
Reprinted from Agronomy Journal
Vol. 88, No. 2

lular, Generic Soil Simulator to Interface with Plant Models

Dennis Timlin,* Yakov A. Pachepsky, and Basil Acock

TRACT
I ne varlous unxages in agr~cultural systems are so complex that re-

search questions are often studied via simulation modeling. The devel-
opment and upgrading of detailed models requires a large investment
of time and resources; therefore, it is necessary to simplify the process
of building the model and incorporating modifications as research finds

ew information to include. The
-amework for a generic soil sin
nd incorporated into crop mode

A L-. -...I..,..- *,.-A: -...-..A .

ie soil profile and the simulated
ublic and private components, to I
iodules. This modular structure

. " . .

goal of this study was to develop the
fi iulator that could easily be modified
a1 :Is. Soil and root processes are repre-
Strrieu UY I I IUUUI~J irmi I I I L ~ I ~ U on the spatial-temporal grid covering
tl time interval. Data were divided into
P minimize information passing between
n and information hiding simplifies re-
placement or adartlon ot modules and promotes code reuse. The classes
of modules include (i) control modules that oversee interactions between
processes, (ii) water, solute, heat, and gas transport modules, (iii) inter-
phase chemical transformation modules, (iv) biochemical transforma-
tion modules, and (v) root growth and uptake modules. A representa-
tive simulator, ZDSOIL, was assembled according to the proposed design.
Examples include the incorporation into a simple crop model and the
expansion of 2DSOIL with a management module to simulate chemical
a

omponents have been conce
elopment. In these and 0th
f detail is typically high in I . . . - .

C ODELING has become an im- ,,. .,., .,. .v,,,. ,.lers to study agricultural sys-
tems, where the linkages of components can be quite com-
plex. Computer simulation models used in agricultural
research have typically been designed for a particular pur-
pose: e.g., to predict chemical transport, LEACHM (Hut-
son and Wagenet, l992), and crop development and yield,
GLYCIM (Acock and Trent, 1991), or to simulate man-
agement effects on water quality, RZWQM (Ahuja et al.,
1991). Models that contain comprehensive soil components
have generally concentrated on environmental issues such
as water quality, while models with comprehensive plant
CI rned with crop yield and de-
v er similar models, the level
o either the plant or soil com-
ponent, but not in both. I here are also models with much
detail in the atmospheric component but less in the soil
and plant components. Currently, agricultural managers
and researchers are increasingly concerned with both crop
Y impacts of agriculture. In-
d :ed and strongly interact.

, and solute transport mod-
els mat use comprenenslve aescriptions of mass and energy
transport in soils. They use finite element (Benjamin et
al., 1990; Simhnek et al., 1992) and finite difference (Ahuja
et al., 1991; Hutson and Wagenet, 1992) approximations
o A salient property of two-
d ~odels is flexibility in incor-

ields and the environmental
eed, the two are closely link
There are a number of water

f the governing equations.
imensional finite element rr

-
C. ,.,.. ,. , .-,,, ,,-,,,..,, Systems Res. Lab., Bldg. 007, Rm.
008, BARC-West, Beltsville, MD 20705; Y.A. Pachepsky, Dep. of Botany,
Duke Univ., Durham, NC 27708. Received 15 Aug. 1994. *Corresponding
author (Email: dtimlin@asrr.arsusda.gov).

Published in Agron. J. 88:162-169 (1996).

poration of management practices. Uneven soil surfice,
local changes of soil properties and composition (due to
tillage, fertilizer or plant residue placement), and internal
boundaries (drainage) and other management-induced fea-
tures can be readily handled. These models, however, are
limited to soil and water transport processes and include .
only simple plant processes. Overall, these powerful soil
simulators have been developed independently of the plant
simulators. As a result, plant and soil modelers have not
been able to take advantage of each other's work.

It is not practical to develop ad hoc models for each
system, nor is it possible to build a single, all-purpose
model for all applications. Reynolds et al. (1992) suggested
that the goal should be to build a suite of models based
on general principles derived from structures and behav-
iors that are fundamentally similar across plants and eco-
systems. To accomplish this, Reynolds et al. (1992) pro-
posed the development of generic models that have a similar
structure and contain similar modules, some of which may
be used in several different models with appropriate pa-
rameter changes. In a generic modular structure, related
processes are grouped into submodel components, and
the function of each module and the variables to be cal-
culated for output are explicitly defined. A modular struc-
ture would also simplify the process of updating or mod-
ifying model components as new knowledge or data become
available.

Modular design has received much attention from soft-
ware engineers (Einbu, 1989; Witt et al., 1994). The im-
portance and usefulness of modularity come only partially
from the ability to decompose a system into manageable
parts. The most important advantage is that modules can
be constructed to hide information from programmers of
other modules (Einbu, 1989). Information is hidden by
grouping both the data and operations that use the data
into a single module. The importance of a modular struc-
ture and information hiding has been recognized in the
agricultural modeling community. Hodges et al. (1992)
described a modular structure for the IBSNAT models
that enhances the ability to modify the model for new ap-
plications or improvements. A modular structure can be
developed following accepted guidelines for modular soft-
ware design or object-oriented programming (OOP) para-
digms (Thomas, 1989; Wirfs-Brock et al., 1990). It is not
dependent on programming language, though some restric-
tions are applied.

