PriNcIPAL CoMPONENT REGRESSION OF NEAR-INFRARED REFLECTANCE
SPECTRA FOR BEEF TENDERNESS PREDICTION
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ABSTRACT. Tenderness is the most important factor affecting consumer perception of eating quality of meat. In this paper, the
development of the principal component regression (PCR) models to relate near—infrared (NIR) reflectance spectra of raw
meat to Warner—BratzZler (WB) shear force measurement of cooked meat was presented. NIR reflectance spectra with
wavel engths from 1100 to 2498 nm were collected on 119 longissimus dorsi meat cuts. The 1st principal component (or factor)
from the absorption spectra log(1/R) showed that the most significant variance from the spectra of tough and tender meats
were due to the absorptions of fat at 1212, 1722, and 2306 nm and water at 1910 nm. The distinctive fat absorption peaks
at 1212, 1722, 1760, and 2306 nm were found in the 2nd factor of the second derivative spectra of meat. In addition, the local
minima in the 2nd principal component of the second derivative spectra showed the importance of water absorption at
1153 nm and protein absorption at 1240, 1385, and 1690 nm. When the absorption spectra between 1100 nm and 2498 nm
were used, the coefficient of determination (R?) of the PCR model to predict WB shear force tenderness was 0.692. The R2
was 0.612 when the spectra between 1100 nm and 1350 nm were analyzed. When the second derivatives of the spectral data
were used, the R? of the PCR model to predict WB shear force of the meat was 0.633 for the full spectral range of 1100 to
2498 nm and 0.616 for the spectral range of 1100 to 1350 nm.
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mong the many quality factors of meat, such as

texture, flavor, juiciness, appearance, and aroma,

the texture or tenderness in particular is

considered the most important in determining the
meat eating quality (Morgan et a., 1991; Koohmaraie et a.,
1995; Miller et al., 1995). Inconsistency in meat tenderness
has been identified as one of the major problems facing the
beef industry (Morgan et al., 1991; Savell and Cross, 1992).
Because consumers consider tenderness to be the major
determinant of eating quality of meat, it is important to
develop techniques to objectively predict meat tendernessto
supplement or replace the current USDA quality grading
system. Even though tendernessis considered to be the major
determinant of meat quality, no rapid method exists for the
grader or retailer to use to determine tenderness of meat. The
current tenderness measurement by taste panels is a
subjective method, and is a time-consuming process,
because it requires long sample preparation time. The
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Warner—Bratzler (WB) shear device is widely used in the
United States for measuring tenderness of cooked meat.
Although it is an objective method, it is also time consuming
and destructive. Thus, an objective, nondestructive, and
rapid technique for assessing beef tenderness needs to be
developed.

Near—infrared (NIR) spectroscopy has become an
important tool to measure chemical composition and
moisture content of meat and meat products. Ben—-Gera and
Norris (1968) investigated NIR transmittance for measuring
fat and moisture contents in emulsions of meat products.
Later, NIR spectroscopy was used to measure moisture and
biochemical properties such as fat and protein in emulsified
lamb, pork, and beef (Kruggel et a., 1981; lwamoto et a.,
1981; Lanza, 1983). These studies, however, were carried out
on ground or emulsified meats. NIR spectroscopy has aso
been applied to the measurement of chemical composition
and textural attributes of raw and cooked meat. The
composition (moisture, fat, and protein) has been measured
for raw poultry (Renden et al., 1986; Valdes and Summers,
1986). Recently, Marks and Chen (1996) evaluated cooked
ground poultry patties using NIR techniques. NIR
spectroscopy was also applied to predict total pigment values
by measuring optical density of raw fresh meat (Mitsumoto
et a., 1991). NIR reflectance and interactance measurements
were used to classify wholesome and unwhol esome carcasses
based on myoglobin measurement, which affects pigment
content of poultry meat (Chen and Massie, 1993; Chen et dl.,
1994; Chen et a., 1996g; Chen et al., 1996b). Changesin NIR
spectra of beef muscles during conditioning and aging of beef
were investigated, and the feasibility of NIR spectroscopy in
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the prediction and assessment of meat sensory attributes was
reported (Hildrum et al., 1994). NIR technology has the
potential to be used for assessing the tenderness of meat
(Perk et al., 1998a; Park and Chen, 1998b).

