
Poultry and poultry products have increased in
popularity with U.S. consumers in recent years.
With an increased demand for poultry products,
food safety becomes an increasingly important

issue. The practical application of food microbiology in
poultry processing and marketing can be used to ensure
clean, wholesome products from each carcass. However,
under commercial production, processing, handling, and
marketing conditions, it is not feasible to run
microbiological counts (Mountney, 1987) to determine the
presence or absence of pathogens on all birds handled. For
this reason, current practice of poultry inspection in the
processing plant is based on postmortem pathology
correlation (e.g., observe signs of abnormalities or diseases
from carcass exterior, body cavity, and viscera).

In modern poultry plants, USDA-certified inspectors
perform the whole inspection process. Individual, high-
speed visual inspection of birds (30 birds/min) is both labor
intensive and prone to human error and variability. In the
past five years, several studies have been reported on the
developments of automated inspection systems for poultry
carcass inspection (Chen and Massie, 1993; Chen et al.,

1996; Park and Chen, 1996). Two prototype systems using
visible/near-infrared spectroscopy and multispectral
imaging techniques are currently being developed at the
Instrumentation and Sensing Laboratory, USDA, ARS, for
on-line poultry carcass inspection.

Previous studies (Chen et al., 1998ab; Park et al., 1998)
have shown that the systems can separate normal poultry
carcasses from abnormal carcasses. The system, however,
may not be able to perfectly discriminate individual
abnormal carcasses. In addition, procedures that only
scan/image the carcass exteriors are insufficient to detect
some condemned conditions such as airsacculitis and
ascites. Thus, there is a need for acquiring additional feature
information (using machine vision) from postmortem
poultry at different positions (e.g., body cavity) and/or from
different internal organs (e.g., liver and heart).

Feature identification and classification are two
important tasks in machine vision applications. Color is an
especially important attribute for food inspection (Daley et
al., 1994; Tao et al., 1995). With the availability of
improved hardware for acquiring color images and
advances in soft computing (Jang 1993; Nauck and Kruse,
1995), capability now exists for development of color
vision systems for poultry inspection. In this study the
feasibility of a color imaging system to identify individual
condemned conditions from poultry viscera inspection was
investigated. Specifically, the objectives were to:

1. Determine features for discriminating condemned
conditions of poultry viscera.

2. Develop the neuro-fuzzy models for identifying
individual poultry viscera condemnations.

MATERIALS AND METHODS
SAMPLE PREPARATION

A total of 320 chicken livers and hearts (160 each) were
collected from a poultry process plant in Pennsylvania in
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April and August 1998. Samples of livers and hearts were
inspected and collected by USDA Food Safety and
Inspection Service veterinarians. These samples were
separated into four-classes: airsacculitis, cadaver, normal,
and septicemia based on the postmortem pathology
findings from the veterinarians. Samples of the same class
were placed in plastic bags and immediately moved to a
nearby room for on-site color image measurement.

COLOR VISION SYSTEM

The color imaging system used in this study consisted of
a 24-bit CCD color video camera (TMC-74, PULNiX
America Inc., Sunnyvale, Calif.), a portable lighting
chamber, and a frame-grabber board (IC-RGB, Imaging
Technology Inc., Bedford, Mass.) installed in a 75 MHz
Intel Pentium™ computer with 40 MB of memory running
Microsoft Windows 95™. The portable lighting chamber
was equipped with a Quartz Halogen lamp (EKE, 150W,
21V USHIO Inc., Tokyo, Japan) and a bundled fiber optic
ring light (A3739P, Dolan-Jenner Industries, Inc.,
Lawrence, Mass.) to provide 360° diffuse illumination. An
AC-regulated power supply unit (PL 800, Dolan-Jenner
Industries, Inc., Lawrence, Mass.) equipped with solid state
intensity control (0-100%) was used for stabilizing input
line voltage. The camera was mounted perpendicular to the
top plane of the illumination chamber. The AGC (Auto
Gain Control) and AWB (Auto White Balance) of the color
camera were turned off during image acquisition.

The vision sensor imaged a 17.4 cm × 13.9 cm field of
view and, when calibrated, each pixel represented an area
of 0.34 mm × 0.29 mm. The vision system was calibrated
for spectral measurement before each imaging acquisition
session. A color chart (ColorChecker, GretagMacbeth, New
Windsor, N.Y.) was used as a standard reflectance
reference for color calibration.

