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Use of near-infrared (NIR) diffuse reflectance on ground wheat
meal for prediction of protein content is a well-accepted practice.
Although protein content has a strong bearing on the suitability of
wheat (Triticum aestivum L.) for processed foods, wheat quality, as
largely influenced by the configuration and conformation of the mo-
nomeric and polymeric endosperm storage proteins, is also of great
importance to the food industry. The measurement of quality by
NIR, however, has been much less successful. The present study
examines the effects and trends of applying mathematical transfor-
mations (pretreatments) to NIR spectral data before partial least-
squares (PLS) regression. Running mean smooths, Savitzky—-Golay
second derivatives, multiplicative scatter correction, and standard
normal variate transformation, with and without detrending, were
systematically applied to an extensive set of hard red winter wheat
and hard white wheat grown over two seasons. The studied prop-
erties were protein content, sodium dodecyl sulfate (SDS) sedimen-
tation volume, number of hours during grain fill at temperature
<24 °C, and number of hours during grain fill at temperature >32
°C. The size of the convolution window used to perform a smooth
or second derivative was also examined. The results indicate that
for easily modeled properties such as protein content, the impor-
tance of pretreatment was lessened, whereas for the more difficult-
to-model properties, such as SDS sedimentation volume, wide-win-
dow (>20 points) smooth or derivative convolutions were important
in maximizing calibration performance. By averaging 30 PLS cross-
validation trial statistics (standard error) for each property, we
were able to ascertain the inherent modeling ability of each wheat
property.

Index Headings: Near-infrared preprocessing; NIR; Partial least
squares; PLS; Wheat quality; Statistical analysis software; SAS.

INTRODUCTION -

Wheat (Triticum aestivum L.), in ground or bulk form,
has long been a favorite of NIR spectroscopists and che-
mometricians in the testing of the performance of instru-
ments and calibration equations. The present study fol-
lows in this tradition with the use of this commodity to
explore the effect of spectral pretreatments during partial
least-squares (PLS) calibration equation development.
Wheat protein content and protein quality (specifically,
the glutenin—gliadin complex) are fundamental properties
that have a bearing on the suitability of flour in specific
food products.! The quality of wheat is a product of ge-
netics and the growth environment. Environmental ef-
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fects often play a larger role in defining quality than ge-
netic effects.? The difficulty with quality from the stand-
point of the cereal scientist is that of its measurement,
and specifically, how the easily identifiable aspects of
quality that appear in the finished product (color, loaf
volume, crumb grain structure in pan breads) are deter-
mined by the biochemical properties of the gluten pro-
teins and their interaction with starch, lipids, and other
classes of compounds that make up the wheat kernel. In
addition to the classical procedures such as Kjeldahl di-
gestion and Dumas (combustion) for protein content, nu-
merous other devices and procedures have been devel-
oped to measure physical properties such as consistency,
strength, elasticity, and tolerance of wheat flour during
dough development. Instruments such as the Mixograph,
Farinograph, Extensograph, and Alveograph were devel-
oped to characterize such properties.> Although very
good at measuring specific rheological features, these in-
struments suffer either from the length of time needed
per analysis (several minutes) or require a large mass of
flour per sample, thus making them ill-suited for early
generations in plant breeding programs. A biochemical
technique, such as size-exclusion high-performance lig-
uid chromatography (SE-HPLC),*¢ is based on the quan-
titative measurement of the polymeric (M, > 100 k, pri-
marily, glutenin) and large monomeric (M, = 30-70 k,
primarily gliadin) protein molecules that largely influence
dough rheological behavior and the texture and appear-
ance of the finished product. Size exclusion HPLC pro-
cedures are very time-consuming, require extensive use
of solvents, and require highly trained laboratory person-
nel. A simpler biochemical technique for measurement of
protein quality is the sodium dodecyl sulfate (SDS) sed-
imentation volume method, which collectively measures
the gluten protein complex and is reported to be a good
indicator of heat stress in the developing grain.”® Still,
laboratories are limited to 50-100 SDS sedimentation
volume analyses per day, owing to the time needed for
sediment formation and cleanup. Such reasons have fos-
tered the use of NIR spectroscopy for protein content
analysis during the past 30 years and why continued ef-
fort is involved in developing this technique for wheat
quality analysis.>!0

