The present report demonstrates the application of the 
ANOVA test in the evaluation of spectral pre-treatments in 
near infrared PLS modelling. Spectral pre-treatments can 
greatly improve spectral calibration results by removing arti-
facts such as baseline shifts and tilts caused by scatter vari-
ation due to particle size effects,5,6 or by accentuating the 

 differences between spectra as in the use of derivatives.7 While 
such spectral pre-treatments can be very helpful, it is gener-
ally diffi cult or impossible to know a priori what specifi c 
pre- treatment will be the most helpful unless a data set is very 
similar to other data sets previously investigated and for which 
the best pre-treatments have been determined by experience. 
In addition, different spectral pre-treatments often produce 
very similar results statistically, despite being based on unre-
lated mathematical transformations or using dissimilar num-
bers of PLS or PCR factors. These events are demonstrated by 
the data presented in Table 1 for the determination of lignin8 in 
a set of 241 forage samples.9,10 The calibrations were run twice 
using a random division of samples into calibration and vali-
dation sets. The results are presented by increasing R2 for the 

Cal-R2 Order # Factors R2-Run1 R2-Run2

Pre-treatment Run1 Run2 Run1 Run2 CAL VAL CAL VAL

NON MSC 0  1 12  8 13 0.901 0.877 0.940 0.828

1ST MSC 64  2  2 12 11 0.904 0.897 0.915 0.836

1ST STR 16  3  6  9  9 0.916 0.921 0.930 0.876

NON STR  0  4  7 11 13 0.918 0.904 0.933 0.892

2ND STR 32  5 10 11 12 0.923 0.915 0.936 0.860

2ND STR 64  6  8 13 13 0.923 0.913 0.934 0.847

1ST STR 32  7  5 14 11 0.929 0.920 0.926 0.856

1ST STR 64  8 18 14 15 0.931 0.917 0.949 0.887

1ST STR  8  9 15 10 11 0.937 0.925 0.946 0.895

2ND MSC 32 10 11 14 13 0.939 0.919 0.937 0.857

2ND MSC 64 11 13 15 14 0.941 0.906 0.941 0.836

1ST MSC 32 12  4 15 10 0.945 0.915 0.919 0.850

2ND MSC  4 13 21  7  7 0.946 0.886 0.957 0.794

1ST MSC  8 14  3 12  8 0.946 0.909 0.919 0.871

1ST MSC 16 15  1 15  8 0.951 0.901 0.910 0.872

1ST STR  4 16 17 13 10 0.953 0.922 0.947 0.868

1ST MSC  4 17 19 12 11 0.953 0.914 0.952 0.806

2ND STR  4 18 22  8  9 0.955 0.891 0.969 0.833

2ND STR 16 19 16 13 10 0.955 0.925 0.946 0.852

2ND MSC 16 20  9 13  8 0.957 0.905 0.935 0.840

2ND STR  8 21 20 14  9 0.971 0.924 0.953 0.832

2ND MSC  8 22 14 14  8 0.971 0.900 0.945 0.787

Pre-treatment = gap derivative (1st or 2nd, scatter correction)
MSC = multiplicative scatter corrected
STR = none, gap in data points
CAL = calibration
VAL = validation

Table 1. Partial least squares regression results for 22 spectral pre-treatments for lignin for two random runs, calibration set = 161 randomly 
selected samples out of 241, remaining 80 used as test or validation set.
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calibration set based on the fi rst run. As demonstrated, simply 
choosing the calibration and validation sets randomly can 
easily result in radically different results. Of the best four cali-
bration set results, only the pre-treatment 2ND STR 8 (second 
derivative, gap width = eight intervals) is found as one of the 
top four for both calibration sets. Running many different ran-
domly chosen calibration/validation splits and comparing the 
results to fi nd the pre-treatment which consistently gives good 
results is a possible approach for comparing a few pre-treat-
ments. However, combining such random runs with the many 
thousands of possible spectral pre-treatment combinations11–13 
and such non-statistical measures as the number of PLS or 
PCR factors, and then trying to determine what pre-treatment 
is empirically the best, may well be prohibitive. Even running 
several hundred potential pre-treatments on many different 
randomly determined calibration/validation datasets can be 
impossible for a dataset of even modest size (200–300 sam-
ples) from the practical standpoint of computer time required.

Therefore, there is the need for a statistical method to at 
least select a limited number of spectral pre-treatments for 
further study or selection based on non-statistical param-
eters such as the fewest factors required. The objective of 
this work was to develop a statistical method based on least-
squares means multiple comparisons testing of reference-
versus-predicted residuals for the evaluation of PLS spectral 
calibrations using SAS.

