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poration of management practices. Uneven soil surfice, 
local changes of soil properties and composition (due to 
tillage, fertilizer or plant residue placement), and internal 
boundaries (drainage) and other management-induced fea- 
tures can be readily handled. These models, however, are 
limited to soil and water transport processes and include . 
only simple plant processes. Overall, these powerful soil 
simulators have been developed independently of the plant 
simulators. As a result, plant and soil modelers have not 
been able to take advantage of each other's work. 

It is not practical to develop ad hoc models for each 
system, nor is it possible to build a single, all-purpose 
model for all applications. Reynolds et al. (1992) suggested 
that the goal should be to build a suite of models based 
on general principles derived from structures and behav- 
iors that are fundamentally similar across plants and eco- 
systems. To accomplish this, Reynolds et al. (1992) pro- 
posed the development of generic models that have a similar 
structure and contain similar modules, some of which may 
be used in several different models with appropriate pa- 
rameter changes. In a generic modular structure, related 
processes are grouped into submodel components, and 
the function of each module and the variables to be cal- 
culated for output are explicitly defined. A modular struc- 
ture would also simplify the process of updating or mod- 
ifying model components as new knowledge or data become 
available. 

Modular design has received much attention from soft- 
ware engineers (Einbu, 1989; Witt et al., 1994). The im- 
portance and usefulness of modularity come only partially 
from the ability to decompose a system into manageable 
parts. The most important advantage is that modules can 
be constructed to hide information from programmers of 
other modules (Einbu, 1989). Information is hidden by 
grouping both the data and operations that use the data 
into a single module. The importance of a modular struc- 
ture and information hiding has been recognized in the 
agricultural modeling community. Hodges et al. (1992) 
described a modular structure for the IBSNAT models 
that enhances the ability to modify the model for new ap- 
plications or improvements. A modular structure can be 
developed following accepted guidelines for modular soft- 
ware design or object-oriented programming (OOP) para- 
digms (Thomas, 1989; Wirfs-Brock et al., 1990). It is not 
dependent on programming language, though some restric- 
tions are applied. 

A potentially useful type of modular generic model would 
be a plant-soil simulator that could incorporate computer 
code from the best plant and soil models available today. 
The advantages include the ability to reuse code devel- 
oped by other modelers and to allow a modeler to focus 
on her or his own expertise. 

For this study, we developed the design of a modular, 

Abbreviations: IBSNAT, International Benchmark Sites Network for Agro- 
technology Transfer; OOP, object-oriented programming. 
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generic soil simulator that (i) allows the easy addition of 
soil, plant, or atmospheric processes of varying complex- 
ity, (ii) provides a means of expanding and replacing sub- 
models of processes, and (iii) simplifies the addition of 
management modules. The model is generic, because the 
computer code to simulate soil processes is not a perma- 
nent part of the model; any other code can be substituted 
if the code follows the precepts outlined in this paper. We 
show how we can take advantage of the recent develop- 
ments in software engineering to achieve this goal. Finally, 
we demonstrate an application of this methodology in the 
form of a model, 2DSOIL. 

CONCEPTUAL DEVELOPMENT 
Modular Design 

The purpose of decomposing a system into modules is to be 
able to hide code and data from other modules in the system 
(Einbu, 1989). The goal is to separate the module user from 
the developer (Thomas, 1989). Modules are designed to enhance 
reuse, maintainability, and reliability of the code. This goes be- 
yond previous philosophy where modularization was influenced 
by the "everything is a hierarchy" view of programming (Kirk, 
1990). Modules should have loose interunit coupling and high 
internal cohesion (Witt et al., 1994). Loose coupling is char- 
acterized by independence, a simple interface between modules, 
a limited number of interfaces, and a minimum of information 
passing. High internal cohesion is characterized by interdepen- 
dent elements packaged together and by information hiding 
(Blum, 1992; Witt et al., 1994). 