Recent efforts on the use of NIR spectroscopy in wheat
quality analysis have dealt with the feasibility of using
this procedure on harvested wheat for gauging environ-
mental stress (particularly temperature) to the plant dur-
ing development.!! Although warm temperatures (>30
°C) generally favor wheat quality for breadmaking,!? ex-
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cessive temperatures during grain fill, for still-uncertain
reasons, can have the opposite effect. The exact mecha-
nism for the manner in which temperature during the
postanthesis development period affects the endosperm
protein structure of wheat is a topic of current research.
Explanations such as an alteration in the ratio of glutenin
to gliadin, changes in the size of the glutenin polymers
due to changes in the formation of disulfide bonds of the
peptides, conformational changes affecting the folding
and polymerization of the peptides, or changes caused by
the direct influence of heat “shock proteins on wheat
dough quality are under consideration.!®* Therefore, a rap-
id, NIR technique for plant stress indicators would be
useful in wheat breeding programs outside of the tem-
perate regions of the world, where certain genotypes may
be particularly susceptible to temperature extremes.

The success of NIR reflectance calibrations such as
those of partial least-squares (PLS) design is often de-
pendent on the structuring of the spectral data before the
actual decomposition and regression procedure begins.
This structuring, or pretreatment, serves several purposes:
(1) removal of random noise, (2) reduction of the phys-
ical effect of sample-to-sample variation in scatter, caused
by differences in particle size distributions, and (3) en-
hancement of a weak absorption band that is either in-
trinsically, or by instrument limitations, convoluted with
neighboring spectral data. Unfortunately, the best pre-
treatment is seldom known beforehand, which is espe-
cially true when developing a calibration for a primary
procedure or instrument (e.g., viscosity, dough resistance)
rather than the concentration of a known chemical spe-
cies. Spectral analysts have traditionally combined their
prior knowledge of calibration development with educat-
ed guesswork in an ad hoc manner in an effort to find
the optimal pretreatment procedure. The present research
has taken a new approach, this being the systematic anal-
ysis of the effect of spectral pretreatments on wheat pro-
tein content and quality calibrations. Our study objective
has been to determine the sensitivity of NIR spectral pre-
treatments, such as smooths, derivatives, and scatter cor-
rection, on four wheat properties. These properties range
from that which is chemically well characterized (protein
content), to that which is more difficult to chemically
define (SDS sedimentation volume), to those that are
proxies (hours above or below critical temperatures dur-
ing plant growth development) for biochemically ill-de-
fined constituents that affect wheat quality. The ease with
which such trials are performed in a full (one-sample-
out) PLS1 cross-validation is afforded by a custom-de-
signed batch computer program that possesses the capa-
bility of analyzing hundreds of pretreatment combina-
tions in one unattended run.

EXPERIMENTAL

Wheat. Two consecutive years of growth trial samples
from the Nebraska Winter Wheat Variety Tests program
were obtained. For each season, ten commercial cultivars
or advanced breeding lines of hard red winter wheat and
ten cultivars/lines of hard white wheat were grown in
field-replicated plots at each of ten non-irrigated sites
throughout Nebraska. With a replication factor of two,
approximately 400 laboratory samples per year were
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available for reference and NIR analyses. Growing lo-
cation from year | to year 2 tended to be the same at the
county level but not at the field level. The cultivars/lines
were consistent between the years for eight of the ten red
wheats and seven of the ten white wheats. Fertilizer (N,
P, K) was applied according to standard practices at levels
commensurate with soil fertilization needs. Though the
Tests program includes sites that possess irrigation, all
sites chosen for the current study were dryland sites.
Weather information (hourly temperature, humidity, and
precipitation) was obtained from the Nebraska Automat-
ed Weather Data Network, High Plains Regional Climate
Center, University of Nebraska—Lincoln (http://hprcc.
unl.edu/data.htm). For this study, only temperature infor-
mation translated into the number of hours above or be-
low critical values (<24 °C or >32 °C) during the growth
stage of grain fill was used in the NIR analysis of weather
data.

Protein Analysis. Measurement of SDS sedimentation
volume was accomplished via a modification of AACC
Approved Method 56—70.' Briefly, a constant mass (typ-
ically 2 g, 14% moisture, wet basis) of ground (passing
a 0.5 mm screen in a cyclone grinder) wheat is added to
a prescribed volume (25 mL) of distilled water in a grad-
uated cylinder, whereupon the cylinder is agitated for sev-
eral minutes. An equal volume of solution containing
3.0% (w/w) sodium dodecyl sulfate and 2.0% (w/w) 1.2
N lactic acid stock solution is added to the cylinder, and
then the mixture is agitated continuously for several min-
utes before being allowed to rest in the vertical position
for 20 min. At the end of this period, the sediment vol-
ume is measured. The error of the SDS sedimentation
procedure, calculated as the standard deviation of 30
measurements of a control that was measured during a
one-month period, was 2.2 mL.