A potentially useful type of modular generic model would
be a plant-soil simulator that could incorporate computer
code from the best plant and soil models available today.
The advantages include the ability to reuse code devel-
oped by other modelers and to allow a modeler to focus
on her or his own expertise.

For this study, we developed the design of a modular,

Abbreviations: IBSNAT, International Benchmark Sites Network for Agro-
technology Transfer; OOP, object-oriented programming.

TIMLIN ET AL.: SOIL SIMULATOR TO INTERFACE WITH PLANT MODELS 163

generic soil simulator that (i) allows the easy addition of
soil, plant, or atmospheric processes of varying complex-
ity, (ii) provides a means of expanding and replacing sub-
models of processes, and (iii) simplifies the addition of
management modules. The model is generic, because the
computer code to simulate soil processes is not a perma-
nent part of the model; any other code can be substituted
if the code follows the precepts outlined in this paper. We
show how we can take advantage of the recent develop-
ments in software engineering to achieve this goal. Finally,
we demonstrate an application of this methodology in the
form of a model, 2DSOIL.

CONCEPTUAL DEVELOPMENT
Modular Design

The purpose of decomposing a system into modules is to be
able to hide code and data from other modules in the system
(Einbu, 1989). The goal is to separate the module user from
the developer (Thomas, 1989). Modules are designed to enhance
reuse, maintainability, and reliability of the code. This goes be-
yond previous philosophy where modularization was influenced
by the "everything is a hierarchy" view of programming (Kirk,
1990). Modules should have loose interunit coupling and high
internal cohesion (Witt et al., 1994). Loose coupling is char-
acterized by independence, a simple interface between modules,
a limited number of interfaces, and a minimum of information
passing. High internal cohesion is characterized by interdepen-
dent elements packaged together and by information hiding
(Blum, 1992; Witt et al., 1994).

The design requirements for modules as outlined above do
not require a special programming language (Blum, 1992), al-
though they are more easily implemented using an OOP lan-
guage. In OOP, an object (module) contains specific informa-
tion (data) and is coded to perform certain operations (functions).
Our design, coded in FORTRAN, follows OOP precepts, but
within the constraints of FORTRAN. Loose coupling is imple-
mented by having each module input and manage its own data.
By doing this, the functions and data are kept together in the object
(module). High cohesion is achieved by developing distinct, in-
dependent modules, each for a specific soil or root process.

Soil and root processes belong to one of the following groups:

1. Transport processes (e.g., water movement, heat move-
ment, nitrate movement, oxygen movement).

2. Root processes (e.g., water uptake, NH4 uptake, root res-
piration).

3. Interphase exchange processes (e.g., reversible Ca-Mg-Na
exchange).

4. Biotransformation processes (e.g., denitrification, C a
production).

5. Management processes (e.g., tillage, ammonium phos-
phate application).

The classes of soil smd root process modules based on this group-
ing are shown in Fig. 1. Note that every class is on the same
level; there is no hierarchy among the classes. Each class may
include several process modules. For example, transport pro-
cesses can be water movement, solute movement, heat move-
ment, and gas movement; root processes can be water or nu-
trient uptake, root growth, root respiration, and the like. The
design assumes that only the process modules needed in a par-
ticular application have to be included in the simulator. Each
process module may contain one or more submodules that, for
example, calculate coefficients such as hydraulic conductivity
for the equations.

The general structure that aIlows the modules to be loosely

Control Modules
*- " '

'

Transpat Processes I 1 : - , .:, 8oundav+inteifac;),

Root Processes
I "A," %*- +
I Interphase Chemical Interactions I
I Biotransformation Processes I

I , > - ? * + . . < "_ . :. : . *. , ,

I Output 1
Fig. 1. The classes of modules used in the generic simulator and the

sequence in which they are called.

coupled constitutes the framework of the generic simulator. This
framework is supported by control modules. If a process mod-
ule (such as a plant model) is structured in the manner described
in this paper, the process module can be added to the simulator.
Control modules will oversee the new module's functioning
-and its interaction with other modules. This structure is de-
scribed next.

Module Structure and Interaction
Modules interact by passing or sharing data. To share data

among process modules, the data must be represented consis-
tently in all modules. To provide a loose coupling of modules,
the amount of data accessible to all modules must be minimized.