Experimental
Samples

Three different datasets were utilised in the testing of 
the statistical methods. Set 1 consisted of 241 forage sam-
ples composed of 174 chlorite treated forages (16 different 
forages and by-products, derived from alfalfa, tall fescue, 
orchard grass, red clover, timothy, wheat straw, barley straw, 
corn cobs, corn stover and soybean stover) and 67 forages 
(derived from alfalfa, tall fescue, orchard grass and vegeta-
tive parts of corn and wheat) collected at different stages of 
growth. Further information on these samples may be found 
in the literature.9,10 Approximately two-thirds of the samples 
(n = 161), drawn by random selection, were used for calibra-
tion development, while the remaining third (n = 80) was 
reserved for model validation. For the present study, lignin8 

was chosen as the analyte to model, but similar results were 
obtained with other analytes.

Set 2 consisted of 398 samples of hard red winter or 
hard white wheat from one season of the Nebraska Winter 
Wheat Variety Tests programme. These were either com-
mercial releases or breeders’ advanced lines grown in fi eld-
replicated plots throughout ten locations across the state of 
Nebraska. A constant set of ten red and ten white wheats 
was grown at each location. One fi eld replicate (n = 198, two 
missing) was used for calibration development, while the 
other replicate (n = 200) was reserved for model testing. One 
analyte, protein content, was considered in this study. We 

(AUTHOR INSERT REFERENCE PLEASE) have previ-
ously reported on the implementation of a comparison of 
correlated variances procedure, using this set, with pair-wise 
tests of RMSD

test set, no pretreatment
 vs RMSD

test set, a pretreatment
.11

Set 3 consisted of durum wheat breeders’ lines from 
two seasons. These lines were part of a programme for 
the  development of amylose-free (i.e. waxy) durum wheat 
(recalling that starch is composed of two macromolecules: 
amylose, which is the linear chain of C1–C4 alpha-linked 
glucose units and amylopectin, which is the highly branched 
structure consisting of C1–C6 linked branchings in addition 
to the C1–C4 linkages). Forty-seven lines from one season 
constituted one sub-set, with the same lines, replanted and 
harvested the next season in fi eld-replicated plots, consti-
tuting a second sub-set. Samples used for the NIR study 
were gathered from each fi eld replicate of the second season, 
thus producing about twice the number of scanned samples 
(n = 95) compared to the fi rst season. The larger sub-set was 
used for calibration equation development, while the smaller 
sub-set was used for model validation.

Statistical analysis
All regression analyses were performed by PLS, using 

the two PLS programs previously published in this journal12 
and discussed in NIR news.13 The code for these programs is 
available on the NIR Publications journal website.14

Least squares means multiple comparison testing
Analysis of means was performed using a mixed mod-

els procedure (i.e. Proc Mixed) (two-way ANOVA without 
interaction) in SAS.15 In addition, an SAS macro program,16 
which is available on the web17 and used to produce a more 
readable output from the comparison testing, was incorpo-
rated with minor changes to fi t the programs as used here. 
Results using PROC GLM were almost always identical to 
those using Proc Mixed, but the latter procedure is known to 
be better behaved for these types of analyses. All SAS codes 
for running the programs discussed in this paper, including 
an updated version of the SAS PLS, are available from the 
authors and will eventually be available at this journal’s web-
site. They are described below.

For each pre-treatment, the regression model’s absolute 
or squared residuals [|predicted–reference| or (predicted–
 reference)2] of the regression model from the cross- validation 
set or the validation set became the random variable in 
ANOVA. The individual samples were treated as blocks (ran-
dom effect) and the pre-treatments (fi xed effect) were tested 
collectively for signifi cant differences. Analytes that demon-
strated a signifi cant difference among pre-treatments were 
further tested using the means comparison procedure, with a 
probability level for type I error (α) set to 0.05. Because the 
number of pair-wise comparisons increases nearly as much 
as the square of the number of pre-treatments, the occur-
rence of at least one type I error is also greatly enhanced. 
In general, statistical corrections, such as those attributed 
to Bonferroni, are often imposed for the purpose of  making 
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the comparison of means test more conservative. With the 
Bonferroni correction, the probability of a type I error is 
maintained at the probability level for the main effect of the 
ANOVA by dividing α by the number of means.18 In this 
study, we also explored the use of the Bonferroni correction 
on the lignin content models.