IMAGE PROCESSING

Individual poultry viscera (i.e., livers and hearts) were
placed on a white Teflon sheet (25 × 25 × 0.3 cm) when
images were taken. Image application software (Optimas
6.2, Optimas Corp., Bothell, Wash.) was used to process
acquired images. The viscera images were processed for
gray intensity measurements and morphological features.
The threshold of a color image consists of a vector of high
and low intensity ranges, one for each color space.
Dynamic threshold values were derived interactively from
intensity histograms of the images in each color space. The
substantial reflectance difference between the samples
(livers and hearts) and the white background allowed the
simplification of the thresholding process. The average
gray-level intensities of each liver in RGB color space
were calculated with a user-defined script file. Two-stage
segmentation was applied to process heart images. The
heart image was first separated from the background by a
simple threshold scheme. Once the heart image was
segmented from the background, dynamic threshold values
were applied to extract morphological features from the
chicken heart.

FEATURE EXTRACTION

Color is an important feature for poultry viscera
inspection. For example, cadaver and airsacculitis livers
have distinguished color changes. The liver color from

cadaver carcasses is dark red because the carcasses were
not properly bled out. Airsacculitis is commonly used to
describe a respiratory syndrome in broiler chicken. The
livers from airsacculitic carcasses have fibrinous coating
firmly attached. Septicemia is a systemic disease caused by
pathogenic microorganisms in the blood. Septicemia
carcasses have various visible changes. The skin of
septicemia carcasses is darkened red to bluish
discoloration, while the internal organ, such as the heart, is
dehydrated.

Two sets of features extracted from viscera images were
used in this study. Color information including average
gray-level intensities in RGB color space was selected to
classify chicken livers. Image areas including fat band area
and total area were measured on chicken heart. A feature
index defined as the ratio of heart’s fat band area to total
heart area was used for classification of chicken hearts.
Statistical analysis (Dunnett t-test) was performed using
SAS 6.12 (SAS Institute Inc., Cary, N.C.) to evaluate the
feature selection.

FEATURE CLASSIFICATION

Feature classification is a process of grouping similar
objects. A classifier is the inference engine to carry out the
pattern classification task. Conventional classifier design
involves clustering training samples and associating
clusters with given classes. Due to the lack of an effective
way of defining the boundaries among clusters, the
computational complexity is increased when the number of
features used for classification increases.

Fuzzy classification, on the other hand, allows the
boundary between two neighboring classes to form an
overlapping area, so that a feature has partial membership
in each class. This provides a simple representation of the
potentially complex partition of the feature space.

The fuzzy classifier can be described by a set of fuzzy
if-then rules. Each fuzzy inference rule in the rule base can
be represented as a conditional statement in the form of:

If xp1 is Ai and xp2 is Bi and . . . and xPn is Zi

Then xP = (xp1, . . . , xpn) belongs to class Ck (1)

where xP = (xp1, . . . , xpn) are the features of pattern p; Ai,
Bi, . . . , Zi are linguistic terms characterized by appropriate
membership functions; Ck, k = 1, 2, . . . , n, are the classes.
For example, applying an appropriate input feature space
partition, a two-class (normal vs airsacculitis) liver
classifier can be formulated. Figure 1 illustrates how the
two-dimensional input space (x1: mean red brightness
value; x2: mean green brightness value) is partitioned into
six fuzzy regions, each of which is governed by a fuzzy if-
then rule. The following 5 rules can be generated from the
initial fuzzy partitions shown in figure 1.

R1:  If x1 is small and x2 is small then xp = (x1, x2)
belongs to normal.

R2:  If x1 is medium and x2 is small then xp = (x1, x2)
belongs to normal.

R3:  If x1 is medium and x2 is large then xp = (x1, x2)
belongs to airsacculitis.

R4:  If x1 is large and x2 is small then xp = (x1, x2)
belongs to airsacculitis.
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R5:  If x1 is large and x2 is large then xp = (x1, x2)
belongs to airsacculitis.

Based on the result of pattern matching between rule
antecedents and input features, a number of fuzzy rules are
triggered in parallel with various values of firing strength.
The fuzzy inference engine, employing a combination of
max and min operations, can then be applied to determine
the level of certainty for pattern classification.