The minimum data set available to all modules, termed global,
has to be independent of the model or algorithms used to rep-
resent the processes. These data must also be sufficient to de-
scribe the state of the system at any particular time. Soil and
root processes in the soil-plant-atmosphere system are charac-
terized by the volumetric contents of substances (e.g., water con-
tent, bulk density, oxygen concentration, root length density,
etc.). Potentials of physical fields and related physical values
are also used (e.g., matric potential, temperature, etc.). These
values are state variables of the soil-root system. The state vari-
ables are subject to changes caused by fluxes of energy and mat-
ter into or out of the system. Internal point fluxes are known
as sources or sinks, depending on their direction. Distributed
fluxes through boundaries of the soil profile are referred to as
boundary fluxes. Examination of soil process models shows that
calculations of changes in one soil state variable may require
the values of several other soil state variables. For instance, tem-
perature and soil water content are needed to calculate changes
in ammonium concentration caused by nitrification. Similarly,
several processes may contribute to changes in concentration
of a particular substance. For example, both root respiration
and decomposition of organic materials contribute to COL, pro-

AGRONOMY JOURNAL, VOL. 88, MARCH-APRIL 1996

N 60 -

3 z so- .- z
S * - -
Q
.O 30 -
5
> 2 0 -

Transverse coordinate X
Fig. 2. An example of the spatial grid for a soil profile with numbered

nodes (large numbers) and elements (small numbers at an angle).

duction. Therefore, soil state variables and fluxes have to be
available to all modules.

Values of the soil and root state variables can be recorded
and calculated for specific locations within a soil profile, and
these locations have to be the same for all modules. The spatial
reference system in the generic simulator is introduced by a spa-
tial grid (Fig. 2). The grid is a polygonal geometric structure
representing either a vertical profile of the soil for the one-
dimensional mapping of soil variables or a vertical plane cross
section for the two-dimensional case. The grid shown in Fig. 2
is given for the purpose of illustration, the grid density may
be too coarse for practical use. The grid in Fig. 2 is for the two-
dimensional case; a ridge and a furrow form the soil surface.
The spatial locations at the intersections of the grid lines where
values of state variables and fluxes are known are called nodes
(Fig. 2). The nodes provide the necessary spatial reference for
interactions among soil and root processes, and for the bound-
ary interface with plant and atmosphere models. The nodal co-
ordinates, therefore, have to be available to all modules. The
grid is set by a control module, 'Grid-Boundary-Setting',

Modules have to be synchronized to calculate state variables
and fluxes for simulated times that are the same for all modules.
To do this, we used a sequential iteration approach (Yeh and
Tripathi, 1991). Process modules execute sequentially as shown
in Fig. 1. It is assumed that the values of fluxes are available
in the beginning of the time step, before the transport codes are
called.

Each process module may have its own requirements for a
time increment at any point in the simulation. For example, the
time interval between fertilizer applications can be 60 d, the
atmospheric boundary can be modified hourly, and calculations
of infiltration may require time increments on the order of sec-
onds. Combining modules that work with different time steps
into one simulator is referred to as an asynchronous coupling
(ten Berge et al., 1992).

The control module 'Synchronizer' calculates the actual time
step that the whole simulator will use. It is invoked at the be-
ginning of every time step. It uses the requirements of all mod-
ules for the next time step and the numbers of iterations that
have occurred during the previous time step as input. The 'Syn-
chronizer' calculates the optimum time increment that (i) allows

for convergence of iterations within modules, (ii) enables the
simulator to read or to deliver data at specified times, (iii) does
not increase drastically as the simulated time progresses. If there
are no modules with time step requirements, the time step will
increase gradually until it reaches a prescribed maximum value.
Current time and time step, simulated time, number of iterations,
and time step limitations are also available to all process mod-
ules to use and modify.

Data Structure
We used the concept of encapsulation of information to fa-

cilitate independence of modules. Encapsulation, a character- .
istic of OOP, is the grouping into a single module of both the
data and the operations that modify or use the data (Wirfs-Brock
et al., 1990). The data and operations, encapsulated in a single
module, can be hidden from the developer of other program units.

In order to implement data encapsulation in FORTRAN, we
divided the variables into public and private fields. Public vari-
ables are available to two or more modules. Private variables
are available only to the module in which they are declared;
they are not available to other modules. Public variables are
further divided into two fields, global public and local public.
Global public variables are available to all process modules. Lo-
cal public variables are shared between a process module and
its submodules. The use of public and private fields is illustrated
in Fig. 3. The global public field includes soil and root state
variables, fluxes, nodal coordinates, and temporal variables de-
scribed in the previous section. The private data field may in-
clude control variables to read or print data, parameters to cal-
culate coefficients of the numeric algorithms coded in the module,
and state variables and fluxes from the previous time step. Local
public variables can include matrices passed to a submodule
to solve for coefficients of a simultaneous set of equations or
the coefficients in the model equations, such as thermal con-
ductivity. If any module requires data from an external file to
fill its private data field, it opens and reads its own file. One
drawback of this scheme, however, is that the number of data
files will grow as modules are added. Because the size of each
file is small, it should not be difficult to manage the files. Each
module can also produce output according to its own schedule.