Protein content (N X 5.7) was determined by combus-
tion (Model FP-428, Leco Corp., St. Joseph, MI) on du-
plicate 150-mg portions of each laboratory sample. Du-
plicate values were averaged. The error of the combustion
procedure, also calculated as the standard deviation of
single determinations of a control run in quadruplicate at
the beginning and end of each of 11 analysis days (=88
measurements) throughout a one-month period, was
0.109% protein.

Near-Infrared Acquisition and Calibration Equa-
tion Development. To reduce spectral variation attributed
to moisture, test samples were conditioned to a constant
relative humidity of 33% by placement!” in batches of 20
in a desiccator containing saturated MgCl, solution. NIR
reflectance (1100-2498 nm) values were recorded at 2-
nm increments using an analytical scanning monochro-
mator (Foss-NIRSystems Model 6500, Silver Spring,
MD) equipped with a rotating sample cup. Each test sam-
ple was scanned twice, with repacking between scans. A
scan was defined as the average of 32 repetitive passes
referenced to the average of an equal number of passes
of ceramic. Scan averages [log(1/R)] were the basis of
input in calibration equation development.

Partial least-squares (PLS) regression on mean-cen-
tered data without variance scaling was performed inde-
pendently on each of four properties: protein content,
SDS sedimentation volume, #(T < 24 °C), and «(T > 32
°C). One-sample-out cross-validation was performed on



one-half the samples (i.e., the first field rep) from each
year (n = 198 and 196 for years 1 and 2, respectively),
treating each year separately and then in combination.
The remaining samples (n = 200 and 195 for years 1 and
2, respectively) became the test sets. PLS calibration de-
velopment was performed using two packages: SAS (spe-
cifically Proc PLS, Cary, NC) and Grams PLSplus (Ga-
lactic Industries, Salem, NH). The first package was used
to evaluate the effect of spectral pretreatments (smooth-
ing, derivatives, and scatter or pathlength correction). A
sequence of SAS data steps and procedures were written
and placed within nested loop structures controlled by the
SAS Macro language. Pretreatment combinations could
be run in one unattended session in batch mode, as de-
scribed in detail in a recent article.'® The second package
was used for detailed examination of individual cross-
validations and in calibration equation testing. Up to 15
factors were evaluated for each PLS regression, with the
optimal number of factors decided by an F-test at a prob-
ability level of 0.75."

Spectral pretreatments for minimizing particle distri-
bution variation caused by grinding or packing density
consisted of multiplicative scatter (or signal) correction
(MSC)!81% or standard normal variate (SNV) transfor-
mation.?® Each of these transformations attempts to elim-
inate additive and multiplicative differences between
spectra that are caused by variation in the physical size
of particles (hence, causing variation in scattering and
absorption) rather than an actual variation in chemical
concentration. Multiplicative scatter correction accom-
plishes this by regressing each spectrum to a common
spectrum, typically the mean spectrum of a calibration
set, then applying a correction to each wavelength ac-
cording to the coefficients of the regression equation. It
is assumed that the beneficial aspect of minimizing the
effect of physical variation outweighs the deleterious ef-
fect of inadvertently removing any spectral dependencies
on the concentration of the analyte during the MSC pro-
cedure. In contrast to MSC, SNV operates on each spec-
trum independently by normalizing the spectrum to have
a standard deviation of unity and a mean of zero across
its wavelength region.

Other spectral pretreatments included a running mean
smooth and a Savitzky—Golay second derivative. These
transformations were applied with or without the MSC
and SNV transformations, as shown by the flowchart in
Fig. 1. Eleven convolution window sizes, ranging from
5 points to 25 points, were employed in either the smooth
or the derivative operation. Coefficients for the second-
derivative convolution of a quadratic polynomial were
extracted from the original paper of Savitzky and Go-
lay.?! When an MSC or SNV operation was used in con-
junction with the smooth or derivative operation, the or-
der of the two operations depended on the particle size
correction operation. With MSC, differentiation and
smoothing occurred first; with SNV, the order was re-
versed. Although the ordering was chosen to mimic that
of Grams PLSplus (with the intention of using the graph-
ical features of the commercial software once the best
pretreatment had been identified), recent research on the
application of MSC and second derivatives in single
wheat kernel protein content calibrations has reported the
superiority of the derivative-before-MSC approach over

Convolution function
(2 cycles)

Convolution window size
(11 cycles)

MSC loop
(2 cycles)

PLS cross
validation

.