The design requirements for modules as outlined above do 
not require a special programming language (Blum, 1992), al- 
though they are more easily implemented using an OOP lan- 
guage. In OOP, an object (module) contains specific informa- 
tion (data) and is coded to perform certain operations (functions). 
Our design, coded in FORTRAN, follows OOP precepts, but 
within the constraints of FORTRAN. Loose coupling is imple- 
mented by having each module input and manage its own data. 
By doing this, the functions and data are kept together in the object 
(module). High cohesion is achieved by developing distinct, in- 
dependent modules, each for a specific soil or root process. 

Soil and root processes belong to one of the following groups: 

1. Transport processes (e.g., water movement, heat move- 
ment, nitrate movement, oxygen movement). 

2. Root processes (e.g., water uptake, NH4 uptake, root res- 
piration). 

3. Interphase exchange processes (e.g., reversible Ca-Mg-Na 
exchange). 

4. Biotransformation processes (e.g., denitrification, C a  
production). 

5. Management processes (e.g., tillage, ammonium phos- 
phate application). 

The classes of soil smd root process modules based on this group- 
ing are shown in Fig. 1. Note that every class is on the same 
level; there is no hierarchy among the classes. Each class may 
include several process modules. For example, transport pro- 
cesses can be water movement, solute movement, heat move- 
ment, and gas movement; root processes can be water or nu- 
trient uptake, root growth, root respiration, and the like. The 
design assumes that only the process modules needed in a par- 
ticular application have to be included in the simulator. Each 
process module may contain one or more submodules that, for 
example, calculate coefficients such as hydraulic conductivity 
for the equations. 

The general structure that aIlows the modules to be loosely 
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Fig. 1. The classes of modules used in the generic simulator and the 

sequence in which they are called. 

coupled constitutes the framework of the generic simulator. This 
framework is supported by control modules. If a process mod- 
ule (such as a plant model) is structured in the manner described 
in this paper, the process module can be added to the simulator. 
Control modules will oversee the new module's functioning 
-and its interaction with other modules. This structure is de- 
scribed next. 

Module Structure and Interaction 
Modules interact by passing or sharing data. To share data 

among process modules, the data must be represented consis- 
tently in all modules. To provide a loose coupling of modules, 
the amount of data accessible to all modules must be minimized. 

The minimum data set available to all modules, termed global, 
has to be independent of the model or algorithms used to rep- 
resent the processes. These data must also be sufficient to de- 
scribe the state of the system at any particular time. Soil and 
root processes in the soil-plant-atmosphere system are charac- 
terized by the volumetric contents of substances (e.g., water con- 
tent, bulk density, oxygen concentration, root length density, 
etc.). Potentials of physical fields and related physical values 
are also used (e.g., matric potential, temperature, etc.). These 
values are state variables of the soil-root system. The state vari- 
ables are subject to changes caused by fluxes of energy and mat- 
ter into or out of the system. Internal point fluxes are known 
as sources or sinks, depending on their direction. Distributed 
fluxes through boundaries of the soil profile are referred to as 
boundary fluxes. Examination of soil process models shows that 
calculations of changes in one soil state variable may require 
the values of several other soil state variables. For instance, tem- 
perature and soil water content are needed to calculate changes 
in ammonium concentration caused by nitrification. Similarly, 
several processes may contribute to changes in concentration 
of a particular substance. For example, both root respiration 
and decomposition of organic materials contribute to COL, pro- 
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Fig. 2. An example of the spatial grid for a soil profile with numbered 

nodes (large numbers) and elements (small numbers at an angle). 

duction. Therefore, soil state variables and fluxes have to be 
available to all modules. 