Submodules that calculate coefficients for equations to rep-
resent a model are also encapsulated within process modules.
Neither data nor equations of submodules of a particular pro-
cess module are needed for the functioning of other process mod-
ules. The recommended data structure includes a subdivision
into information that is locally public (i.e., available to one or
more submodules) or private (i.e., information hidden within
a submodule) (Fig. 3). The hidden information is read indepen-
dently, and therefore the submodule can be easily replaced or
modified. A need to replace a submodule is as common as a
need to replace a process module. Consider, for example, the
water movement module that requires hydraulic conductivity
values and water content as a function of the water potential.
The replacement of equations to calculate these values may be
desirable (Alessi et al., 1992). The replacement will not affect
the process module which needs only the value of the hydraulic
conductivity, not the equations used to obtain this value. There-
fore, the submodule can read its own parameters from its own
data file and have them hidden from the process module and
the whole simulator.

Global public variables are passed in FORTRAN COMMON
blocks to process modules; no arguments are used in CALL state-
ments at the process level. The same COMMON blocks are placed
in all process modules. Errors are minimized by the use of IN-
CLUDE statements, to insert a file containing a list of named COM-
MON blocks into each process module. If it is desirable to trans-
fer some private variable into a public field, only the insert file

TIMLIN ET AL.: SOIL SIMULATOR TO INTERFACE WITH PLANT MODELS

Fig. 3. Implementation of global public, local public, and private vari-
ables in 2DSOIL.

referenced in the INCWDE statement has to be changed. Local
public variables (i.e., variables shared between process modules
and their submodules) are passed in CALL statements (Fig. 3).

FORTRAN COMMON blocks are also used to store private vari-
ables within a module or submodule. The primary reason for
using COMMON blocks for private variables was to save the values
of private variables between invocations of the subroutine. Any
particular COMMON block containing private information is pres-
ent in only one module. Because there is no .reference to this
block in other program units, the information remains hidden.

Structure of a Process Module
The general sequence of operation includes reading the time-

independent data, calculating the auxiliary variables to speed
up routine calculations, checking whether it is time to execute
and (if it is time to execute) reading the time-dependent data,
changing the public variables, changing the private variables,
calculating the requirements for time increments, and writing
output data. Some steps may be absent.

An example of a typical module is shown in Fig. 4. This mod-
ule simulates a chemical application. At the start of the module,
designated by the public variable Llnpur, it reads time-
independent private data that are listed in the private COMMON
block and will be stored. The number NumMod of the module
in the invocation sequence is used to keep the place for the mod-
ule time step requirements. This number is stored as private
information. The public variable tNext stores the time to execute
code for a particular activity, therefore, one of the future time
steps has to be ended exactly at this time. When the execution
time arrives, concentrations of the chemical (which are public)
in prescribed nodes are changed by dividing mass of chemical
applied (which is private) by soil water content (which is pub-
lic). The public variable tNext is finally assigned an unreachable
value written I.OE+32) which means that there are no
further restrictions on the time step from this module.

Boundaries. in the Context of Modularity
The boundary interface mentioned in Fig. 1 has to provide

exchange of data between the soil simulator and both plant and
atmosphere components of a crop model. This interface is ex-
traneous for the generic soil-root simulator, but any particular
simulators derived from the generic structure will require such
an interface and both the corresponding plant and atmosphere
components to run.

To simplify the development of interfaces for the soil-atmo-
sphere boundaries and enhance the reusability of transport pro-

s- 5yl
lndude 'publii.lns

Endil
Retum

20 Stop 'Mnpm data o l d
End

Inpnme i ~ i n r o m u W n
Time ol mlcaMn 1 T o U m a s s O f ~ ~ W

is appllsd

updnsthenmbsrdmoaret
a d assign a numbsrto mis

Aswgn ma exemion time lu
mm module

' unreadable value)

Fig. 4. The basic structure and sequence of operations in a process mod-
ule.

cess modules, we separated the coding of boundaries from bound-
ary models. Codes showing the type of the boundary (e.g.,
evaporating, draining, etc.) at each boundary node are stored
in the public data field. Transport process modules use these
codes to process information supplied by the interface. Trans-
port modules, however, do not read data on boundary fluxes,
concentrations, and the like. These values have to be supplied
by the interface as public variables that will be used by the trans-
port module.

We considered and then rejected including the potential bound-
ary flux calculations in transport modules. We specifically avoided
having the water transport module input values of evaporation
or precipitation, because this would mix the water transport code
with the code to determine surface boundary fluxes. Later mod-
ifications to the method of determining evapotranspiration or
precipitation would then require changes in the water transport
code as well. In our design, the water transport code is provided
values of potential fluxes and is then free to modify these fluxes
on the basis of the current soil conditions only.

Another component of the boundary interface supplies data on
the sHoot status to the root activity module and returns data
on the availability of water and nutrients to the plant. The data are
specific to the plant model. It was important for our purposes
to realize that the number of variables relating shoot and root
is very small in the majority of plant models. A list of these
variables typically may include potential transpiration and/or
leaf water potential, C available for root growth, available soil
water supply and N flux, and indexes of soil stresses. We as-
sumed that the interface calculates the potential root water up-
take and potential C supply to roots, and the root module returns
the actual supply of water and nutrients together with the actual
C use. A separate COMMON block is designated to contain shoot-
root interaction variables. It has to be filled as required for a
particular combination of shoot and root models.