µCLASS(Ck) = max min[µF1i(xP1),

µF2j(xP2), . . . , µFnk(xPn)] (2)

where µCLASS(Ck) are the output membership grades for
individual classes; µF1i(xP1), µF2j(xP2), . . . , µFnk(xPn) are
the membership grades for the input features. The
minimum operator is used to limit the certainty of the
overall condition to that of the least certain observation. If
the same characterization is prescribed by more than one
selected rule, its certainty is set to the maximum of the
individual rules. For example, assume that the red
brightness (feature 1) belongs to R12 (medium) and R13
(large), and the green brightness (feature 2) belongs to G21
(small) and G22 (large) with corresponding membership
grades, the output membership grades for the fuzzy
classifier can be determined as follows:

µCLASS(normal) = max [min{µR12, µG21},

min{µR12, µG22}, min{µR13, µG21},

min{µR13, µG22}]

µCLASS(air-sac) = max [min{µR12, µG21},

min{µR12, µG22}, min{µR13, µG21},

min{µR13, µG22}] (3)

The classifier activates by selecting the one with maximum
output membership grade, i.e., winner-take-all-
interpretation.

NEURO-FUZZY CLASSIFIER

Fuzzy inference provides the possibility to transform
linguistic descriptions of data into feature space partition to
form a set of fuzzy rules in which a simple reasoning
process can be carried out. However, if the membership
functions are found to be unfit, then heuristic tuning
(an unsystematic approach) has to be applied. In many
pattern classification problems, no prior knowledge about
the data is available, so that neither linguistic rules nor
fuzzy reasoning can be effectively applied.

A neuro-fuzzy classifier, illustrated in figure 2, was used
to solve these problems using the shareware NEFCLASS
developed by Nauck and Kruse (1995). This classifier can
be viewed as a special, three-layer, feed-forward neural
network. The pattern features are fed into the input layer.
The units of the second (hidden) layer represent the fuzzy
rules, and the third layer consists of output units, one for
each class. The fuzzy sets are represented as fuzzy weights
on the connections from the input to the hidden layer. The
learning procedure is divided into two phases. Phase I of the
learning process is designed to discover the fuzzy rules. A
fuzzy rule is created for a given pattern by finding the
combination of fuzzy sets, in which each yields the highest
degree of membership for the respective input feature. If
this combination is not identical to the antecedents of an
already existing rule, a new rule is created. After all patterns
have been processed, the fuzzy inference rules are found by
ranking the rules on the number of correct classifications
they are involved in, and the first N rules are kept.

After the rule base is created, the second learning phase
involves adapting the input membership functions. The
signal flow for the fuzzy sets learning procedure consists of
two passes: forward and backward pass. In the forward
pass, input patterns go forward with computing the
activation of each rule node using the t-norms (min)
operation, and the activation of each output unit through
the t-conorms (max) operation. After evaluating the output
vectors, the signals keep going one more step for error
calculation. Then the measured signal errors propagate
backward from the output end toward the input end, and
the parameters in the premise part (shape of membership
functions) are updated by the delta learning rule (Widrow
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Figure 1–Fuzzy partition with six subspaces (closed and open circles
represent the given pattern from airsacculitis and normal livers,
respectively).

Figure 2–A neuro-fuzzy system with two inputs, five rules, and two
output classes.
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and Hoff, 1960). Usually the training process is terminated
when the error reaches a predefined small value and/or a
certain number of iterations have elapsed.

At the end of the learning processes we can interpret the
structure of the network. The remaining rule nodes identify
the fuzzy if-then rules that are necessary for feature space
partition. The fuzzy weights represent the membership
functions that describe the linguistic values of the input
data pattern.

CONFIGURATION OF NEURO-FUZZY CLASSIFIERS

The neuro-fuzzy systems were applied to separate
poultry viscera into classes. The data set contains
160 patterns, which belongs to four different classes:
normal, airsacculitis, cadaver, and septicemia. For the
neuro-fuzzy learning process the data set was randomly
split in half, and the patterns were ordered alternately
within the training and validation data sets. A cross
validation scheme that contains the remaining 50% of data
was used for model validation. Two sets of neuro-fuzzy
models that utilized features extracted from color viscera
images were examined for the classification of chicken
livers and hearts. A unified neuro-fuzzy model with
combined features from chicken livers and hearts was
tested for poultry viscera classification.