Although NIR spectroscopy has been demonstrated to be
a promising method for assessing meat quality of individual
carcasses, more research should be continued to develop
systems that are accurate, reliable, practical, low cost, and
rapid, and that can be readily adopted by the meat industry,
especialy for tenderness measurement. The objective of this
study is to develop a technique to use near—infrared (NIR)
spectroscopy of raw mest to predict its tenderness rapidly and
nondestructively. More specifically, the objectives are: 1) to
measure NIR reflectance on raw meat and 2) to develop
models to relate NIR reflectance spectra of raw meat to WB
shear force measurement of cooked meat, using the principal
component regression (PCR) models.

MATERIALS AND METHODS
MATERIALS

Meat samples of longissmus dorsi (LD) muscle from
119 beef carcasses were used for establishing NIR spectra
measurement. Approximately 25-mm thick steaks were
excised from the LD muscles of the thirteenth rib from the
right side of each carcass. The samples were vacuum—packed
in polyethylene bags and frozen and stored at —30° C. The
samples were completely thawed for 24 h at 2° C before NIR
spectra were collected. From each steak, two cylindrical
shaped samples of approximately 38—mm diameter were
excised using a stainless steel punch force corer that allowed
the meat sample to fit in a quartz window—clad cylindrical
cell. In the sampling procedure, excessive fat and connective
tissue were avoided to minimize sampling errors. Each
sample was cut to make three or four (the number was
dependent on the size of ribeye muscle) circular dlices of
8 mm thickness from the cylindrical pieces of meat. A total
of 405 disk cut meat samples were used to collect NIR
reflectance spectral data.

SHEAR FORCE M EASUREMENT

Steaks were cooked on an electric grill to an internal
temperature of 70°C. Copper—constantan thermocouples
were placed in the geometric center of each steak and
temperature was monitored. For shear force measurement,
cooked steaks were cooled for 24 hours at 4°C before removal
of six cores (1.27 cm in diameter) parallel to the longitudinal
orientation of the muscle fibers. Each core was sheared once
with a Warner—Bratzler attachment using an Instron
universal testing machine (Canton, Mass.). The cross-head
speed was set at 20 cm/min. The averages of the maximum
force readings were used for data analysis as a reference to
develop prediction models for meat tenderness by NIR
measurement.

NIR REFLECTANCE M EASUREMENT

A scanning monochromator (model 6500, NIR Systems,
Silver Spring, Md.) was used to collect reflectance (R)
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readings over awavelength range of 1100 — 2498 nmin 2 nm
increments, yielding 700 values per spectrum. Two pairs of
lead sulfide detectors collected the reflectance spectra. The
absorbance spectrum, recorded as log(/R) for each meat
sample, was gathered on a spectrophotometer equipped with
arotating drawer. Reflected energy readings were referenced
to corresponding readings from a ceramic disk. A reference
scan was collected and stored to computer memory before
each sample was scanned. The spectra from three or four
circular slices of each sample were averaged to produce one
spectrum per sample for the development of chemometric
models to predict meat tenderness. The spectrum of a meat
sample was the average of 32 successive scans (i.e. grating
oscillations), atogether taking approximately 20 seconds per
slice.

PrINCIPAL COMPONENT ANALYSIS

Principal component analysis (PCA) or spectra
decomposition produces a reduced representation of the
training data based on the maximum variations between the
spectra. This produces a small set of defined numbersthat can
be used for discrimination, since it provides an accurate
description of the entire training set. Effectively, PCA finds
a set of mathematical spectra (or factors) that contains the
maximum variations common to all spectrain adata set. This
sets up anew space where each spectrum in the original group
of data can be modeled by a linear combination of these
factors (Chen et a., 1997). The linear combination
coefficients or scores, which determine how much of each
factor is needed to reconstruct the original spectrum, can be
calculated from this set of factors and the original data. Each
spectrum will have its own unique set of scores; therefore, a
spectrum can be represented by its PCA scores in the factor
space instead of intensities in the wavelength space.