Input and Output of Data
The process modules and some submodules read their own

data files, so there is no input module. The control modules
(Grid-Boundary-Setting, Synchronizer) read their own infor-
mation in a predefined format. We did not include any modules
to generate grids. It is assumed that either finite element or finite
difference methods may be used for the numerical estimation
of the intrasoil transport, so data for both nodes and grid cells
(elements) are required. If the user chooses modules that use
the finite difference or simplified mass balance techniques, then
the element data will not be used.

1 66 AGRONOMY JOURNAL. VOL. 88, MARCH-APRIL 1996

lsble 1. Process modules used in 2DSOIL and their sources.
Module name Roc*ls Source

Transport
WaterMover Water redistribution according to Simdnek et al., 1992

two-dimensional Richards'
equation

SoluteMover Convective-dispersive transport of Simdnek et al., 1992;
several solutes Istok, 1989

HeatMover Diffusive-convective redistribution Simdnek et al., 1992
of heat

GasMover Transport of gases by diffusion in -t
air-filled pore space

Soil-atmosphere boundary
Setsurf01 Hourly fluxes of water, solutes, Acock and Trent,

heat and 1991
Cot at the soil surface, governed by

parameters of atmosphere and
plant shade

Setsurf02 Piecewise dependencies of boundary -
fluxes or state variables on time.

Root activity
RootUptake Root growth, and water and solute Acock and Trent,

uptake based on the trade of 1991
carbon and water between shoot
and root. Root respiration.

Interphase mass exchange
MacroChem Cation exchange Ca-Mg-Na; Pachepsky, 1990

dissolution precipitation of
gypsum and carbonates.

Biotransformation
NitroChem Mineralization and/or Bergstrom et al.,

immobilization of soil organic 1991
matter. Nitrification and
denitrification.

Management
Tillage Soil disruption and subsidence. -
Fertilizer Addition of organic and inorganic -

application fertilizers.
Irrigation Addition of water as needed. a -
t The module has been developed by us to complete an example simulator.

A simple output module is available that prints soil and state
variables, together with nodal coordinates, at prescribed times
in the simulation.

APPLICATION AND EXAMPLES
To test and apply the modular design, we assembled

a representative simulator called 2DSOIL. The process
modules used in 2DSOIL and their sources are summa-
rized in Table 1. The modules were adopted from other
computer models that were in the public domain and had
been written in FORTRAN. The Lode was chosen on the
basis of its reliability and understandability because we
had to restructure the code to conform with the modular
structure described above. The restructuring required only
moderate effort since the code was well documented. The

resulting 2DSOIL simulator is fully documented in Pa-
chepsky et al. (1993). We chose to use two-dimensional
water transport because the importance of the interplay
between vertical and horizontal transport in soils has been
demonstrated elsewhere, and many crop models already
rely on a two-dimensional representation of the soil profile.
The simulator is not limited to two-dimensional transport,
however. Because 2DSOIL is a generic simulator, any of
the modules can be replaced as necessary following the
design described above. For instance, we developed a one-
dimensional water transport module for use in another
application (Kemp et al., 1995). Concentrations and water
contents per unit of soil volume are computed by both one-
dimensional and two-dimensional transport modules, as-
suming a standard thickness of 1 cm of a two-dimensional
layer or a standard cross-sectional area of 1 cm2 of a one-
dimensional soil column.

To develop examples of applications, we needed to as-
semble a crop model and a boundary interface. We chose
the atmosphere simulator described by Acock and Trent
(1991). This simulator derives hourly potential fluxes of
water, solutes, heat, and CO2 at the soil surface from
weather parameters (radiation, precipitation, minimum
and maximum daily air temperature, and wind speed) and
surface shading governed by the plant height, plant row
orientation, and row spacing. To provide shoot-root inter-
actions, we used a simple shoot imitator that calculates
plant height and available C from an index of soil water
availability and plant age. Both boundary interfaces are
described in Pachepsky et al. (1993).

Two examples are presented below. The first example
was chosen to demonstrate that complex interactions of
soil transport processes, root activity, and canopy influ-
ence may occur, and that the 2DSOIL simulator with a
crop simulator can be useful for understanding these inter-
actions. The second example was chosen to show that the
2DSOIL simulator can be readily expanded without any
changes in structure or in control modules.

The first example describes the soil temperature regime
in ridge and interridge zones as affected by plant canopy,
water table, and water uptake by roots. The grid used in
this example has a shape similar to the one in Fig. 2. The
width of the top of the ridge is 0.1 m, and the width of
the bottom of the ridge is 0.3 m; the furrow width is 0.5 m.
The matric potential was kept constant (-30 kPa) at the
0.8-m depth. This simulates a water table at approximately
4 m in depth. The soil parameters used in the model are
listed in Table 2.