Detrend loop
(2 cycles)

Convolution function
(2 cycles)

Convolution window size
(11 cycles)

PLS cross
validation

L

A 4

End

Fig. 1. Flowchart of nested loop structure of spectral pretreatments.
(Flowchart symbols: diamond = SAS Macro loop; rectangle with two
vertical bars = SAS procedure; circle = connector.)

that of the opposite order.?? For trials that employed SNV,
detrending was subsequently applied to one half the num-
ber of trials. As initially reported by Barnes et al.,?° de-
trending consists of the least-squares fitting of a quadratic
polynomial to each SNV-corrected spectrum, whereupon
a new spectrum is formed as the difference between the
SNV-corrected spectrum and the polynomial.

The total number (M) of cross-validation trials exam-
ined for each calibration set was as follows: M = none
+ only MSC + [2 convolution function types (i.e.,
smooth or second derivative) X 11 convolution window
sizes (i.e., 5,7, ..., 25) X 2 MSC options (i.e., MSC or
no MSC)] + SNV alone + SNV with detrend + [2 de-
trend-after-SNV options (i.e., detrend or no detrend) X 2
convolution function types X 11 convolution window siz-
es] = 92 trials.

For each trial, cross-validation performance was deter-
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mined as the square root of the mean square error of
cross-validation (RMSECYV), defined as:

1/2

(9[ - )&)2
N

R

]

RMSECV = |- (n

where ¥, is the predicted value of the property of each
sample i as it is first rotated out for development of a
regression equation and subsequently predicted during a
cross-validation cycle; y; is the reference value; and N is
the number of samples in the calibration set.

The optimal number of PLS factors for each trial was
determined by an F-test.!” Specifically, a variance ratio
was constructed for each number of PLS factors by di-
viding the predicted residual error sum of squares
(PRESS) by the minimum PRESS value, shown as fol-
lows:

F, = L == 2)

where ¥;; and ., are the cross-validation predictions
(see Eq. 1) corresponding to the jth (1 = = min = 15)
factor and the factor (min) that produces the smallest
PRESS value, respectively. With the numerator and de-
nominator degrees of freedom set to (N — 1), the optimal
number of factors is the smallest j for which the proba-
bility, P, that an observation from an F distribution being
less than or equal to F; is smaller than the prescribed
value of 0.75. Depending on the calibration conditions,
the optimal number is sometimes the number correspond-
ing to the smallest PRESS value, and in rarer circum-
stances, it can be the largest number of factors examined
(15 in the present case). Once the optimal number of
factors was determined for each cross-validation trial, the
coefficient of determination (R?) was determined by cor-
relating the predictions from the corresponding PLS cal-
ibration equation based on all calibration samples to ref-
erence values for these samples.

In addition to reporting the individual statistics of each
PLS cross-validation trial, these trials were ordered by
RMSECYV value, whereupon a grouping of x contiguous
trials from the better end formed the basis of averages
for the following figures of merit: RMSECYV, R?, the op-
timum number of PLS factors, the number of factors at
PRESS minimum, and the number of convolution points
used in the smooth or second-derivative operation. The
procedure was:

figure of merit

1 JjHx—1
= - {figure of merit of an ordered trial}; (3)

i=j
This procedure (with x = 30 and j = 6 in the present
case) is utilized for the purpose of representing the re-
alistic modeling power of the NIR PLS calibrations for
each property, thus minimizing the possibility of report-

ing spurious (high or low) calibration statistics.
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RESULTS AND DISCUSSION

Our previous research on the analysis of the Year |
data indicated a high correlation between SDS sedimen-
tation volume and protein content (» = 0.903).!' When a
similar analysis is performed on Year 2, the degree of
correlation is much smaller (r = 0.243, N = 195 test
samples), which demonstrates that while protein content
does indeed have a strong effect on the quality-related
properties of wheat, environmental effects such as those
brought on by yearly changes in weather are very im-
portant in moderating this influence. Two common tech-
niques have been used to isolate the contribution of pro-
tein content from a wheat quality property: partial cor-
relation analysis, as explained in Fisher and van Belle?3
and applied by Delwiche et al.,!° and curve fitting of es-
timated component spectra.’?+2> Both techniques have
shown some degree of success, though practitioners of
each acknowledge the difficulty of spectrally isolating
protein-related quality features from protein content,
whose molecular groups have numerous overlapping
combination and first and second overtone vibrations of
CH, OH, and NH throughout the 1100 to 2500 nm re-
gion.?¢