Two general forms of the means comparison routine are 
available. The first is embedded in a large program that 
also reads spectral and chemical data, applies spectral pre-
 treatments, and performs PLS regression. The second is 
a stand-alone routine, in which the regression trials are 
required to have been performed beforehand. As such, the 
second program reads in the model predictions for each 
sample, for each pre-treatment.

For the forages dataset, 22 pre-treatments were compared. 
These included all combinations of derivative order (none, fi rst, 
or second), multiplicative scatter correction5 (MSC, applied or 
not applied) and gap width for the central difference-based 
derivative approximations (4, 8, 14, 32 or 64 points). For 
the wheat datasets, the following pre-treatments were exam-
ined: none, MSC, standard normal variate6 (SNV) and detrend 
(with detrend being a baseline correction formed by subtract-
ing a least squares quadratic regression function from each 
SNV-transformed spectrum), Savitzky–Golay (SG) smooth 
(quadratic polynomial), SG fi rst derivative (cubic polynomial) 
and SG second derivative (quadratic polynomial). These were 
the same pre-treatments used in our earlier paper.11 Briefl y, 
two window widths, 11-point and 21-point, were used for 
each type of SG convolution. Mean centring was performed 
on all pre-treatments immediately before the PLS procedure. 

Altogether, ten pre-treatments were examined, with the “none” 
pre-treatment acting as the control to which all other pre-
 treatments were statistically compared in our previous work. 
In the current work, the comparison of RMSDs-by-ANOVA 
procedure allows for the comparison of all pairs of pre-treat-
ments, instead of the former restriction of one pair member 
always being the control. This procedure was separately used 
on the cross-validation and validation sets.

Results and discussion
Absolute value of/or squared residuals

Initial efforts were carried out using either the squared 
differences between the predicted and reference values 
or the absolute value of the difference. Results (data not 
shown) indicated that the squared differences were better at 
evaluating calibrations and were used in the results that fol-
low. Using the absolute value weights and all analyte values 
equally can produce very different results than might be 
expected by examining plots of predicted-versus-reference 
values for calibrations because of the infl uence of extreme 
values in the domain which can greatly affect slope. Using 
a weighted difference [|(Predicted–Reference)|/Reference] 
similarly gave unexpected results. However, comparisons 
between results produced using various modifi cations to the 
basic residual expression (Predicted–Reference) might be 
useful and a subject of future efforts.

The modelling results for wheat protein content are sum-
marised in Table 2. As a whole, the PLS regression  equations 

Cross-validation Validation

Pre-treatment R2 RMSD Group r2 Bias RMSD Group

21-pt 1st der 0.997 0.111  A 0.997  0.002 0.132  A

11-pt sm 0.998 0.110  A 0.997 –0.010 0.125 AB

21-pt sm 0.998 0.110  A 0.997  0.008 0.125 AB

None 0.998 0.109  A 0.997  0.013 0.125 AB

21-pt 2nd der 0.998 0.107  A 0.997 –0.005 0.127 AB

11-pt 1st der 0.998 0.098  B 0.997  0.013 0.117  B

11-pt 2nd der 0.998 0.095 BC 0.997  0.008 0.120  B

SNV w/det 0.998 0.092 BC 0.998  0.012 0.099  C

MSC 0.998 0.086 CD 0.998  0.015 0.099  C

SNV 0.999 0.081  D 0.998  0.006 0.098  C

Pre-treatment abbreviations
x-pt = number of points in a Savitzky–Golay convolution window
None = no pre-treatment
SNV = standard normal variate transformation
w/det = SNV with detrending
MSC = multiplicative scatter correction
Groups with the same letter are deemed not statistically different at the P = 0.05 level.

Table 2. Summar of pre-treatment trials for PLS regression modelling of wheat protein content (N × 5.7 as a percentage).
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for this analyte were extremely accurate and probably more 
so than would normally occur during calibration develop-
ment. This is because of, fi rst, the careful attention paid to 
equilibration of the samples to a common ambient humidity 
level before scanning and, second, the very high precision 
(repeatability) of the reference, combustion procedure, hav-
ing a standard deviation of repeated measurement of 0.05 to 
0.10 protein percentage units. A comparison of the RMSD

xval 

values among the pre-treatments indicated the superiority 
of the SNV transformation with respect to all other pre-
 treatments except MSC. These two pre-treatments, along 
with SNV and detrend, were also superior in the compari-
son of RMSD

val
 values. When compared with correlated 

variances test,11 the three pre-treatments were consistent in 
being signifi cantly different from the control (i.e. no trans-
formation) pre-treatment. A visual representation of the two 
extreme pre-treatments (none and SNV) is shown in the 
cross-validation residual graphs in Figure 1. The overall 
similarity of the two graphs, with one pre-treatment showing 
just a slightly tighter band around zero, is indicative of the 
subtleness of the means comparison test.