PriNCIPAL COMPONENT REGRESSION M ODEL

The mean spectrum was first calculated from all of the
calibration spectra and then subtracted from every
calibration spectrum. Mean centering would enhance the
subtle differences between the spectra. Since eigenvector
methods calculate the principal components based on
changes in the absorption data, the ability of the calculation
to detect the differences between the calibration spectra
would improve the model. When the PCA algorithm has
processed the training data, it is reduced to two main
matrices, the eigenvectors and the scores. The matrix
expression of the PCR model for the spectral data can be
obtained by equation 1:

A =SV +Ea 1)

where

A = spectral absorption matrix (n by w)

S = score values matrix (n by m)

V = eigenvector matrix (m by w)

Ea = residua spectra matrix (n by w)
and

n = number of spectra

w = number of wavelengths
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Figure 1. Sampledistribution of longissimus muscle based on shear force
measurement for principal component regression (PCR) model.

m = number of principal component eigenvectors.

As the scores in the S matrix are calculated from each
spectrum, and a spectrum is represented by a collection of
absorption at a series of wavelengths, it is possible to obtain
regression model for concentrations against the score matrix
as equation 2:

Y =CS' +Ey 2

where
Y = congtituent concentrations matrix (p by n)
C = regression coefficients matrix (p by m)
Evy = error matrix (p by n) and

) —

p = number of constituents for calibration

Prime indicates the transpose of the matrix.

As with least sguare regression, the coefficients matrix
can be solved by the regression equation:

C=YSS 91 ©)

From equation 1, the score matrix of the spectra can be
obtained by equation 4 after eliminating the noise error
matrix:

S=AV-1l=AV’ (4)

For equation 4, the transpose matrix of V can substitute its
inverse matrix because V matrix of eigenvector is an
orthonormal matrix. By combining the concentration (eg. 2)
with the score (eg. 4), the PCR equation can be obtained as
equation 5:

Y =CVA’ + Ey (5)

Asdescribed above, the PCR is atwo-step process. The PCA
eigenvectors and scores, which represent the largest common
variations among all the spectra in the calibration data, are
calculated first, and then the prediction model is developed
for scores against the congtituent concentrations using a
regresson method. A PCR model should be built by
performing a selection on the scores to determine which
factors should be used to build amodel for each constituent.

REsuULTS AND DiscussioN
The meat samples were excised from the longissimus
muscle of 119 beef animals, with tenderness ranging from
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Figure 2. Near—infrared reflectance spectra of frozen and thawed longissimus muscles for tender ness measurement.
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19.7 N to 114.7 N (measured in WB shear force) (fig. 1). The
mean WB shear force of the samples and its standard
deviation were 53.5 N and 21.7 N, respectively. For the shear
force prediction, the coefficients of determination (R2) of the
best PCR models were determined by applying the
cross-validation procedure.

NIR REFLECTANCE CHARACTERISTICS OF L ONGISSIMUS
MuscLE

Figure 2 show that the tough meat (shear force = 114.7 N)
had a higher absorption than the tender meat (shear force =
373 N) a most wavelengths, particularly for the
wavelengths between 1100 and 1350 nm. This is similar to
the result of a previous report by Hildrum et al. (1994).
Obvious absorption differences existed between tough and
tender meats at protein absorption bands at 1187, 1690, and
2265 nm; fat absorption bands at 1212, 1722, and 2306 nm;
and water absorption bands at 1409, 1460, and 1910 nm,
respectively. Significant variations in spectra among samples
from the same steak were also found. This showed that a
gradient in tenderness exists within the longissimus muscle
and proved that a tenderness gradient also exists within a
steak obtained from the longissimus muscle (Alsmeyer et d.,
1965; Sharrah et a, 1965; Smith et al., 1969). In our model
development, because the tenderness of each steak was
represented by a WB shear force value for the steak, the
spectra of the disk samples dliced from each steak were
averaged and used for the calibration and validation to
minimize variation within the samples.

Figure 3 shows the comparison of the absorbance between
tender (37.3—42.2 N) and tough (99.1 — 114.7 N) meats and
their second derivatives. As shown in the bottom graph, the
absorption values for tough meats were higher than those of
tender meats at all wavelengths. The peaks of the difference
curve were mostly at the protein and fat bands. The smallest
differences between tender and tough mesats were found at the
water bands (1460 and 1910 nm).