RESULTS AND DISCUSSION
FEATURE ANALYSIS

Features Selected for Classification of Chicken
Livers. The red, green, and blue mean brightness values
were calculated from color liver images. Table 1 shows the
color feature values for normal, airsacculitis, septicemia,
and cadaver livers. Based on the experiment-wise type I
error rate, Dunnett t-tests were performed to determine
whether the mean responses for the populations of
airsacculitis, septicemia, and cadaver livers differed from
that for the normal (control) livers. Table 2 summarizes the
comparisons of mean brightness values for airsacculitis,
septicemia, and cadaver livers to the control. The Dunnett
criterion for a two-sided test was computed by D(3, 0.01) =
10.575 when the mean red brightness value between
normal livers and the other livers were compared. The
differences ( y

_
i – y

_
c ) for airsacculitis and cadaver livers

exceed the minimum significant difference calculated by
D(3, 0.01) = 10.575. The test statistic indicates that the
mean red brightness value for normal livers was
significantly different from airsacculitis and cadaver livers.
For the green color space response, the differences for
airsacculitis and cadaver livers exceeded the minimum
significant difference [D(3, 0.01) = 4.4477]. However,
there was no significant difference ( y

_
i – y

_
c = 0.216)

between normal and septicemia livers. For the blue color

space response, the differences for airsacculitis and cadaver
livers exceeded the minimum significant difference
[D(3, 0.01) = 3.1383]. A similar result also showed no
significant difference ( y

_
i – y

_
c = 0.298) between normal

and septicemia livers when mean blue brightness values
were used.

Table 3 summarizes the analysis of variance performed
to the composite RGB images. The F test for the four liver
types is 128.4, which is significant at the 1% significance
level. The data indicates that there is a considerable
difference among the four liver types when composite
RGB liver images were compared. Dunnett’s t-tests were
performed to compare individual liver types
(i.e., airsacculitis, septicemia, and cadaver) to the normal
livers. The minimum significant difference of 5.032 was
found when composite RGB brightness values between
normal livers and the other liver types were compared.
Similar results were also found that there were significant
differences for normal versus airsacculitis ( y

_
i – y

_
c =

26.402) and normal versus cadaver ( y
_

i – y
_

c = 17.308),
but no significant difference ( y

_
i – y

_
c = 1.004) between

normal and septicemia livers. The inference drawn from
the test statistics indicates that features in RGB color space
could be effectively used for differentiating normal livers
from airsacculitis and cadaver livers. However, the color
information is insufficient to differentiate between normal
and septicemia livers.

Features Selected for Classification of Chicken
Hearts. The feature index defined as the ratio of chicken
heart’s fat band area to total chicken heart area was
calculated for chicken hearts classification. Table 4
summarizes the analysis of variance performed on the
feature index measured from chicken heart images. The F
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Table 1. Mean and standard deviation of color features for the 
normal, airsacculitis, septicemia, and cadaver livers 

Red Green Blue 

Sample Number Mean S.D. Mean S.D. Mean S.D.

Normal 40 71.8 13.9 13.2 4.1 8.2 2.7
Airsacculitis 40 114.4 14.2 32.6 10.8 25.4 10.6
Septicemia 40 74.9 20.1 13.4 5.6 7.9 3.8
Cadaver 40 45.9 14.8 6.7 4.1 3.7 2.3

Table 2. Results of the Dunnett t-tests comparing the mean
brightness values in the red, green, and blue color space

for the normal livers to that of other livers

Difference Difference Difference 
Between Between Between

Liver Red Mean Blue Mean Green Mean
Types Values Values Values
Comparison  y

_
i –  y

_
c∗  y

_
i – y

_
c  y

_
i – y

_
c

Normal vs 
air-sac 42.6 19.4 17.2

Normal vs
septicemia 3.1 0.2 0.3

Normal vs 
cadaver 25.9 6.5 4.5

*  y
_

i – y
_

c: The absolute value of the mean R, G, and B differences
between normal (yc) livers and the other liver types (yi).

NOTE: For the two-sided alternative with Ho: µi = µc vs Ha: µi ≠ µc;
reject the null hypothesis if  y

_
i – y

_
c > D(k, α) where k is the

number of other liver types and α is Type I error rate.