Values of the soil and root state variables can be recorded 
and calculated for specific locations within a soil profile, and 
these locations have to be the same for all modules. The spatial 
reference system in the generic simulator is introduced by a spa- 
tial grid (Fig. 2). The grid is a polygonal geometric structure 
representing either a vertical profile of the soil for the one- 
dimensional mapping of soil variables or a vertical plane cross 
section for the two-dimensional case. The grid shown in Fig. 2 
is given for the purpose of illustration, the grid density may 
be too coarse for practical use. The grid in Fig. 2 is for the two- 
dimensional case; a ridge and a furrow form the soil surface. 
The spatial locations at the intersections of the grid lines where 
values of state variables and fluxes are known are called nodes 
(Fig. 2). The nodes provide the necessary spatial reference for 
interactions among soil and root processes, and for the bound- 
ary interface with plant and atmosphere models. The nodal co- 
ordinates, therefore, have to be available to all modules. The 
grid is set by a control module, 'Grid-Boundary-Setting', 

Modules have to be synchronized to calculate state variables 
and fluxes for simulated times that are the same for all modules. 
To do this, we used a sequential iteration approach (Yeh and 
Tripathi, 1991). Process modules execute sequentially as shown 
in Fig. 1. It is assumed that the values of fluxes are available 
in the beginning of the time step, before the transport codes are 
called. 

Each process module may have its own requirements for a 
time increment at any point in the simulation. For example, the 
time interval between fertilizer applications can be 60 d, the 
atmospheric boundary can be modified hourly, and calculations 
of infiltration may require time increments on the order of sec- 
onds. Combining modules that work with different time steps 
into one simulator is referred to as an asynchronous coupling 
(ten Berge et al., 1992). 

The control module 'Synchronizer' calculates the actual time 
step that the whole simulator will use. It is invoked at the be- 
ginning of every time step. It uses the requirements of all mod- 
ules for the next time step and the numbers of iterations that 
have occurred during the previous time step as input. The 'Syn- 
chronizer' calculates the optimum time increment that (i) allows 

for convergence of iterations within modules, (ii) enables the 
simulator to read or to deliver data at specified times, (iii) does 
not increase drastically as the simulated time progresses. If there 
are no modules with time step requirements, the time step will 
increase gradually until it reaches a prescribed maximum value. 
Current time and time step, simulated time, number of iterations, 
and time step limitations are also available to all process mod- 
ules to use and modify. 

Data Structure 
We used the concept of encapsulation of information to fa- 

cilitate independence of modules. Encapsulation, a character- . 
istic of OOP, is the grouping into a single module of both the 
data and the operations that modify or use the data (Wirfs-Brock 
et al., 1990). The data and operations, encapsulated in a single 
module, can be hidden from the developer of other program units. 

In order to implement data encapsulation in FORTRAN, we 
divided the variables into public and private fields. Public vari- 
ables are available to two or more modules. Private variables 
are available only to the module in which they are declared; 
they are not available to other modules. Public variables are 
further divided into two fields, global public and local public. 
Global public variables are available to all process modules. Lo- 
cal public variables are shared between a process module and 
its submodules. The use of public and private fields is illustrated 
in Fig. 3. The global public field includes soil and root state 
variables, fluxes, nodal coordinates, and temporal variables de- 
scribed in the previous section. The private data field may in- 
clude control variables to read or print data, parameters to cal- 
culate coefficients of the numeric algorithms coded in the module, 
and state variables and fluxes from the previous time step. Local 
public variables can include matrices passed to a submodule 
to solve for coefficients of a simultaneous set of equations or 
the coefficients in the model equations, such as thermal con- 
ductivity. If any module requires data from an external file to 
fill its private data field, it opens and reads its own file. One 
drawback of this scheme, however, is that the number of data 
files will grow as modules are added. Because the size of each 
file is small, it should not be difficult to manage the files. Each 
module can also produce output according to its own schedule. 