Recent research suggests that elevated temperatures al-
ter the timing of gluten protein gene activation; however,
contrary to early research,?” the relative proportions of
glutenin to gliadin are largely unaffected.?® In the present
study, yearly differences in weather were demonstrated
by the fact that Year 2 was more moderate, having a
range of low-temperature (<24 °C) hours that was shorter
and having cooler high temperatures (>32 °C) as well
(Table I). This may also have contributed to the shorter
range in SDS sedimentation volume values for Year 2,
despite the lack of correlation between #(T < 24 °C) and
either SDS sedimentation volume or protein content (r =
0.002 and —0.085, respectively, N = 195). For «(T > 32
°C), a positive significant correlation (r = 0.380, P <
0.001) existed with protein content, while a negative sig-
nificant correlation (r = —0.288, P < 0.001) existed with
SDS sedimentation volume.

Effect of Spectral Pretreatment on Partial Least-
Squares Calibrations. By way of example, the
RMSECYV and corresponding R? values are shown for all
pretreatment trials of the PLS calibrations for SDS sed-
imentation volume on Year 1 data (Fig. 2). When ordered
by RMSECY, the pretreatment trial results typically dem-
onstrate one to three pretreatments with particularly high
error, followed by a very gradual improvement (i.e., low-
ering) of error throughout the remaining portion of the
92 trials. Unlike the difference between the poorest and
the low end of the intermediate trials, the difference be-
tween the best and the upper end of the intermediate trials
is generally not as large, as demonstrated by the calibra-
tions for SDS sedimentation. Interestingly, the trend to-
ward improved correlation between measured and mod-
eled property, as gauged by R?, was not always in parallel
with the improvement in RMSECYV. For example, the trial
with the third-highest R? value for SDS sedimentation
volume was only intermediate in terms of RMSECY,
ranking 43rd best (i.e., trial 50 in Fig. 2). This phenom-
enon was typical for the other properties regardless of
year, which suggests that a strong reliance on R? as an



TABLE 1. Properties under study.

Calibration sets? Test sets®
Property Range Mean =+ std Range Mean = std

Protein content (%)

year 1 9.09-18.27 13.35 = 2.21 8.13-18.90 12.98 + 2.26

year 2 10.61-18.54 13.92 = 1.68 10.31-19.22 13.72 £ .77

both years 9.09-18.54 13.64 = 1.98 8.13-19.22 13.34 + 2.06
SDS sed. vol. (mL)

year 1 10-35 212 £5.2 9-33 204 * 5.6

year 2 14-29 19.6 = 3.2 12-30 194 + 34

both years 10-35 204 + 44 9-33 19.9 = 4.6
HT < 24 °C) (h)

year 1 792-1099 965.5 = 89.3 792-1099 965.7 + 88.9

year 2 419-715 606.8 = 100.8 419-715 606.7 = 101.1

both years 419-1099 787.0 = 203.2 419-1099 788.5 = 203.3
KT > 32 °C) (h)

year 1 33-114 72.8 £ 23.9 33-114 72.8 = 24.1

year 2 21-92 65.8 = 20.7 21-92 65.6 £ 20.8

both years 21-114 69.3 £ 22.6 21-114 69.2 + 22.8

aN = 198, 196, and 394 samples for year 1, year 2, and both years, respectively.
5N = 200, 195, and 395 samples for year 1, year 2, and both years, respectively.
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Fic. 2. PLS one-sample-out cross-validation results for SDS sedimentation volume for Year 1 samples (N = 198). Trials are placed in order of
decreasing RMSECV. The cross-validation (upper graph) for each trial was determined at the optimal number of PLS factors by an F-test. The
correlation (lower) graph bars are arranged in the same order as the upper graph.
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°C); and (A) #(T > 32 °C). Graphs A, B, and C correspond to Year 1,
Year 2, and combined years, respectively.

indicator of calibration performance during cross-vali-
dation is not advised.

Aside from the ability to compare the effect of spectral
pretreatments, the large number of pretreatment trials has
made it possible to more clearly define the performance
of the PLS model for a given constituent or property. The
number of recommended PLS factors by cross-validation,
be it by selecting the number corresponding to the lowest
PRESS or by a statistical test that measures the signifi-
cance of adding factors, can often vary by several units.
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TABLE II. Summary of 30-pretreatment-trial averages of leave-
one-out PLS1 cross-validations of four wheat quality properties.