To improve the performance of identification of spectra
between tender and tough mest, the second derivative of each
spectrum was calculated and compared (Fig. 3, top). The
second derivatives of NIR spectra help resolution of
overlapping peaks and removal of baseline variations
(Hruschka, 1987). The wavelength bands, which occurred at
the transition from maximum to minimum or the vice versa
of the second derivatives of the spectra, were 1380 and
1870 nm. Thisimplies that no spectral absorption difference
was found between tender and tough meat samples at these
bands.

PriNCIPAL COMPONENT ANALYSIS FOR M EAT TENDERNESS
Principal component analysis (PCA) was used to reduce
the contribution of noise in the modeling procedure.
Absorption and second derivative spectra were used to
correlate with WB shear force values of the meat. Figure 4
shows the first three principal components extracted from the
calibration data set of the absorption spectra. For the 1st
principal component (or the first factor) from the absorption
spectra, the most significant variance from the spectra of
tough and tender meats was due to absorptions of fat at 1212,
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Figure 3. Absorption of near-infrared spectra and their second
derivatives of tender and tough meat samples.

1722, and 2306 nm; protein at 1187 nm; and water at
1910 nm. In the 2nd factor, the peaks of absorption were also
found at 1458 nm for protein and 1460 and 1910 nm for water.
As shown in the 3rd factor of figure 4, the high absorption
bands of fat were found obvioudly at the wavelengths of 1212,
1722, 1760, and 2306 nm. In addition, high absorption peaks
were observed at 1910 and 2345 nm of water and protein,
respectively.

Figure 5 illustrates the absorption wavelength bands of
the second derivative spectra of the longissimus dorsi meat
cuts. It shows that the major contribution to the variance
among the tough and tender meats was from fat absorptions.
For the 1st principal component, the peaks occurred at the fat
absorptions at 1212, 1722, and 2306 nm, and the protein
absorptions at 1187, 1365, and 2345 nm. The distinctive fat
absorption peaks at 1212, 1722, 1760, and 2306 nm occurred
in the 2nd factor. The water absorption at 1900 nm, the fat or
protein absorption at 2265 nm, and the protein absorption at
2345 nm were also presented in the 2nd factor of the second
derivative spectra of the meat. The valleys in the 2nd factor
of the second derivative spectra indicated the importance of
water absorption at 1153 nm and protein absorption at 1240,
1385, and 1690 nm, even if these peaks were not significant
compared with the wavelength bands of fat absorption. For
the 3rd factor, the absorption bands for fat and protein were
significant at 1212, 1722, 1760, and 2380 for fat and 1240,
1690, and 2345 nm for protein, respectively.

PCR MoDEL FOR MEAT TENDERNESS PREDICTION

Based on the absorption spectra, log(1/R) and their second
derivatives, principa component regression (PCR) models
for predicting tenderness (WB shear force) were developed.
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Figure 4. Principal component factorsextracted from the calibration data
set of the NIR spectra collected from longissimus muscle for tender ness
measurement.

Ranges of wavelengths were selected for the models. When
the absorption spectra between 1100 nm and 2498 nm were
used, the coefficient of determination (R?) of the PCR model
to predict WB shear force tenderness was 0.692. When the
spectra between 1100 nm and 1350 nm were analyzed, the R?
was 0.612.

The R? was 0.535 when four wavelength bands of 1567 to
1617 nm, 1663 to 1713 nm, 1829 to 1879 nm, and 2115 to
2165 nm (selected from the multivariate data analysis) were
used (fig. 6). When the second derivatives of the spectrawere
used for the PCR models to predict the WB shear force for
meat tenderness, the R2 was slightly better than the model
with absorption spectra between 1100 and 1350 nm
wavelength bands. When the full spectral range of 1100 to
2498 nm was used, the R2 of the PCR model to predict WB
shear force of the meat was 0.633. The R? decreased to 0.616
when the second derivatives of the spectra of wavelengths
between 1100 and 1350 nm were selected (fig. 7).

The R2 value (0.69) of the PCR model was observed
higher than that of the partial least squares (PLS) model (R? =
0.67) or multiple linear regression (MLR) model (R?=0.63)
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Figure5. Principal component factorsextracted from the calibration data
set of the second derivative NIR spectra collected from longissimus
musclefor tenderness measurement.

published previoudly (Park et a., 1998a). Moreover, based on
the different models, the results from the NIR measurement
for predicting tenderness were consistent. Even though the
PCR model could not be implemented in the beef industry to
predict tenderness, refinement of this model could be applied
for classifying tenderness, such as tough, intermediate,
tender, with high accuracy using nondestructive NIR
measurement.