Submodules that calculate coefficients for equations to rep- 
resent a model are also encapsulated within process modules. 
Neither data nor equations of submodules of a particular pro- 
cess module are needed for the functioning of other process mod- 
ules. The recommended data structure includes a subdivision 
into information that is locally public (i.e., available to one or 
more submodules) or private (i.e., information hidden within 
a submodule) (Fig. 3). The hidden information is read indepen- 
dently, and therefore the submodule can be easily replaced or 
modified. A need to replace a submodule is as common as a 
need to replace a process module. Consider, for example, the 
water movement module that requires hydraulic conductivity 
values and water content as a function of the water potential. 
The replacement of equations to calculate these values may be 
desirable (Alessi et al., 1992). The replacement will not affect 
the process module which needs only the value of the hydraulic 
conductivity, not the equations used to obtain this value. There- 
fore, the submodule can read its own parameters from its own 
data file and have them hidden from the process module and 
the whole simulator. 

Global public variables are passed in FORTRAN COMMON 
blocks to process modules; no arguments are used in CALL state- 
ments at the process level. The same COMMON blocks are placed 
in all process modules. Errors are minimized by the use of IN- 
CLUDE statements, to insert a file containing a list of named COM- 
MON blocks into each process module. If it is desirable to trans- 
fer some private variable into a public field, only the insert file 
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Fig. 3. Implementation of global public, local public, and private vari- 
ables in 2DSOIL. 

referenced in the INCWDE statement has to be changed. Local 
public variables (i.e., variables shared between process modules 
and their submodules) are passed in CALL statements (Fig. 3). 

FORTRAN COMMON blocks are also used to store private vari- 
ables within a module or submodule. The primary reason for 
using COMMON blocks for private variables was to save the values 
of private variables between invocations of the subroutine. Any 
particular COMMON block containing private information is pres- 
ent in only one module. Because there is no .reference to this 
block in other program units, the information remains hidden. 

Structure of a Process Module 
The general sequence of operation includes reading the time- 

independent data, calculating the auxiliary variables to speed 
up routine calculations, checking whether it is time to execute 
and (if it is time to execute) reading the time-dependent data, 
changing the public variables, changing the private variables, 
calculating the requirements for time increments, and writing 
output data. Some steps may be absent. 

An example of a typical module is shown in Fig. 4. This mod- 
ule simulates a chemical application. At the start of the module, 
designated by the public variable Llnpur, it reads time- 
independent private data that are listed in the private COMMON 
block and will be stored. The number NumMod of the module 
in the invocation sequence is used to keep the place for the mod- 
ule time step requirements. This number is stored as private 
information. The public variable tNext stores the time to execute 
code for a particular activity, therefore, one of the future time 
steps has to be ended exactly at this time. When the execution 
time arrives, concentrations of the chemical (which are public) 
in prescribed nodes are changed by dividing mass of chemical 
applied (which is private) by soil water content (which is pub- 
lic). The public variable tNext is finally assigned an unreachable 
value written I.OE+32) which means that there are no 
further restrictions on the time step from this module. 

Boundaries. in the Context of Modularity 
The boundary interface mentioned in Fig. 1 has to provide 

exchange of data between the soil simulator and both plant and 
atmosphere components of a crop model. This interface is ex- 
traneous for the generic soil-root simulator, but any particular 
simulators derived from the generic structure will require such 
an interface and both the corresponding plant and atmosphere 
components to run. 

To simplify the development of interfaces for the soil-atmo- 
sphere boundaries and enhance the reusability of transport pro- 
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Fig. 4. The basic structure and sequence of operations in a process mod- 
ule. 

cess modules, we separated the coding of boundaries from bound- 
ary models. Codes showing the type of the boundary (e.g., 
evaporating, draining, etc.) at each boundary node are stored 
in the public data field. Transport process modules use these 
codes to process information supplied by the interface. Trans- 
port modules, however, do not read data on boundary fluxes, 
concentrations, and the like. These values have to be supplied 
by the interface as public variables that will be used by the trans- 
port module. 