Number of
Optimal  factors at Number of
number of PRESS convolution
Property RMSECV R? factors minimum points

Protein content (%)

year 1 0.1014 0.999 11.13 14.30 19.40

year 2 0.1111 0.997 10.67 13.67 19.53

both years 0.1029 0.998 12.77 14.87 18.73
SDS sedimentation volume (mL)

year 1 2.25 0.839 4.56 8.63 14.13

year 2 2.30 0.649 8.00 9.60 16.00

both years 2.40 0.791 12.70 14.87 20.93
Time at T < 24 °C (h) )

year 1 22.17 0.981 13.60 14.67 11.00

year 2 24.54 0.982 13.30 14.93 11.93

both years  44.78 0.974 14.13 15.00 11.80
Time at T > 32 °C (h)

year 1 5.57 0.978 12.43 14.03 12.53

year 2 7.99 0.949 11.97 14.43 12.40

both years 9.06 0.913 13.57 15.00 13.33

The ramification of this is that the often-published graphs
that show cross-validation error (e.g., PRESS) as a func-
tion of the number of PLS factors are overly specific to
the pretreatment procedure and therefore cannot describe
the general capability of the PLS model for the constit-
uent or property itself. To alleviate this problem, aver-
aging was performed on the performance statistics of 30
(i.e., ranks 635 of RMSECYV) pretreatments (Fig. 3, Ta-
ble II). Apparent from Fig. 3 is a difference among the
properties being modeled by PLS regression. With the
PRESS values normalized to the PRESS at factor 1 (i.e.,
PRESS,..or /PRESS;,.r 1) for each property, it is seen that
calibration equation improvement during the progression
of the first several factors was greatest for protein con-
tent, irrespective of whether a single year’s analysis or
the combined years’ analysis was used. Beyond five fac-
tors, improvement in the protein content calibrations was
comparatively slight, though significant, with the average
optimal number approximately 11 for single-year calibra-
tions and 13 for combined-year calibrations (Table II). In
contrast, the improvement in SDS sedimentation volume
calibration equation performance (with respect to the
RMSECYV at factor 1) was not as pronounced as that for
protein content. For the single-year trials, SDS sedimen-
tation volume calibrations worsened after a certain num-
ber of factors (averages of 4.6 and 8.0 for Years 1 and
2, respectively), as demonstrated by the rise in PRESS
values beyond these minima, suggesting that over-fitting
occurred with higher-factor calibrations. The decline in
average R? value of Year 2 (Table II) compared to that
of Year 1 (0.649 vs. 0.839) is thought to be caused by
the overall smaller range in SDS sedimentation volume
values for Year 2, as well as the weaker relationship be-
tween this property and protein content. Therefore, in lieu
of a partial correlation analysis,® the average statistics for
Year 2 may be more realistic than those for Year 1 in
assessing NIR spectroscopy’s ability to measure wheat
protein quality apart from protein quantity.

In contrast to protein content and SDS sedimentation
volume, the calibrations for the two proxy weather prop-
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erties [H(T < 24 °C and #(T > 32 °C)] continued to im-
prove with increase in the number of PLS factors, even
out to 15 factors (Fig. 3). The average optimal number
of factors was similar between these two properties as
well as similar among the single- and combined-year tri-
als, with an approximate range of 12 to 14 factors (Table
II).

Trends in Spectral Pretreatments. As demonstrated
in the ordered ranking of PLS RMSECVs for SDS sed-
imentation volume in Fig. 2, the choice of spectral pre-
treatment had a marked effect on calibration error. The
relationships among the convolution function (second de-
rivative, smooth, or none), the size of the convolution

window, the optimal number of PLS factors, and their
effect on calibration error are shown for Year 1 samples
in Fig. 4 and Years 1 and 2 combined in Fig. 5 (Year 2
plots are not shown due to their similarity to Year 1).
Protein content calibrations tended to favor wide (>20
point) convolution window sizes, regardless of single
year or multiple year analysis. However, even the use of
no convolution function produced acceptable results for
protein content, as shown by two of the four non-
smoothed and non-derivatized trials in each year group
(Figs. 4A and 5A, plotted as convolution window size of
one point) having RMSECV values of approximately
0.1%. With convolution, the second-derivative and run-
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ning mean pretreatments demonstrated equivalent overall
levels of performance. An increase in convolution win-
dow size usually caused an increase in the optimal num-
ber of PLS factors.