SUMMARY AND CONCLUSIONS

An objective, nondestructive, and rapid technique for
assessing beef tenderness needs to be developed. The
principal component regression (PCR) technique was
utilized to determine cooked meat tenderness using NIR
reflectance measurement on raw meat. The tough mest (shear
force = 114.7 N) had an overall higher absorption than the
tender meat (shear force = 37.3 N) at most wavelengths,
particularly for the wavelengths between 1100 and 1350 nm.
There existed obvious absorption differences between tough
and tender meats at protein absorption bands at 1187, 1690,
and 2265 nm; fat absorption bands at 1212, 1722, and
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Figure 6. Beef longissmus muscle tenderness prediction by NIR
spectroscopy using PCR model for thewavelength of (a) 1100 — 2498 nm;
(b) 1100 — 1350 nm; (c) four selected bands: 1567 —1617 nm, 1663 —
1713 nm, 1829 — 1879 nm, and 2115 — 2165 nm.

2306 nm; and water absorption bands at 1409, 1460, and
1910 nm.

For the 1st principa component from the absorption
Spectra, it can be seen that the most significant variance from
the spectra of tough and lean meats was due to the fat
absorptions at 1212, 1722, and 2306 nm and water absorption
at 1930 nm. For the 2nd principal component of the second
derivative spectra of the meat, the distinctive absorption
peaks dueto fat absorption at 1212, 1722, 1760, and 2306 nm;
water at 1900 nm; fat or protein at 2265 nm; and protein at
2345 nm were aso presented. In this factor, significant
absorption was found for water at 1153 nm and protein at
1240, 1385, and 1690 nm.

Based on the absorption spectra, log(1/R), the coefficient
of determination (R2) of the principal component regression
(PCR) model to predict Warner—Bratzler (WB) shear force
tenderness was 0.692 when the absorption spectra between
1100 nm and 2498 nm were used. In case of the second
derivatives of the spectra, the R2 was 0.633 when the full
spectral range of 1100 to 2498 nm was used. Finaly, in this
study, the biochemical constituent composition of fat and
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Figure 7. Beef longissmus muscle tenderness prediction by NIR
spectroscopy using PCR model for the second derivative of wavelengths
(a) 1100 — 2498 nm and (b) 1100 — 1350 nm.

protein were identified as absorbers of NIR spectra. Other
factors that affect meat tenderness, such as collagen and the
amount of connective tissue, should be studied for better
understanding of how those parameters would be correlated
with the absorption of NIR spectra.

ACKNOWLEDGEMENTS

The authors thank to Dr. S. B. Lee, avisiting scientist at
the Instrumentation and Sensing Laboratory, who helped
with sample preparation for these experiments.

REFERENCES

Alsmeyer, R. L., J. W. Thornton, and R. L. Hiner. 1965. Some
dorsal-ateral location tenderness differencesin the longissimus
dorsi muscle of beef and pork. J. Anim. Sci. 24(3): 526.

Ben-Gera, |., and K. H. Norris. 1968. Direct spectrophotometric
determination of fat and moisture in meat products. J. Food ci.
33(1): 64.

Chen, Y.R., and D. R. Massie. 1993. Visible/near—infrared
reflectance and interactance spectroscopy for detection of
abnormal poultry carcasses. Trans. ASAE 36(3): 863-869.

Chen, Y. R, B. Park, and R. W. Huffman. 1994. Instrument
inspection of poultry carcasses. ASAE Paper No. 94-6026. St.
Joseph, Mich.: ASAE.

Chen, Y. R., R. W. Huffman, and B. Park. 1996a. Changesin the
visible/near—infrared spectra of chicken carcassesin storage. J.
Food Process Engineering 19(2): 121-134.

Chen, Y. R,, B. Park, M. Nguyen, and R. W. Huffman. 1996b.
Instrumental system for or-ine inspection of poultry carcasses.
SPIE 2786: 121-129.