The results of the pre-treatment comparison for the durum 
wheat amylose models are contained in Table 3. Unlike 
protein content, there was a noticeable difference between 
cross-validation and validation error terms. Recalling that 
the cross-validation and validation samples were from dif-
ferent harvest years and also measured one year apart, it 
is not surprising that biases as large as 10 percentage units 
occurred. Because of such differences, pre-treatments that 
tended to show the lowest error in cross-validation, such as 
the control (no pre-treatment), produced some of the poorer 
validation set errors. Conversely, the pre-treatment with the 
highest cross-validation error, a 21-point second derivative, 

produced a validation error that was the third lowest of the 
ten pre-treatments.

Proc Mixed with and without Bonferroni 
correction

The Bonferroni (BON) adjustment places more stringent 
criteria for two means to be found to be different. Results 
for lignin, with and without this option (ADJUST = BON), 
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Figure 1. Plots of cross-validation residuals of PLS regression 
models for wheat protein content. (A = no pre-treatment and 
B = standard normal variate transformation pre-treatment).

Cross-Validation Validation

Pre-treatment R2 RMSD Group r2 Bias RMSD Group

21-pt 2nd der 0.969 2.07  A 0.954  4.63  5.14  F

11-pt 2nd der 0.974 2.13  B 0.962  1.57  2.55  H

11-pt 1st der 0.977 2.05 BC 0.957  6.31  6.67  E

SNV w/det 0.976 2.02 BC 0.939  2.89  3.84  G

21-pt 1st der 0.977 2.01 BC 0.952  3.56  4.22  G

SNV 0.977 1.97 BC 0.946 10.66 10.94  A

21-pt sm 0.978 2.00 CD 0.934  9.92 10.30  B

MSC 0.981 1.95 CD 0.959  6.75  7.07 DE

11-pt sm 0.980 1.94 CD 0.947  8.38  8.74  C

None 0.981 1.92  D 0.951  7.04  7.45  D

Pre-treatments defi ned in Table 2
Groups with the same letter are deemed not statistically different at the P = 0.05 level.

Table 3. Summary of pre-treatment trials for PLS regression modelling of durum wheat amylost fraction (amylose to total starch, as a 
percentage.
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 demonstrated (data not shown) that the use of the BON 
adjustment made the criteria so stringent that all the calibra-
tions were often found to be statistically the same, while 
without the adjustment, this was rarely true. While results 
were not always found to be dramatically different for pre-
treatments with and without the BON option, they were 
also rarely the same and varied greatly on the nature of the 
random split into calibration and validation sets. Only more 
efforts with many datasets can determine which method 
should be used.

Multiple tests based on randomly generated 
datasets

Running calibrations many times on randomly selected 
calibration/validation set splits avoids (1) problems associ-
ated with atypical validation sets if only one is randomly 
selected, (2) complaints that selecting samples by clustering 
methods to produce matched calibration and validation sets 
predisposes the process to produce the best possible results, 
but calibrations which may not be the best for new samples 
and (3) problems similar to the second point, if all the sam-
ples available are used in the calibration set. By running the 
results many times, calibrations should be selected that will 
work on new samples as well as can be determined based on 
the samples at hand.

The statistical assumptions of the ANOVA are not strictly 
satisfi ed when the same sample appears several times in the 
analysis as it would for repeated random draws. Some inves-
tigations (not shown) suggest that the approach still gives 
useful answers in this case, but further work is probably 
needed before it can safely be recommended.

SAS code for Proc Mixed
Figure 2 contains the SAS program used in this study. 

This program assumes that the cross-validation or validation 
sample predictions from the various pre-treatments have 
been developed beforehand. For use with different data sets, 
the primary changes needed relate to the input dataset’s pre-
treatments. That is, output from the SAS PLS program con-
tains information on the spectral pre-treatment used, which 
other input data may not contain. The rest of the code is 
considered standard except for the “PDMIX800”. This is an 
SAS macro program made available on the web.17

Conclusions
A method has been developed for grouping calibrations 

by use of the squared residuals from the predicted versus 
reference. This method can be applied to residuals from 
any calibration method to statistically compare calibra-
tions as to being statistically the same or different. Finally, 
results have demonstrated the method to work on residuals 
compiled from multiple runs of the same spectral pre-treat-
ments, but using randomly selected calibration/validation 
data sets.
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