The results, in Fig. 5, show how simulated surface
(0.05 m) soil temperature responded in the presence of
water uptake by roots under a fully developed canopy. In

lsble 2. Wrameters used in the heat and solute transport simulatiomt
Diffusion

Layer Sand Silt Clay constant a. 0, a r(KW Pa

Heat transport simulation
1 45 30 25 - 0.426 0.001 0.023 1.103 25.0 1.52
2 45 37 18 - 0.390 0.001 0.016 1.240 21.7 1.62

Solute transport simulation
1 - - - 12.0 0.399 0.001 0.017 1.300 12.4 1.52

t €4, saturated water content; Or, residual water content fir bulk density; K,,, saturated hydraulic conductivity; a aAd q, coefficients for the van Genuchten
water retention equation.

Days after Emergence
Fig. 5. Simulated soil temperature at 0.05-m depth in a ridged soil when

the plant canopy covers the entire soil surface.

this case, water uptake occurred primarily in the ridge,
directly below the crop. After 35 d after emergence, there
was no more precipitation; there was some contribution
of water moving up from the water table, however. The
data shown are from 54 to 60 d after emergence. Plant
shade has covered all of the interridge zone. The average
simulated water contents were 0.25 m3 m-3 in the ridge
and 0.30 m3 m-3 in the furrow at the 0.05-m depth. As
shown in Fig. 5, the surface soil in the ridge had a wider
range of temperature fluctuation. The soil there was warmer
at midday and cooler at night. This occurred because the
ridge was drier than the interridge zone due to higher
elevation above the water table, and had greater root mass,
which resulted in more water uptake. Benjamin et al. (1990)
showed similar results for field data from an experiment
with two ridge shapes, one ridge more peaked than the
other. The temperature amplitude was larger in the more
peaked ridge, which had the smaller water content.

The second example demonstrates the effect of root water

Root Density

TIMLIN ETJAL.: SOIL SIMULATOR TO INTERFACE WITH PLANT MODELS

Before Rain After Rain

uptake on solute distributions in the upper 0.8 m of the
profile. This example also demonstrates how a manage-
ment module can be used to add a soluble salt to selected
surface nodes at a specified time. By placing the module
at the same level as the other process modules, some of
its code will be executed at every time step. A data file
was also created for the module. The data included the
time of application, amount of solute to be applied, and
the node numbers to receive the solute. The new module
was compiled and linked with the other modules. No other
changes in any other modules were required. The FOR-
TRAN code for this module is in Fig. 4.

In the simulation, a solute in the amount of 300 pg
was added to the soil surface 44 d after emergence

and then rainfall was applied. The net amount of water
added to the soil on Day 44 was 22.5 mm. After Day 44,
an additional 73 rnm of rainfall was applied at four differ-
ent times. Other parameters for the soil hydraulic prop-
erties and solute are given in Table 2.

In Fig. 6, we show the root distribution at 44 d after
emergence and the two-dimensional pattern of water con-
tent in the profile that results from water uptake by roots.
The root distribution is concentrated in the soil under the
plant (Fig. 6a). Water contents were lowest under the plant,
where the root distribution was highest (Fig. 6b). Water
content increased with depth and horizontal distance from
the plant. After rainfall on Day 44, water has infiltrated
deeper in the interrow position, because the initial water
content was greater in this position (Fig. 6c). Transpira-
tion and several periods of rainfall continue after Day 44
until the simulation ends at Day 56. The chemical con-
centrations directly below the plant row (at x = 0.01 m)
and midway between rows (x = 0.35 m) at Day 56 are
plotted in Fig. 7. The solute mass in the soil under the
row position was greater than under the interrow position.
Furthermore, the amount of solute near the surface below
the plant was still rather high, despite two rainfalls after
solute application. Evaporation and transpiration act to
move the water with the solute toward the soil surface

Soil Water Content
(cm3 ~ m - ~)

Width (cm)
Fig. 6. Simulated root density and water content at Day 44 before chemical application and rainfall, and water content after chemical application

and rainfall for the second example.

<

AGRONOMY JOURNAL, VOL. 88, MARCH-APRIL 1996

Mass (pg
. 0 5 10 15 20 25 30

Row zone

Interrow zone

80

Fig. 7. Simulated mass of solute in the upper 0.8 m vs. soil depth in
the row zone (x = 0.01 m) and in the interrow zone (x = 0.35 m)
for the second example.

and toward the plant. This results in concentration of sol-
ute in the soil under the plant and depletion of solute in
fie interrow zone.

The results of this simulation are in qualitative agree-
ment with observed effects of plant water uptake or man-
agement practices on solute distributions in soils. Timlin
et al. (1992) measured higher levels of bromide in the up-
per 0.5 m of soil under plant rows than in soil in interrow
zones. The bromide had been applied uniformly to the
soil surface and there were several periods of rainfall dur-
ing the season. Benjamin et al. (1994), using S W M S 2 D
(Simhnek et al., 1992), predicted less downward displace-
ment under furrow irrigation of a tracer placed in the ridge
as compared with furrow placement. This compared fa-
vorably with experiments carried out by Kemper et al.
(1975).

