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LEARNING VECTOR QUANTIZATION FOR COLOR

CLASSIFICATION OF DISEASED AIR SACS

IN CHICKEN CARCASSES

J. G. Ibarra,  Y. Tao,  L. Newberry,  Y. R. Chen

ABSTRACT. The variation in color features observed during the evolution of air–sacculitis in chicken carcasses is exploited
to classify the disease using digital imaging and neural networks. For the experiments, air–sacculitis was induced by
secondary infected of E. coli via direct inoculation of challenge bacteria. Mild and severely infected samples were obtained
and imaged. For the supervised classification, a knowledge base set of normalized RGB values, corresponding to negative,
mild, and severely infected air sac images, was obtained. Statistical data exploration indicated no significant difference
between the color features of mild and severely infected sacs, but a significant difference was found between infected and
negative tissues. A neural network using the learning vector quantization algorithm classified the data in infected and
negative categories. Resubstitution and hold–out errors were calculated, giving an overall accuracy in the classification of
96.7%. Each poultry carcass sold in the U.S. must be visually inspected for its wholesomeness by a USDA inspector, with
air–sacculitis being the major cause of condemnation in poultry processing plants. The method presented here has the
potential for integration in a computer–assisted inspection of wholesomeness in poultry processing lines.

Keywords. Air–sacculitis, Imaging, Neural networks, Color classification, Poultry disease inspection, Food safety.

ince 1959, each poultry carcass sold in the U.S. has
been visually inspected for wholesomeness at a
poultry processing plant by USDA personnel.
Because of the increasing demand for poultry

products by consumers, the speed of the inspection process
has been increased from 30 to 90 birds per min. The Food
Safety and Inspection Service (FSIS) in the U.S. recognized
that “the failure to apply sufficiently modern techniques to
detect abnormalities in organs and tissues necessitates more
extensive, yet less efficient, human resources during
inspection.” The FSIS also recognized that computer
imaging would greatly improve the inspection procedures
(USDA–FSIS, 1985).

Much work has been devoted to the automatic inspection
of wholesomeness in chicken carcasses. Most of the research
is based on different optical techniques, mainly spectroscopy.
Chen (1992), Chen and Massie (1993), and Chen et al. (1996)
used visible/near–infrared (NIR) spectroscopy for the classi-
fication of wholesome, septicemic, and cadaver carcasses.
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Those studies were conducted using an NIR probe with its
housing about 2 cm from the skin of the carcass. Chen and
Hruschka (1998) made on–line trials of a system for chicken
carcass external inspection based on visible/NIR reflectance.
The system was able to successfully identify 95% of the
carcasses at a speed of 70 birds per min. Fiber optic
spectroscopy was also used for the classification of diseases
in slaughtered poultry (Park et al., 1998). Park et al. (1996)
proposed the combination of multi–spectral imaging and
neural network analyses. In that research, two cameras with
filters at 540 nm and 700 nm and a backpropagation
algorithm were used for the inspection of wholesomeness in
poultry carcasses.

As for the detection of lesions commonly observed in the
body cavity, Chao et al. (1998) analyzed the size and
coloration of liver in infected poultry. In related research (Tao
et al., 1998a, 1998b, 2000), the size and color features of
infected enlarged spleen in turkeys were studied. Both
studies were performed in laboratory conditions, with the
viscera prepared prior to the experimentation.

Color processing is also very popular in agriculture.
Précetti and Krutz (1993) presented a detailed study of color
classification algorithms and the potential for agricultural
applications.  Chtioui et al. (1998) used probabilistic neural
networks for food classification. Specifically, they graded
french fries in three categories according to color coordinates
in the hue–saturation–intensity space.

In this work, a method for the classification of air–
sacculitis lesions in chicken carcasses induced by secondary
infection with Escherichia coli (E. coli) is proposed. The
specific objectives of this work were:
� To establish a procedure for controlled induction of

air–sacculitis.
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� To establish red–green–blue (RGB) transformation for
optimal classification.

� To implement neural network classification of air sacs
color features based on the learning vector quantization
(LVQ) technique.
Each poultry carcass sold in the U.S. must be visually

inspected for its wholesomeness by an USDA inspector, with
air–sacculitis  being the major cause of condemnation in
poultry processing plants. The method presented here has the
potential for integration in a computer–assisted inspection of
wholesomeness in poultry processing lines.