Table 3. Composite RGB liver images data ANOVA

Source of Sum of Mean F Pr
Variance DF Squares Squares Value > F

Between 
livers 3 31661.8585 10553.9528 182.40 0.0001

Within 
livers or error 156 9026.2554 57.8606

Total 159 40688.1139

Note:  The probability of a type I error is designated as α = 1%.
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test value (222.4) is significant at the 1% significance level
for the four chicken heart types. The data shows there are
significant differences between the four heart types being
compared. Dunnett t-tests were performed to assess where
the differences among populations of normal hearts versus
airsacculitis, cadaver, and septicemia hearts really occur.
Table 5 shows the results of significant tests among the
four heart types. The normal chicken hearts differed
significantly from the airsacculitis ( y

_
i – y

_
c = 0.372) and

the septicemia ( y
_

i – y
_

c = 0.1685) hearts. However, there
was no significant difference ( y

_
i – y

_
c = 0.042) between

normal and cadaver hearts when the ratio areas of chicken
hearts were compared. The test statistics indicate that the
feature index measured from chicken heart images can be
applied to classify normal hearts from airsacculitis and
septicemia hearts, but it cannot be effectively used for
differentiating between normal and cadaver hearts.

CLASSIFICATION OF POULTRY VISCERA

Two-class Classification. Pairs of two-class classifiers
(i.e., normal vs cadaver, normal vs airsacculitis, and normal
vs septicemia) were constructed for establishing baseline
information for viscera classifications. For the
classification of chicken livers, the domains of three input
features (i.e., red, green, and blue) were initially partitioned
individually by three-equal distributed fuzzy sets. The
membership functions were labeled as small, medium, and
large for each input feature fuzzy set, resulting in
maximum of 27 rules. Applying the rule learning
procedure, the neuro-fuzzy classifier selected 14 fuzzy
inference rules. The fuzzy set learning procedure was done
for 500-epochs, and 6 out of 40 patterns from the training
set (i.e., normal vs cadaver) were misclassified.

Figure 3 shows the fuzzy sets after the neuro-fuzzy
learning process. The fuzzy sets “medium” for the green
and blue input features were shifted and closely overlapped
to the fuzzy sets “small”. This observation indicates that
two fuzzy sets for each input feature should be sufficient.

The neuro-fuzzy classifier was re-trained with two fuzzy
sets for each input feature. Two rules were created for

distinguishing cadaver livers from normal livers. After
learning, 4 out of 40 patterns from the training set were
misclassified. The neuro-fuzzy classifier was cross-
validated with the remaining 50% of data achieving a
87.5% accuracy. In a similar fashion, the second classifier
was designed for distinguishing airsacculitis livers from
normal livers. The classification accuracy for normal vs.
airsacculitis was 95.0% for the training and 92.5%
accuracy for the validation when color features in R, G,
and B were used.

Table 6 compared the accuracy of neuro-fuzzy
classifiers when the features of individual RGB and
composite RGB were used for classification of chicken
livers. The classification accuracy for two-class livers
increased from 2.5% to 5.0% when the feature of
composite RGB was used as input to the neuro-fuzzy
models. This indicated composite RGB feature information
can be effectively used for chicken liver classification.

For the classification of chicken hearts, a feature index
defined as the ratio of heart’s fat band area to total heart
area was used as input to the neuro-fuzzy model. A pair of
two-class classifier (normal vs septicemia and normal vs
airsacculitis) was designed using the same paradigm
discussed previously. The classification accuracy for
normal versus septicemia was 95.0% and 92.5% for the
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Table 4. Feature index measured from heart images data ANOVA

Source of Sum of Mean F Pr
Variance DF Squares Squares Value > F

Between 
livers 3 6.4808 2.1603 222.43 0.0001

Within 
livers or error 156 1.5151 0.0097

Total 159 7.9959

NOTE:  The probability of a type I error is designated as α = 1%.

Table 5. Results of the Dunnett t-tests comparing the mean area
ratio index value of the normal hearts to that of other hearts

Difference Different
Heart Between From
Types Mean Means ( y

_
i – y

_
c)∗ Control?

Normal (control) 0.3225 N/A N/A
Airsacculitis 0.6945 0.3720 Yes
Septicemia 0.1540 0.1685 Yes
Cadaver 0.2805 0.0420 No

* Note that if the  y
_

i – y
_

c exceeds minimum significant difference =
0.0652, then the mean area ratio index value is different from that of
normal (control).

Figure 3–Membership functions after the learning process: (a) red
band, (b) green band, and (c) blue band.

(c)

(b)

(a)
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training and validation, respectively. The classification
accuracy to identify airsacculitis from normal chicken
hearts was 100% for the training and 97.5% for the
validation when the ratio area index of chicken hearts were
used for the neuro-fuzzy model.