We considered and then rejected including the potential bound- 
ary flux calculations in transport modules. We specifically avoided 
having the water transport module input values of evaporation 
or precipitation, because this would mix the water transport code 
with the code to determine surface boundary fluxes. Later mod- 
ifications to the method of determining evapotranspiration or 
precipitation would then require changes in the water transport 
code as well. In our design, the water transport code is provided 
values of potential fluxes and is then free to modify these fluxes 
on the basis of the current soil conditions only. 

Another component of the boundary interface supplies data on 
the sHoot status to the root activity module and returns data 
on the availability of water and nutrients to the plant. The data are 
specific to the plant model. It was important for our purposes 
to realize that the number of variables relating shoot and root 
is very small in the majority of plant models. A list of these 
variables typically may include potential transpiration and/or 
leaf water potential, C available for root growth, available soil 
water supply and N flux, and indexes of soil stresses. We as- 
sumed that the interface calculates the potential root water up- 
take and potential C supply to roots, and the root module returns 
the actual supply of water and nutrients together with the actual 
C use. A separate COMMON block is designated to contain shoot- 
root interaction variables. It has to be filled as required for a 
particular combination of shoot and root models. 

Input and Output of Data 
The process modules and some submodules read their own 

data files, so there is no input module. The control modules 
(Grid-Boundary-Setting, Synchronizer) read their own infor- 
mation in a predefined format. We did not include any modules 
to generate grids. It is assumed that either finite element or finite 
difference methods may be used for the numerical estimation 
of the intrasoil transport, so data for both nodes and grid cells 
(elements) are required. If the user chooses modules that use 
the finite difference or simplified mass balance techniques, then 
the element data will not be used. 
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lsble 1. Process modules used in 2DSOIL and their sources. 
Module name Roc*ls Source 

Transport 
WaterMover Water redistribution according to Simdnek et al., 1992 

two-dimensional Richards' 
equation 

SoluteMover Convective-dispersive transport of Simdnek et al., 1992; 
several solutes Istok, 1989 

HeatMover Diffusive-convective redistribution Simdnek et al., 1992 
of heat 

GasMover Transport of gases by diffusion in -t 
air-filled pore space 

Soil-atmosphere boundary 
Setsurf01 Hourly fluxes of water, solutes, Acock and Trent, 

heat and 1991 
Cot at the soil surface, governed by 

parameters of atmosphere and 
plant shade 

Setsurf02 Piecewise dependencies of boundary - 
fluxes or state variables on time. 

Root activity 
RootUptake Root growth, and water and solute Acock and Trent, 

uptake based on the trade of 1991 
carbon and water between shoot 
and root. Root respiration. 

Interphase mass exchange 
MacroChem Cation exchange Ca-Mg-Na; Pachepsky, 1990 

dissolution precipitation of 
gypsum and carbonates. 

Biotransformation 
NitroChem Mineralization and/or Bergstrom et al., 

immobilization of soil organic 1991 
matter. Nitrification and 
denitrification. 

Management 
Tillage Soil disruption and subsidence. - 
Fertilizer Addition of organic and inorganic - 

application fertilizers. 
Irrigation Addition of water as needed. a - 
t The module has been developed by us to complete an example simulator. 

A simple output module is available that prints soil and state 
variables, together with nodal coordinates, at prescribed times 
in the simulation. 

APPLICATION AND EXAMPLES 
To test and apply the modular design, we assembled 

a representative simulator called 2DSOIL. The process 
modules used in 2DSOIL and their sources are summa- 
rized in Table 1. The modules were adopted from other 
computer models that were in the public domain and had 
been written in FORTRAN. The Lode was chosen on the 
basis of its reliability and understandability because we 
had to restructure the code to conform with the modular 
structure described above. The restructuring required only 
moderate effort since the code was well documented. The 

resulting 2DSOIL simulator is fully documented in Pa- 
chepsky et al. (1993). We chose to use two-dimensional 
water transport because the importance of the interplay 
between vertical and horizontal transport in soils has been 
demonstrated elsewhere, and many crop models already 
rely on a two-dimensional representation of the soil profile. 
The simulator is not limited to two-dimensional transport, 
however. Because 2DSOIL is a generic simulator, any of 
the modules can be replaced as necessary following the 
design described above. For instance, we developed a one- 
dimensional water transport module for use in another 
application (Kemp et al., 1995). Concentrations and water 
contents per unit of soil volume are computed by both one- 
dimensional and two-dimensional transport modules, as- 
suming a standard thickness of 1 cm of a two-dimensional 
layer or a standard cross-sectional area of 1 cm2 of a one- 
dimensional soil column. 