MATERIALS AND METHODS
AIR–SACCULITIS INDUCTION

Besides the diseases present in the exterior of poultry
carcasses (septicemia, cadaver, bruise, and tumor), a bird can
be rejected from the production line due to diseases observed
in the internal cavity. Spleen enlargement, air–sacculitis, and
liver coloration are common indicators of internal diseases,
with air sacs infection being the major cause of condemna-
tion in a poultry processing plant, especially during winter
(Herenda and Franco, 1996). The air sac system in a chicken
consists of eight membranous air bags that are part of the
respiratory system and are present to give the bird buoyancy
in flight. Inspired air is taken in through the nares, trachea,
bronchia, and lungs and expired into the air sacs. The
mucociliary apparatus that is present in the sinuses, trachea,
and bronchia cleans the inspired air.

Viruses, bacteria, and environmental factors (ammonia)
can damage the mucociliary apparatus, allowing the entrance
of bacteria that are normally swept out of the respiratory
system by action of cilia and mucus, which entrap the
bacteria and move them back up and out of the respiratory
system. If bacteria, especially E. coli, pass this primary
defense mechanism, then they can easily infect the air sacs,
causing an influx of inflammatory cells. Along with the
infection, the reaction causes the production of an exudate
that can be localized or become generalized in the body
cavity of the bird (Herenda and Franco, 1996). This
inflammatory reaction can be mild to severe. If the condition
is severe, then there is consolidation of the exudate in and
around various organs. In practice, the evolution of the
disease can be detected by the change in appearance and
color of air sacs, from a transparent, thin, and smooth
membrane in a healthy bird to an opaque, yellow, and rough
tissue for severe infection.

To induce air–sacculitis in different degrees, a lactose–
negative pathogenic strain of E. coli, isolated from a turkey
with severe colibacilosis, was used as the challenge bacteria
(see Huff et al., 1998, for details). The stock bacteria was
grown overnight on blood agar and afterwards was inocu-
lated into tryptose phosphate broth. The bacteria were then
grown in a shaking water bath for 2.5 h at 37ºC to the
logarithmic phase of growth. At the end of the incubation, the
bacteria was titrated and then stored at 4ºC. Preliminary tests
were conducted using the procedure described above.
Chickens were inoculated with 0.2 mL into the posterior
thoracic air sac using a tuberculin syringe and a 26–gauge
needle. Two doses of bacteria were used for the experiments:
103 and 106 cells/mL. The doses with higher concentration

produced the best lesions (mostly severe cases), but the
mortality was 2 out of 5 birds inoculated.

IMAGING SYSTEM
An imaging system was designed and built to capture

images of the chicken carcass cavities under controlled
conditions. The system is depicted in figure 1. For image
acquisition, a Sony XC711 (Sony Component Products Co.,
Cypress, Cal.) CCD camera with RGB channels was
connected to a Matrox Meteor II (Matrox Electronic Systems
Ltd, Durval, Canada) image grabber. A Pentium computer
hosted the image grabber. The CCD camera was previously
calibrated for optimal color signal. For proper air sac
visualization,  the CCD camera was equipped with a Tokina
1:1.8/12.5–75 mm zoom lens (THK Photoproducts, Inc.,
Long Beach, Cal.) with a 2 mm extension tube to improve
close focusing capability. A photographic stand held the
camera and lens in vertical position, and eight “cool white”
18–inch fluorescent tubes (General Electric Lighting, Win-
chester, Va.) attached to semi–circular frames ensured
uniform illumination of chicken cavities. The chicken
carcasses were positioned at the base of the photographic
stand in such a manner that the entire cavity could be imaged.
The imaging system was installed in a closed aluminum
chamber to avoid any ambient interference.