For SDS sedimentation volume (Fig. 4B for Year 1
and Fig. 5B for the combined years), the benefit of a
running mean or second-derivative transformation is
more apparent than in the calibrations for protein content.
Without such pretreatments, the combined years
RMSECYV values were in excess of 2.50 mL, compared
with <2.35 mL for the best trials that used a convolution
function for smoothing or derivatization. The relationship
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The effect of spectral pretreatment on cross-validation error; Combined year (1 and 2) RMSECV (N = 394) values for (A) protein content;
(B) SDS sedimentation volume; (C) AT < 24 °C); and (D) «T > 32 °C).

between the size of the smooth or second-derivative con-
volution window and the optimal number of factors is
also more apparent for SDS sedimentation volume than
protein content, especially when both years are combined
(Fig. 5B). Generally, as the window width increased, the
optimal number of PLS factors also increased, while the
cross-validation error decreased. Again, the actual choice
of convolution function (smooth or second derivative)
was not as important as the size of the convolution win-
dow.

For the two time—temperature properties [#(T < 24 °C)
and #(T > 32 °C)], use of a smoothing or second-deriv-



ative transformation always produced superior calibra-
tions compared to calibrations that did not utilize such
transformations (Figs. 4C and 4D for Year 1; Figs. 5C
and 5D for the combined years). The relationship be-
tween the convolution window size and the optimal num-
ber of factors for these two properties was not as apparent
as that for protein content or SDS sedimentation volume,
perhaps because the optimal number of factors was usu-
ally greater than 10. The unique aspect of these properties
is the tendency for the smoothing pretreatment to produce
slightly smaller RMSECYV values than the second-deriv-
ative pretreatments.

Validation of Selected Partial Least-Squares Cali-
brations. When applied to the test set samples, the level
of performance of the PLS calibrations was dependent on
the property. When the best second-derivative calibration,
with or without MSC or SNV, for each property and year
was applied to the corresponding test set, the degree of
fit was seen to be primarily dependent on the property
and, to a lesser extent, on the year(s) under consideration
(Figs. 6A—6D). Among the four properties studied, pro-
tein content calibrations were most accurate, with little
difference among the accuracies of the Year 1, Year 2,
and combined year calibrations (r?> = 0.998, 0.996, and
0.997; SEP = 0.096, 0.105, and 0.106%; bias = 0.005,
—0.008, and —0.006%, respectively). SDS sedimentation
volume calibrations had a much greater variation in per-
formance across years, with Year 2 (2> = 0.551, SEP =
2.3 mL, bias = 0.6 mL) being poorer than either Year 1
(r? = 0.861, SEP = 2.1 mL, bias = 0.2 mL) or Years 1
and 2 combined (2 = 0.796, SEP = 2.1 mL, bias = 0.2
mL). This poorer performance for Year 2 is attributed to
the weak relationship between SDS sedimentation vol-
ume and protein content that was mentioned earlier. The
calibrations for {7 < 24 °C) benefited from the combin-
ing of the yearly data sets when viewed from the stand-
point of the goodness of fit (> = 0.953 for the Years 1
and 2 combined vs. 0.919 and 0.914 for the separate-year
trials), in which the overall range in #(7' < 24 °C) doubled
when the years were combined. However, when viewed
from the standpoint of the SEP, error worsened with the
combining of years (SEP = 26.6, 29.8, and 44.4 h; bias
= 1.7, =3.4, and 1.5 h for Year 1, Year 2, and Years 1
and 2 combined, respectively), which suggests that the
choice of broadening a data set should be made based on
the future intended use of the ensuing calibration equa-
tion. The fact that there was a lack of correlation between
protein content and #(7 < 24 °C) for each single year or
the two years combined indicates that the NIR spectra of
mature wheat is truly responsive to the environmental
conditions of the developing plant. Lastly, for (7 > 32
°C), the performance for each year alone was equivalent
(r? = 0.881 and 0.854; SEP = 8.3 and 8.0 h; bias = —2.2
and —4.4 h for Years 1 and 2, respectively). However,
when the years were combined, the performance decreased
(r* = 0.789, SEP = 10.5 h, and bias = —3.1 h).