DISCUSSION AND CONCLUSIONS
The paradigm of modularity used in this paper is much

more than dividing a program into a number of subrou-
tines and then calling them in sequence. Modules should
be loosely coupled (i.e., with a simple interface between
modules and a minimum of information passing). They
should also have high cohesion (i.e., interdependent ele-
ments packaged together and information hiding). Because
the ability to hide information is critical, the questions
of what comprises a module and how to best encapsulate
the information must be answered. The answers depend
on several factors, including the scale (i.e., plant, field,
or landscape scale), the desired level of detail of the sys-
tem to be modeled, and the programming environment
(e.g., FORTRAN, C++).

In the application 2DSOIL, the modules were organized
around processes primarily because the structures of the
existing programs incorporated into 2DSOIL were already
based on processes and because this kind of structure is
suited to FORTRAN. A modular soil simulator could also
be organized on the level of a soil cell (Dubois-Pelerin
et al., 1992). Here a cell is defined as a polygonal element
with a boundary, as shown in Fig. 2. Calculations for mass

transport, root growth, and transformations can be encap-
sulated in a cell module. This type of structure is much
more easily implemented in an object-oriented language
than in FORTRAN. Soil cell objects (modules) will have
methods (functions) depending on their role in the plant-
soil system. New types of cells could easily be derived
from a base class (e.g., cells with macropores, or bound-
ary cells.

The generic, modular structure described in this paper
offers many advantages to the development and mainte-
nance of agricultural management models. These advan-
tages include:

1. Ability to reuse code. Our example generic simula-
tor, 2DSOIL, used code from several models.

2. Computer code can be easily modified and evalu-
ated. This simplifies the process of incorporating
into models ideas derived from experiments.

3. Submodels, which are components of a larger modeI,
can easily be tested and validated in more than one
model. For example, models of N dynamics can be
evaluated in both crop growth and water transport
models. The evaluation would not be limited to one
particular model.

4. Users can add management practices as modules to
build models for specific tasks from program units
developed by other researchers.

5. Because the developer of a particular process model
does not need to know the details of the other mod-
ules, developers gain access to a wide range of code
in areas outside their fields of expertise.

Code and documentation for the sample generic simulator,
2DSOIL, are available from the authors.

The modular design presented here was developed mainly
as a framework for crop modelers to interface their plant
and atmosphere codes with reliable soil code. To do this,
the crop modeler needs to concentrate only on the boundary
interface. The modeler must (i) assign potential bound-
ary fluxes of water, solutes, heat and gases from their
atmosphere module to the nodal boundary fluxes, (ii) re-
ceive actual boundary flux values from the water trans-
port module and use them as needed, (iii) pass potential
transpiration and C flux values from the plant module to
the root module, (iv) receive actual transpiration, water
and nutrient fluxes from the root module and use them
as needed, and (v) provide simulated times when the plant
and atmosphere modules will be ready to exchange infor-
mation. All variables needed for this exchange are global
public variables, and no code has to be changed in the
other modules of the soil simulator. If some other soil
variables are needed by the plant and atmosphere com-
ponents, they are accessible through the global COMMON
block since all global public data for the boundary inter-
face are available there. If some private root variables are
needed by the shoot module, they can be made accessible
by inserting a local public COMMON block of the root mod-
ule into the boundary interface. Finally, if the crop mod-
eler wants to use his or her own root module, the module
must be rearranged to fit into the data structure of the de-
sign described here.

We have shown how existing FORTRAN program units,
when clearly written, can be combined into larger units

TIMLIN ET AL.: SOIL SIMULATOR TO INTERFACE WITH PLANT MODELS 1 69

using a modular structure. These units are easily modified
or replaced. FORTRAN was used because it has been an
important programming language for the scientific com-
munity and there is a large amount of available code. True
object-oriented programming languages, however, such
as SmallTalk and Ct+, offer many advantages for pro-
gramming complex models and should be investigated.
A finite element model written in SmallTalk has recently
been published (Dubois-Pelerin et al., 1992), and a cotton
(Gossypium spp.) model written in C++ incorporating
2DSOIL is under development (Hal Lernrnon, personal
communication, 19%).

The segregation of a process or group of processes into
a particular module is not always straightforward, how-
ever, and will probably always be, to some degree, arbi-
trary. If we are to develop generic, modular simulators
as Reynolds et al. (1992) suggested, we will need to further
explore the issue of modularity and the basis for creating
modules. This is similar to the problems facing taxono-
mists: i.e., what should be included in a group and what
should be excluded.

ACKNOWLEDGMENTS

The authors wish to thank Drs. Jerka Simimek, Rien van
Genuchten, and Tomas Vogel for providing the finite element
model, SWMS_JZD, which was used as the water mover mod-
ule and for their helpful comments while the code was being
modified.

REFERENCES
Acock, B., and A. Trent. 1991. The soybean simulator, GLYCIM: Doc-

umentation for the modular version 91. Agric. Exp. Stn., Univ. of
Idaho, Moscow.

Ahuja, L.R., D.G. Decoursey, B.B. Barnes, and K.W. Rajas. 1991. Char-
acteristics and importance of preferential macropore transport studied
with the ARS root zone water quality models. p. 32-42. In Proc.
Natl. Symp. Preferential Flow, Chicago, IL. 16-17 Dec. 1991. ASAE
Publ. 9. ASAE, St. Joseph, MI.