Three-class Classification. Based on information
extracted from the previous two-class classifiers, three-
class neuro-fuzzy classifiers were examined. Two
classifiers were designed utilizing two sets of input features
(i.e., R, G, B and composite RGB) for classification of
chicken livers. The first classifier was initialized by six
fuzzy sets (i.e., two for each input feature). The second
classifier (i.e., composite RGB) was initialized by three
fuzzy sets. The neuro-fuzzy rule learning process selected
four inference rules for the first classifier and three
inference rules for the second classifier. Table 7
summarizes the performance for three-class liver
classification. The classification accuracy was 88.3% for
the training and 83.3% for the validation when color
features in R, G, and B were used. The classification
accuracy increased 2% when composite RGB feature was
used as input the neuro-fuzzy model.

Figure 4 shows the fuzzy sets and fuzzy inference rules
for the classification of normal, airsacculitis, and
septicemia. For the 120 patterns sampled the classification
accuracy of 95.0% was achieved for the training and 93.3%
accuracy for the validation.

Four-class Classification. In order to design the four-
class classifier, feature information from chicken livers
(composite RGB) and chicken hearts (area ratio index)
were combined to form a set of parallel inputs to the neuro-
fuzzy system. The fuzzy inference rules were devised
initially by considering the reasoning discovered in two-
and three-class models. These observations are: (1) a
pattern belongs to cadaver if the value of composite RGB

is small; and (2) a pattern belongs to septicemia if the value
of area ration index is small. The classifier was designed by
six fuzzy sets (three for each input feature). With a prior
knowledge, the neuro-fuzzy system generated seven fuzzy
rules for the four-class model. For the 160 patterns sampled
the classification accuracy of 86.2% was achieved for the
training and 82.5% accuracy for the validation.

CONCLUSIONS
Based on the study reported in this article the following

conclusions can be made.
1. Color viscera images provide useful feature

information to identify individual condemned
conditions of poultry viscera.

2. When neuro-fuzzy models using the color
information were employed to separate chicken
livers into normal, airsacculitis, and cadaver, the
accuracy was 88.3% for the training data and 83.3%
for the validation data. However, the color
information was insufficient to differentiate between
normal and septicemia livers.

3. When neuro-fuzzy models were employed to
separate chicken hearts into normal, airsacculitis,
and septicemia, the accuracy was 95.0% for the
training data and 93.3% for the validation data. For
this separation, only the spatial features (fat band to
total area ratios) were found to be useful.

4. Combining features of chicken liver and heart, a
generalized neuro-fuzzy model was designed to
classify poultry viscera into four classes (normal,
airsacculitis, cadaver, and septicemia). Both spectral
and spatial information were used. The classification
accuracy was 86.3% for training and 82.5% for
validation.

In this study, models were developed to maximize total
accuracy. In an on-line implementation, a differentiation
between Type I error (economic loss risk) and Type II error
(public health risk) would have to be made. Adjustment of
thresholds would then enable acceptable balancing of both
types of risk. For instance, the model could be used to
separate a line into one with virtual certainty of normal
chickens and one with a majority of abnormal chickens.
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Table 6. Performance evaluation of neuro-fuzzy models for
two-class liver classification using individual R, G, B

and composite RGB features

Accuracy∗ Accuracy∗ Accuracy† Accuracy†
(%) (%) (%) (%)

Classification (Training) (Validation) (Training) (Validation)

Normal vs 
cadaver 90.0 87.5 92.5 90.0

Normal vs 
air-sac 95.0 92.5 100 92.5

Samples: 40 livers (20 normal vs 20 cadaver and 20 normal vs air-sac)
were used for training and the remaining 40 livers were used
for validation.

* Using individual R, G, B brightness values as classification feature.
† Using composite RGB brightness values as classification feature.

Table 7. Performance Evaluation of neuro-fuzzy models for
three-class liver classification using individual R, G, B

and composite RGB features

Accuracy∗ Accuracy∗ Accuracy† Accuracy†
(%) (%) (%) (%)

Classification (Training) (Validation) (Training) (Validation)

Normal-
cadaver-
air-sac 88.3 83.3 90.0 85.0

Samples: 60 livers (20 normal, 20 cadaver, and 20 air-sac) were used for
training and the remaining 60 livers were used for validation.

* Using individual R, G, B brightness values as classification feature.
† Using composite RGB brightness values as classification feature.

Figure 4–Membership functions and fuzzy inference rules for three-
class heart classification.
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Manual inspection could then concentrate on the second
line, resulting in a more efficient allocation of manpower.
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