To develop examples of applications, we needed to as- 
semble a crop model and a boundary interface. We chose 
the atmosphere simulator described by Acock and Trent 
(1991). This simulator derives hourly potential fluxes of 
water, solutes, heat, and CO2 at the soil surface from 
weather parameters (radiation, precipitation, minimum 
and maximum daily air temperature, and wind speed) and 
surface shading governed by the plant height, plant row 
orientation, and row spacing. To provide shoot-root inter- 
actions, we used a simple shoot imitator that calculates 
plant height and available C from an index of soil water 
availability and plant age. Both boundary interfaces are 
described in Pachepsky et al. (1993). 

Two examples are presented below. The first example 
was chosen to demonstrate that complex interactions of 
soil transport processes, root activity, and canopy influ- 
ence may occur, and that the 2DSOIL simulator with a 
crop simulator can be useful for understanding these inter- 
actions. The second example was chosen to show that the 
2DSOIL simulator can be readily expanded without any 
changes in structure or in control modules. 

The first example describes the soil temperature regime 
in ridge and interridge zones as affected by plant canopy, 
water table, and water uptake by roots. The grid used in 
this example has a shape similar to the one in Fig. 2. The 
width of the top of the ridge is 0.1 m, and the width of 
the bottom of the ridge is 0.3 m; the furrow width is 0.5 m. 
The matric potential was kept constant (-30 kPa) at the 
0.8-m depth. This simulates a water table at approximately 
4 m in depth. The soil parameters used in the model are 
listed in Table 2. 

The results, in Fig. 5, show how simulated surface 
(0.05 m) soil temperature responded in the presence of 
water uptake by roots under a fully developed canopy. In 

lsble 2. Wrameters used in the heat and solute transport simulatiomt 
Diffusion 

Layer Sand Silt Clay constant a. 0, a r( KW Pa 

Heat transport simulation 
1 45 30 25 - 0.426 0.001 0.023 1.103 25.0 1.52 
2 45 37 18 - 0.390 0.001 0.016 1.240 21.7 1.62 

Solute transport simulation 
1 - - - 12.0 0.399 0.001 0.017 1.300 12.4 1.52 

t €4, saturated water content; Or, residual water content fir bulk density; K,,, saturated hydraulic conductivity; a aAd q, coefficients for the van Genuchten 
water retention equation. 



Days after Emergence 
Fig. 5. Simulated soil temperature at 0.05-m depth in a ridged soil when 

the plant canopy covers the entire soil surface. 

this case, water uptake occurred primarily in the ridge, 
directly below the crop. After 35 d after emergence, there 
was no more precipitation; there was some contribution 
of water moving up from the water table, however. The 
data shown are from 54 to 60 d after emergence. Plant 
shade has covered all of the interridge zone. The average 
simulated water contents were 0.25 m3 m-3 in the ridge 
and 0.30 m3 m-3 in the furrow at the 0.05-m depth. As 
shown in Fig. 5, the surface soil in the ridge had a wider 
range of temperature fluctuation. The soil there was warmer 
at midday and cooler at night. This occurred because the 
ridge was drier than the interridge zone due to higher 
elevation above the water table, and had greater root mass, 
which resulted in more water uptake. Benjamin et al. (1990) 
showed similar results for field data from an experiment 
with two ridge shapes, one ridge more peaked than the 
other. The temperature amplitude was larger in the more 
peaked ridge, which had the smaller water content. 