Alessi, S., L. Prunty, and W.M. Schuh. 1992. Infiltration simulations
among five hydraulic property models. Soil Sci. Soc. Am. J. 56:
657-682.

Benjamin, J.G., M.R. Ghaffirzadeh, and R.M. Cruse. 1990. Coupled
water and heat movement in ridged soil. Soil Sci. Soc. Am. J.
54:963-969.

Benjamin, J.G., H.R. Havis, L.R. Ahuja, and C.V. Alonso. 1994. Leach-
ing and water flow patterns in every-furrow and alternate-furrow
irrigation. Soil Sci. Soc. Am. J. 58:1511-1517.

Bergstrom, L., H. Johnsson, and G. Tortensson. 1991. Simulation of
soil nitrogen dynamics using the SOILN model. p. 181-198. In J.J.R.

Groot et al. (ed.) Nitrogen turnover in the soil-crop system: Mod-
elling of biological transformations, transport of nitrogen and nitro-
gen use efficiency. Proc. Workshop at Inst. for Soil Fertility Res.,
Haren, Netherlands. 5-6 June 1990. Kluwer Acad. Publ., Dordrecht.

Bium, B.I. 1992. Software engineering: A holistic view. Oxford Univ.
Press, New York.

Dubois-Pelerin, Y., T. Zimmerman, and P. Bomme. 1992. Object ori-
ented finite element programming: 11. A prototype program in Small-
Talk. Comput. Methods Appl. Mech. Eng. 98:361-397.

Einbu, J. 1989. A program architecture for improved maintainability
in software engineering. Ellis Horwood, New York.

Hodges, T., S.L. Johnson, and B.S. Johnson. 1992. A modular struc-
ture for crop simulation models: Implementation in the SIMPOTATO
model. Agron. J. 84:911-915.

Hutson, J.L., and R.J. Wagenet. 1992. LEACHM. Leaching Estima- .
tion and CHemistry Model: A process based model of water and
solute movement, transformations, plant uptake, and chemical re-
actions in the unsaturated zone. Version 3. Dep. of Agronomy, Cor-
nell Univ:, Ithaca, NY.

Istok, J. 1989. Groundwater modeling by the finite element method.
Water Resources Monogr. 13. Am. Geophysical Union. Washington,
DC

~ e m k r , W.D., J. Olsen, and A. Hodgdon. 1975. Fertilizer or salt leach-
ing as affected by surface shaping and placement of fenilizer and
irrigation water. Soil Sci. Soc. Am. P m . 39:115-119.

Kirk, B.R. 1990. Designing systems with objects, processes, and mod-
ules. p. 387-404. In P. Hall (ed.) SE90: Proc. Software Engineering
90, Brighton, UK. July 1990. Cambridge Univ. Press, Cambridge.

Pachepsky, Y. 1990. Mathematical models of physical chemistry in soil
science. Nauka, Moscow.

Pachepsky, Y., D. Timlin, B. Acock, H. Lemmon, and A. Trent. 1993.
2DSOIL: A new simulator of soil and root processes. Version 02.
Systems Res. Lab. Publ. 2. USDA-ARS, Beltsville, MD.

Reynolds, J.F., B. Acock, and R. Whitney. 1992. Linking COz exper-
iments and modeling. p. 93-106. In E.-D. Schulze and H.A. Mooney
(ed.) Design and execution of experiments on COz enrichment.
Springer-Verlag, Berlin.

Simfinek, J., T. Vogel, and M.T. van Genuchten. 1992. The S W M S 2 D
code for simulating water flow and solute transport in two-dimensional
variably saturated media. Version 1.2. Res. Rep. no. 132. U.S. Sa-
linity Lab., USDA-ARS, Riverside, CA.

ten Berge, H.F.M., D.M. Jansen, K. Rappoldt, and W. Stol. 1992. The
soil water balance model SAWAH: Description and users guide. Sim-
ulation Rep. CABO-TT No. 22. DLO-Ctr. for Agrobiological Res.
(CABO-DLO) and Dep. of Theoretical Production Ecology (TPE),
Wageningen, Netherlands.

Thomas, D. 1989. What's in an object? Byte 14:231-240.
Timlin, D.J., G.C. Heathman, and L.R. Ahuja. 1992. Solute leaching

in row vs. interrow zones. Soil Sci. Soc. Am. J. 56:384-392.
Wirfs-Brock, R., B. Wilkerson, and L. Weiner. 1990. Designing object

oriented software. Prentice Hall Publ. Co., Englewood Cliffs, NJ.
Witt, B.I., F.T. Baker, and E.W. Merritt. 1994. Software architecture

and design: Principles, models, and methods. Van Nostrand Rein-
hold, New York.

Yeh, G.T., and V.S. Tripathi. 1991. A model for simulating transport
of reactive multispecies components: Model development and demon-
stration. Water Resour. Res. 27:3075-3094.