SAMPLES AND EXPERIMENTAL PROCEDURE

A total of 100 chickens were processed and imaged in
these experiments. The chickens used were 6 weeks old and

Figure 1. Experimental setups for air–sacculitis imaging.
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obtained from a poultry processor. The birds were separated
in two 50–sample batches, which were placed in separate
floor pens and processed on two consecutive days. After
inoculation,  they were kept in the floor pen facility for three
days to allow the infection to spread in the air sacs. After the
waiting period, the birds were slaughtered and carefully bled
to reduce the presence of blood or blood clots in the cavity
images. Each sample was then opened through the abdomen
and eviscerated, taking care to preserve the air sacs. Lesions
similar in appearance and extension were obtained in both
batches. Because bacteria were inoculated in a thoracic air
sac, the disease was very well localized in one side of the
cavity, while the other side remained without infection in
most of the cases. This provided a convenient way to compare
a negative with an infected sac in the same image.

The distribution of samples in each batch was 30 birds
inoculated for severe infection, 15 for mild infection, and 5
not inoculated for control. Eight birds from the first batch and
14 from the second batch died before the imaging process.
The dead birds were excluded from the experiment. To
ensure proper classification, the birds were reclassified
during the slaughtering into negative, mild, and severely
infected, according to a visual inspection of the air sacs.

The images were grabbed and saved in the computer using
a program written in Microsoft Visual Basic 5.0 (Microsoft
Corp., Redmond, Wash.) The program utilized the Matrox
Active MIL 5.11 (Matrox Electronics Systems Ltd., Quebec,
Canada) library to interface with the frame grabber and
automatically  record images and information about the
degree of lesion. The images consisted of three layers of
640 Ü 480 pixels (one for each color component) with pixel
values between 0 and 255. Image analysis was performed
using Matlab Image Processing Toolkit (Mathworks, Inc.,
Natick, Mass.) and a customized Graphic User Interface.
Knowledge base color points were obtained by manually
selecting in each image 30 Ü 30 pixel regions of interest
(ROI) of severe, mild, and negative air sacs. Then, the pixel
values in the ROI were transformed to the range 0 to 1 by
dividing the corresponding value by 255. After that, the
transformed RGB values at the location (x,y) inside the ROI
were normalized according to (Gonzalez and Wood, 1992):
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The representative rgb components for each ROI were taken
as the average values of normalized color components in
equations 1a, 1b, and 1c. It must be pointed out that the
normalized color components in equation 1 remove the
intensity variance from the RGB images (Jain and Kasturi,
1995). Moreover, it is easy to see that the normalized color
components fulfill the condition r + g + b = 1.

Approximately four ROIs were selected and processed for
each image. Each processed ROI was visually classified as
negative, mild, or severe, and that lesion information along
with the corresponding average normalized RGB values

(denoted hereafter as rgb) formed the knowledge base set for
the classification. A total of 322 knowledge base points were
obtained in this manner. The final distribution of lesions in
the knowledge base set was 68 mild, 150 negative, and 104
severe. Figure 2 shows the distribution in the rgb space. The
plane r + g + b = 1, which has intersections at (1,0,0), (0,1,0),
and (0,0,1) in the rgb space, is denoted here as plane [111]
using the crystallographic notation (fig. 2). All the knowl-
edge base points lay in that plane.

STATISTICAL ANALYSIS OF LESION GROUPS

Visualization of knowledge base points in figure 2 reveals
an apparent separation between negative points and mild and
severe points, but it appears that mild and severe points are
not separated in the rgb space. A statistical analysis was used
to compare means.

An ANOVA on the rgb data was performed to determine
if a significant difference exists between the mean of the
infection classes. The analysis indicates what was expected
from the visual inspection of the data: There was a significant
difference, at the 95% confidence level, between negative
color component points and mild and severe color compo-
nent points, and no significant difference, at the 95%
confidence level, was observed between mild and severe
color component points. As a consequence, the knowledge
base set was modified to consider only negative and infected
(mild + severe) observations.

This reclassification of the knowledge base set does not
affect the potential application of the method, because the
final assessment of carcass wholesomeness is given by an
estimation of the extension of air sac exhudate, instead of the
evaluation of the degree of infection (Ewing, 1997).

It is worth noting that the apparent separation of
knowledge base points in the plane [111] makes the color
transformation simpler. For instance, a conventional HSI
transform will introduce extra computations.