Identification of the near-infrared absorbers responsible
for the ability of each property to be modeled is quite
difficult. In our previous paper, we demonstrated through
PLS2 scores analysis the relationships between histori-
cally identified absorption bands (e.g., starch O-H and
C-O combination at 2100 nm, amide I and amide III
combination band at 2180, and oil CH, stretch—bend

combination band at 2306 nm?°) and a superset of the
properties of the current research.” As a way of demon-
strating the complexity of each property’s PLS calibration
equation, Fig. 7 depicts the regression coefficient vectors
of a commonly structured PLS calibration (15 point Sav-
itzky—Golay second derivative, followed by MSC) on
each of the four properties examined, using the combined
year calibration set. This spectral pretreatment regime
was selected because of its general level of acceptable
performance across all properties and years. Likewise, 13
factors were selected as the fixed number of PLS factors
to permit property-to-property comparisons in what oth-
erwise (if the number of factors was based on the optimal
number for each property) would have ranged between
12 and 14 factors. Even the calibration equation for pro-
tein content (graph B) possesses a high degree of varia-
tion in its regression coefficients, which emphasizes the
overlapped nature of absorption bands throughout the
NIR wavelength region.

Implications of Pretreatment Searches and Trends.
At the onset of NIR calibration development for a new
analyte or property, the spectroscopist is often unaware
of the potential calibration performance. The following
observations are drawn based on the NIR spectra of
ground wheat: (1) The types of pretreatments necessary
for good calibration performance are specific to the prop-
erty. For example, when developing calibrations for pro-
tein content, reasonable equations were developed that
possessed no spectral pretreatments, whereas for #(7T <
24 °C), a lack of any spectral pretreatment resulted in
poor SECVs. Secondly, the differences in overall shape
of the four graphs of Fig. 4, and again in Fig. 5, dem-
onstrate that the effect of spectral pretreatment on cali-
bration error is specific to the property. (2) More impor-
tant than the choice of the convolution function is the
size of the convolution window. All four studied prop-
erties tended to prefer a wide (>15 point) convolution
window. Future trials that utilize functions other than the
running mean smooth and the Savitzky—Golay second de-
rivative will be needed to corroborate this trend. (3)
When developing PLS calibrations for wheat quantity or
quality properties, a large number of factors (10—15) are
preferable to a smaller number (<10). Additional work
is needed to ensure that this trend holds true for inde-
pendent test sets, such that the cross-validation procedure
is not recommending high-factor PLS calibration equa-
tions that are inherently over-fitted.

CONCLUSION

This study has demonstrated the application of a mul-
titude of spectral pretreatment trials on the analysis of
NIR reflectance of ground wheat for protein content and
quality indicators. By systematically applying smooths,
derivatives, and particle size correction procedures, then
performing a full cross-validation to the PLS regression
of each combination, the importance of spectral pretreat-
ment to calibration performance was affirmed. The po-
tential for calibration improvement with application of a
pretreatment is dependent on the property. Protein con-
tent, a property that is easily and accurately modeled,
produced calibrations whose accuracies were not affected
as much by changes in spectral pretreatment as were
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1G. 6. NIR-predicted vs. reference values for the four studied properties. For each property X year condition, the best second-derivative calibration
with pretreatment conditions and number of PLS factors in parentheses) as determined by cross-validation is applied to the test samples (N = 200,
95, and 395 for Year 1, Year 2, and both years, respectively). The 45° line is included to represent the ideal calibration.
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FiG. 7. Average spectrum for the calibration samples of the combined
year set plotted above the PLS regression coefficient vectors for the
four properties studied. Calibration conditions for all properties are as
follows: 15 point Savitzky—-Golay second derivative, followed by mul-
tiplicative scatter correction, 13 PLS factors [A = average, B = protein
content, C = SDS sedimentation volume, D = (T < 24 °C), and E =
KT > 32 °C)].

those for SDS sedimentation volume, a wheat quality
property. The present study demonstrated that by aver-
aging the performance indicators of a PLS regression
cross-validation (e.g., RMSECV) across many pretreat-
ment trials (30 in this case), a better indication of the
calibration potential of NIR is obtained. Reliance on the
R? value of a calibration equation should be avoided as
this value does not ensure the lowest standard error of
the residuals. By use of two growth seasons of wheat, it
was determined that the degree of correlation between
protein content and quality (SDS sedimentation volume)
is strongly influenced by environmental factors, such as
variation in weather. Lastly, the proxy weather properties
themselves, such as #(7 < 24 °C), which may have a very
weak correlation with protein content, may still produce
reasonable NIR calibration equations.
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