The second example demonstrates the effect of root water 

Root Density 
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uptake on solute distributions in the upper 0.8 m of the 
profile. This example also demonstrates how a manage- 
ment module can be used to add a soluble salt to selected 
surface nodes at a specified time. By placing the module 
at the same level as the other process modules, some of 
its code will be executed at every time step. A data file 
was also created for the module. The data included the 
time of application, amount of solute to be applied, and 
the node numbers to receive the solute. The new module 
was compiled and linked with the other modules. No other 
changes in any other modules were required. The FOR- 
TRAN code for this module is in Fig. 4. 

In the simulation, a solute in the amount of 300 pg 
was added to the soil surface 44 d after emergence 

and then rainfall was applied. The net amount of water 
added to the soil on Day 44 was 22.5 mm. After Day 44, 
an additional 73 rnm of rainfall was applied at four differ- 
ent times. Other parameters for the soil hydraulic prop- 
erties and solute are given in Table 2. 

In Fig. 6, we show the root distribution at 44 d after 
emergence and the two-dimensional pattern of water con- 
tent in the profile that results from water uptake by roots. 
The root distribution is concentrated in the soil under the 
plant (Fig. 6a). Water contents were lowest under the plant, 
where the root distribution was highest (Fig. 6b). Water 
content increased with depth and horizontal distance from 
the plant. After rainfall on Day 44, water has infiltrated 
deeper in the interrow position, because the initial water 
content was greater in this position (Fig. 6c). Transpira- 
tion and several periods of rainfall continue after Day 44 
until the simulation ends at Day 56. The chemical con- 
centrations directly below the plant row (at x = 0.01 m) 
and midway between rows (x = 0.35 m) at Day 56 are 
plotted in Fig. 7. The solute mass in the soil under the 
row position was greater than under the interrow position. 
Furthermore, the amount of solute near the surface below 
the plant was still rather high, despite two rainfalls after 
solute application. Evaporation and transpiration act to 
move the water with the solute toward the soil surface 

Soil Water Content 
(cm3 ~ m - ~ )  

Width (cm) 
Fig. 6. Simulated root density and water content at Day 44 before chemical application and rainfall, and water content after chemical application 

and rainfall for the second example. 
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Fig. 7. Simulated mass of solute in the upper 0.8 m vs. soil depth in 
the row zone (x = 0.01 m) and in the interrow zone (x = 0.35 m) 
for the second example. 

and toward the plant. This results in concentration of sol- 
ute in the soil under the plant and depletion of solute in 
fie interrow zone. 

The results of this simulation are in qualitative agree- 
ment with observed effects of plant water uptake or man- 
agement practices on solute distributions in soils. Timlin 
et al. (1992) measured higher levels of bromide in the up- 
per 0.5 m of soil under plant rows than in soil in interrow 
zones. The bromide had been applied uniformly to the 
soil surface and there were several periods of rainfall dur- 
ing the season. Benjamin et al. (1994), using S W M S 2 D  
(Simhnek et al., 1992), predicted less downward displace- 
ment under furrow irrigation of a tracer placed in the ridge 
as compared with furrow placement. This compared fa- 
vorably with experiments carried out by Kemper et al. 
(1975). 

DISCUSSION AND CONCLUSIONS 
The paradigm of modularity used in this paper is much 

more than dividing a program into a number of subrou- 
tines and then calling them in sequence. Modules should 
be loosely coupled (i.e., with a simple interface between 
modules and a minimum of information passing). They 
should also have high cohesion (i.e., interdependent ele- 
ments packaged together and information hiding). Because 
the ability to hide information is critical, the questions 
of what comprises a module and how to best encapsulate 
the information must be answered. The answers depend 
on several factors, including the scale (i.e., plant, field, 
or landscape scale), the desired level of detail of the sys- 
tem to be modeled, and the programming environment 
(e.g., FORTRAN, C++). 