COLOR TRANSFORMATION AND

CLASSIFICATION ALGORITHM
REDUCTION TO INDEPENDENT COLOR COMPONENTS

The normalization condition r + g + b = 1 allows reducing
the number of color components to only two. This can be
accomplished by transforming the rgb coordinate system to
a new one with the origin in the center of gravity of the
triangular plane [111] (located at r = g = b = 1/3) and with the
new b–axis normal to the [111] plane. The transformation is
illustrated in figure 3. The rotation can be described with the
Euler angles �, �, and �, also referred as pitch, yaw, and roll,
respectively (Goldstein, 1980). In this case, taking positive
angles in a clockwise direction, the Euler angles for the
transformation are:

� = 54.74³ (2a)

� = 45³ (2b)

� = –45³ (2c)

The transformation matrix is then expressed as:
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Figure 2. Knowledge base set in rgb space according to lesions. Circles indicate negative infection, squares mild infection, and plus signs severe infection.
A fraction of the plane r + g + b = 1 (plane [111]) is also illustrated. All points lie in plane [111]. No apparent differences exist between mild and severe
points.

Figure 3. Axis transformation for reduction of color components. The new
color frame r�g� lies in plane [111], with axis b� normal to that plane.
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Applying the translation to the center of gravity of plane
[111], the transformation equation for the new color compo-
nents, say r�g�b�, is:
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From equations 3 and 4, the final transformation of color
components is:
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while the new color component b� is zero. Note that the new
color components r� and g� are independent.

The transformed color components r� and g� in equation 5
along with the lesion category (infected and negative) form
the final knowledge base set for the supervised neural
network, which is analyzed next.

LEARNING VECTOR QUANTIZATION
Learning vector quantization (LVQ) is a method for

training competitive networks in a supervised manner. It
presents more flexibility than a perceptron network and more
robustness than a backpropagation algorithm (Hagan et al.,
1996). The architecture of the LVQ network is shown in
figure 4. The input is the vector  formed by Q transformed
color components r� and g�. The final output ( ) is the lesion
category, which was defined as:

 (6)

The network consists of two layers. The first layer, or
competitive  layer, groups the inputs with similar color
components according to relative distances. A linear layer
completes the LVQ network. This second layer classifies the
grouped color component inputs according to lesion catego-
ry. The algorithm and learning process can be illustrated by
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Figure 4. LVQ neural network architecture for color coordinates classification in infected and negative categories.

following the first iteration in the network. Let us indicate the
input vectors from the knowledge base set as 
and the corresponding lesion category as . To
start, the row vectors in the competitive weight matrix (WC)
are set to random values. On the other hand, the linear weight
matrix (WL) only groups the input vectors into two categories
(with no subcategories). The explicit form of this matrix is:









=

10
01LW (7)

When the first input vector is presented, the first layer
calculates the distance between it and the vectors in WC with
the condition that the closest vector in the weight matrix wins
the competition. The output of layer 1, , is a column vector
with Q components equal to zero, except the component with
the index of the winning neuron, whose value is set to one. In
the second layer, the output is computed as:

 (8)

which is a vector that represents a negative or infected air sac,
as defined in equation 6. At this point, the learning process
takes place by comparing the output in equation 8 with the
actual lesion vector in equation 6. If the input vector is
classified correctly, then the weight of the winning neuron is
moved toward the input vector using the Kohonen rule
(Hagan et al., 1996). Conversely, if the input vector is not
classified correctly, then the weight vector is moved away
from the input vector using the same learning rule. The
process is repeated for all vectors  in the training set, and the
classification weight matrix is modified in each pass. The
entire process starts again with the most recent competitive
weight matrix until a predetermined number of iterations to
fine–tune the competition. A detailed description of the LVQ
algorithm can be found in Hagan et al. (1996).

CLASSIFICATION ERROR

The classification error is defined as the fraction of the
samples that are misclassified in a given set of samples (Duda
and Hart, 1973). In this work, upper and lower error bounds
were calculated by considering the holdout error (H) and the
resubstitution error (R), respectively (Fukunaga, 1990). In
the holdout method, the error is calculated by presenting to
the LVQ classifier a training set and simulating the network
with an independent test set. In the resubstitution method, the
training and test sets are the same. The overall error is
considered here as the average of R and H errors.

RESULTS AND DISCUSSION
The knowledge base set and the results of the classifica-

tions are shown in figure 5. The lines H and R indicate the

Figure 5. LVQ classification results in the r�g� space. Plus signs indicate in-
fected points, and circles represent negative observations. Lines R and H
represent the border decision for upper and low error. An overall accura-
cy of 96.7% was achieved in the classification.

decision boundaries for holdout and resubstitution methods,
as detailed below.