Chen, Y. R., M. Nguyen, and B. Park. 1997. Improving
performance of neural network classifiers by input data
pretreatment with principal component analysis. ASAE Paper
No. 97-3050. St. Joseph, Mich.: ASAE.

TRANSACTIONS OF THE ASAE



Hildrum, K. I., B. N. Nilson, M. Mienik, and T. Naes. 1994.
Prediction of sensory characteristics of beef by near—infrared
spectroscopy. Meat Sci. 38(1): 67-80.

Hruschka, W. R. 1987. Data analysis: Wavelength selection
methods. In Near—I nfrared Technology in the Agricultural and
Food Industries, 35-55. P. C. Williams and K. H. Norris, eds. St.
Paul, Minn.: Am. Assoc. Cereal Chem.

lwamoto, M., K. H. Norris, and S. Kimura. 1981. Rapid prediction
of chemical compositions for whesat, soybean, pork, and fresh
potatoes by near—infrared spectrophotometric analysis. J.
Japanese Soc. Food Sci. and Technology 28(2): 85-90.

Koohmaraie, M., T. L. Whedler, and S. D. Shackelford. 1995. Beef
tenderness: Regulation and prediction. In Proceedings CSRO
Meat '94 A4: 1-20.

Kruggel, W. G., R. A. Field, M. L. Riley, H. D. Radloff, and K. M.
Horton. 1981. Near—infrared reflectance determination of fat,
protein, and moisture in fresh mest. J. Asso. Off. Anal.Chem.
64(3): 692—696.

Lanza, E. 1983. Determination of moisture, protein, fat, and calories
in raw pork and beef by near infrared spectroscopy. J. Food Sci.
48(2): 471-474.

Marks, B. P, and H. Chen. 1996. Endpoint evaluation of the
previous thermal treatment of cooked meat via near—infrared
spectroscopy. ASAE Paper No. 96-6064. St. Joseph. Mich.:
ASAE.

Miller, M. E, K. L. Huffman, S. Y. Gilbert, L. L. Mammon, and C.
B. Ramsey. 1995. Retail consumer acceptance of beef tenderized
with calcium chloride. J. Anim. Sci. 73(8): 2308-2314.

Mitsumoto, M., S. Maeda, and T. Mitsuhashi. 1991. Near—infrared
spectroscopy determination of physical and chemical
characteristicsin beef cuts. J. Food Sci. 56(6): 1493-1496.

Vol. 44(3): 609-615

Morgan, J. B., J. W. Savell, D. S. Hale, R. K. Miller, D. B. Griffin,
H. R. Cross, and S. D. Shackelford. 1991. National beef
tenderness survey. J. Anim. Sci. 69(8): 3274-3283.

Park, B., Y. R. Chen, W. R. Hruschka, S. D. Shackelford, and M.
Koohmaraie. 1998a. Near—infrared reflectance analysis for
predicting beef longissimus tenderness. J. Anim. Sci. 76(8):
2115-2120.

Park, B., and Y. R. Chen. 1998b. Beef tenderness prediction by
near—infrared reflectance spectroscopy. In Proceedings
SENSORAL 98: International Workshop on Sensing Quality of
Agricultural Products. Montpellie—Narbonne, France. Vol. 2:
485-495.

Renden, J. A., S. S. Oates, and R. B. Reed. 1986. Determination of
body fat and moisture in dwarf hens with near—infrared
reflectance spectroscopy. Poultry Sci. 65(8): 1539-1541.

Savell, J. W., and H. R. Cross. 1992. Va ue-based marketing:
Current status. In Proceedings: Annual Reciprocal Meat
Conference of the American Meat Science Association,
117-120.

Sharrah, N., M. S. Kunze, and R. M. Pangborn. 1965. Beef
tenderness: Comparison of sensory methods with the
Warner—Bratzler and L.E.E.—Kramer shear presses. Food
Technol. 19(2): 238-245.

Smith, G. C., Z. L. Carpenter, and G. T. King. 1969. Considerations
for beef tenderness evaluation. J. Food Sci. 34: 612-618.

Valdes, E. V., and J. D. Summers. 1986. Determination of crude
protein and fat in carcass and breast muscle samples of poultry
by near—infrared refl ectance spectroscopy. Poultry Sci. 65(3):
485-490.

615