In the application 2DSOIL, the modules were organized 
around processes primarily because the structures of the 
existing programs incorporated into 2DSOIL were already 
based on processes and because this kind of structure is 
suited to FORTRAN. A modular soil simulator could also 
be organized on the level of a soil cell (Dubois-Pelerin 
et al., 1992). Here a cell is defined as a polygonal element 
with a boundary, as shown in Fig. 2. Calculations for mass 

transport, root growth, and transformations can be encap- 
sulated in a cell module. This type of structure is much 
more easily implemented in an object-oriented language 
than in FORTRAN. Soil cell objects (modules) will have 
methods (functions) depending on their role in the plant- 
soil system. New types of cells could easily be derived 
from a base class (e.g., cells with macropores, or bound- 
ary cells. 

The generic, modular structure described in this paper 
offers many advantages to the development and mainte- 
nance of agricultural management models. These advan- 
tages include: 

1. Ability to reuse code. Our example generic simula- 
tor, 2DSOIL, used code from several models. 

2. Computer code can be easily modified and evalu- 
ated. This simplifies the process of incorporating 
into models ideas derived from experiments. 

3. Submodels, which are components of a larger modeI, 
can easily be tested and validated in more than one 
model. For example, models of N dynamics can be 
evaluated in both crop growth and water transport 
models. The evaluation would not be limited to one 
particular model. 

4. Users can add management practices as modules to 
build models for specific tasks from program units 
developed by other researchers. 

5. Because the developer of a particular process model 
does not need to know the details of the other mod- 
ules, developers gain access to a wide range of code 
in areas outside their fields of expertise. 

Code and documentation for the sample generic simulator, 
2DSOIL, are available from the authors. 

The modular design presented here was developed mainly 
as a framework for crop modelers to interface their plant 
and atmosphere codes with reliable soil code. To do this, 
the crop modeler needs to concentrate only on the boundary 
interface. The modeler must (i) assign potential bound- 
ary fluxes of water, solutes, heat and gases from their 
atmosphere module to the nodal boundary fluxes, (ii) re- 
ceive actual boundary flux values from the water trans- 
port module and use them as needed, (iii) pass potential 
transpiration and C flux values from the plant module to 
the root module, (iv) receive actual transpiration, water 
and nutrient fluxes from the root module and use them 
as needed, and (v) provide simulated times when the plant 
and atmosphere modules will be ready to exchange infor- 
mation. All variables needed for this exchange are global 
public variables, and no code has to be changed in the 
other modules of the soil simulator. If some other soil 
variables are needed by the plant and atmosphere com- 
ponents, they are accessible through the global COMMON 
block since all global public data for the boundary inter- 
face are available there. If some private root variables are 
needed by the shoot module, they can be made accessible 
by inserting a local public COMMON block of the root mod- 
ule into the boundary interface. Finally, if the crop mod- 
eler wants to use his or her own root module, the module 
must be rearranged to fit into the data structure of the de- 
sign described here. 

We have shown how existing FORTRAN program units, 
when clearly written, can be combined into larger units 
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using a modular structure. These units are easily modified 
or replaced. FORTRAN was used because it has been an 
important programming language for the scientific com- 
munity and there is a large amount of available code. True 
object-oriented programming languages, however, such 
as SmallTalk and Ct+, offer many advantages for pro- 
gramming complex models and should be investigated. 
A finite element model written in SmallTalk has recently 
been published (Dubois-Pelerin et al., 1992), and a cotton 
(Gossypium spp.) model written in C++ incorporating 
2DSOIL is under development (Hal Lernrnon, personal 
communication, 19%). 

The segregation of a process or group of processes into 
a particular module is not always straightforward, how- 
ever, and will probably always be, to some degree, arbi- 
trary. If we are to develop generic, modular simulators 
as Reynolds et al. (1992) suggested, we will need to further 
explore the issue of modularity and the basis for creating 
modules. This is similar to the problems facing taxono- 
mists: i.e., what should be included in a group and what 
should be excluded. 
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