For the holdout method, the knowledge base set was
divided, taking odd rows for the training set and even rows
for the test set. The distribution of lesions in the training set
was 73 negative and 88 infected, while the distribution in the
test set was 77 negative and 84 infected. The training set was
presented to a LVQ neural network with a learning rate of 0.5
and 150 iterations. The holdout error obtained was H = 3.8.
The final winning neurons with coordinates (r�1,g�1) and
(r�2,g�2) are the representative points for each lesion category,
and a decision borderline can be drawn as the line normal and
halfway the segment that join the winning neurons. The
boundary decision for the holdout error is represented by the
dotted line H in figure 5. Note that the line draws a border
between the negative lesion region (to the right), and infected
air sac region (to the left).

Similarly, the entire knowledge base set was presented to
the same network to calculate the resubstitution error (R). A
learning rate equal to 1 and 150 epochs were used in this case.
The resubstitution error obtained was R = 2.8, and the
boundary decision is indicated in figure 5 as the solid line R.
Therefore, the overall classification error was 3.3. In other
words, the network could correctly classify 96.73% of the
observations presented.

It can be observed in figure 5 that lines R and H differ
slightly. Because these boundary decision lines correspond to
the lower and upper classification error, respectively, the
region between the lines can be interpreted as a region in the

’’gr  space where the classification is not certain. Moreover,
for the purpose of lesion assessment, the points inside the
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boundary decision lines can be classified as suspicious and
can be grouped in the infected category.

The simple two–neuron LVQ classification achieved a
high classification accuracy of air sac lesions. Other
architectures  with more neurons were also tested, but they
produced poorer classifications. Additionally, for a practical
evaluation of the lesion, it is enough to consider only the r�g�
coordinates and their relative location with respect to the
boundary decision lines. This fact can be very useful in a
real–time application.

CONCLUSIONS
A method to classify air sac lesions according to color

coordinates was developed. The method used intensity–
normalized color components with proper transformation
and a modified competitive neural network to achieve a
96.7% classification accuracy of infected and negative
tissue. A total of 100 chickens were infected with E. coli for
air–sacculitis  imaging. The procedure used to inoculate the
challenge bacteria produced lesions, categorized as mild and
severe, in one of the thoracic air sacs, while preserving the
other thoracic air sac. In most of the images, infected and
negative air sacs could be imaged simultaneously.

An initial knowledge base set was extracted from the
images by averaging normalized color components in 30 Ü
30 pixel ROIs. The set was classified into negative, mild, or
severe, according to the lesion observed. Preliminary
statistical analysis indicated no significant difference be-
tween mild and severe points, so the knowledge base set was
reclassified into infected and negative points. This limitation
does not reduce the potential for a real application since even
cases considered mild would be rejected in an actual
inspection. Further reduction in the knowledge base set was
achieved by considering only independent color compo-
nents. The initial rgb coordinate system was transformed to
reduce the color components to only two.

A two–neuron learning vector quantization network
classified the final knowledge base set. Resubstitution and
holdout errors were calculated, and the resulting border
decision lines gave distinctive classification regions. There-
fore, in a practical application, any pixel in an air sac image
can be identified as infected or negative by the position of its
color coordinates relative to the border decision line. That is,
a point to the right of the line is classified as negative, and a
point to the left of the line is classified as infected.

However, much research is needed for a real–time
implementation.  First, the experiment does not reproduce the
conditions in the poultry processing plant. In an actual
inspection, the chicken carcass is not opened by the
abdomen, and evisceration is done through a hole practiced
in the lower abdomen. An optical system must be designed
to obtain color images of the cavity carcass under such
conditions. Second, the knowledge base set can also include
points from the background and fat regions for improved
classification.  Third, the color of fat tissue and infected air
sacs is basically the same, so the present method cannot
discern those cases. Further study of texture or UV illumina-
tion could solve this problem.

Finally, the use of color filters can enhance the color
differences between the different factors in the problem
(negative and infected air sacs, fat pockets, non–relevant

background, etc.). Prospective research includes the
introduction of such optical elements.
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