CHARACTERIZATION OF NONLINEAR ELASTIC PROPERTIES
OF BEEF ProODUCTS UNDER LARGE DEFORMATION

Renfu Lu, Yud Ren Chen

ABsTRACT. Knowledge of mechanical properties of beef isimportant for studying its tenderness and improving tender ness
measurement techniques. This research was initiated to develop a three-dimensional constitutive equation to describe the
nonlinear stress-strain relationship of beef products in large deformations, to determine the constitutive parameters, and
to validate the model for multidimensional stress/strain states. Based on experimental observations and the theory of finite
elasticity, a three-dimensional congtitutive equation was proposed, which assumes that the materials are isotropic and
incompressible. Uniaxial compression tests were performed on twenty samples each of bologna, salami, and smoked
sausage to determine the two parameters in the constitutive equation. Confined two-dimensional compression tests were
also conducted to validate the constitutive equation. Experimental results showed that beef products exhibited a
pronounced nonlinearity under uniaxial compression; the slope of the force-deformation curves increased monotonically
with the increasing deformation. The constitutive equation fitted the stress-strain curves well for the three products. The
congtitutive equation predicted well the stress-strain responses of the beef products under confined two-dimensional
loading; the differences between predicted and measured values were mostly not significant at the 0.05 level. This
congtitutive equation can be used to predict stress-strain responses of beef products under different loading conditions.
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exture is an important aspect of the overall quality

of most foods and agricultural products. Many

textural attributes, such as firmness, hardness, and

tenderness, are directly related to the mechanical
properties of foods. Therefore, knowledge of mechanical
properties is important for food quality evaluation and
control. Considerable research has been reported on
characterization of the mechanical properties of foods and
agricultural materials (see, for example, Mohsenin, 1986).
Most studies, however, are focused on the stress-strain
responses in small deformations for which the linear elastic
or viscoelastic theory can be applied. There are
applications in which knowledge of mechanical properties
of foodsin large deformation is necessary or desirable.

For example, tenderness is considered one of the most
important textural attributes for judging the overall eating
quality of beef and its products. The current, widely used
method for measuring tenderness is the Warner-Bratzler
(WB) shear testing, which measures the maximum force
required to cut through a meat sample. The measurement
involves a process of compression, bending, and shearing
of the sample. Due to the structure of the blade, the actual
loading process is difficult to interpret. Severa researchers
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have attempted to interpret the mechanism of WB shearing
based on experimental observations and intuitive reasoning.
Voisey and Larmond (1974) reported that meat samples fail
primarily in tension rather than in shear during WB
shearing test. Recently, Zhang and Mittal (1993) studied
the effect of sample size and loading rate on tenderness
measurement of three beef products, including bologna,
salami, and pastrami. Based on their observations, they also
concluded that meat samples were ruptured under tension
instead of shear. Validity of these interpretations has yet to
be demonstrated and such a verification is crucia to the
understanding of factors affecting tenderness measurement
and to improving existing measurement techniques (\Voisey,
1976).

During WB shearing, the sample is subjected to large
deformations, both elastic and plastic. Like most biological
materials, beef and its products exhibit nonlinear, time-
dependent force-deformation behavior, particularly under
large deformations. To understand the WB shearing
process, one must understand the fundamental mechanical
properties of meat in large deformations as well as their
failure characteristics. A considerable amount of
information is available on mechanical properties of
muscle tissue (Lepetit and Culioli, 1994). The data
available, however, cannot be used for stress-strain
analyses because they are either incomplete or the purposes
of those studies are not directed toward characterization of
the fundamental rheological properties. Only limited
studies have been reported on characterizing the
mechanical properties of meat, and they are primarily
limited to the linear elastic or viscoelastic theory
(e.g., Sackset al., 1988).

There is considerable interest and activity in nonlinear
mechanical properties of living tissues in the biomedical
engineering area and a comprehensive review of the latest
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advances in this area can be found in Fung (1991, 1993).
Studies have also been reported on the nonlinear
mechanical properties of several agricultural materials and
foods under large deformations. Gates et a. (1986) and
Gao et al. (1989) applied the finite elastic theory to study
the plant vegetative cells and constitutive equations were
proposed to predict the nonlinear stress-strain relationship
of cell walls. Gao et a. (1993) and Tang et a. (1997)
developed constitutive equations, based on the strain
energy theory, to characterize the stress-strain relationship
of several gels under large deformations. Purely empirical
equations were also proposed to describe the nonlinear
stress-strain relationship for agricultural products, such as
tobacco leaves and soybean (Foutz et a., 1993; Henry and
Zhang, 1996; Peleg, 1983). These empirical equations are
often obtained by using a mathematical function to fit the
stress-strain curves and, therefore, they cannot be applied
to multidimensional stress-strain situations.

This article reports the results from our study on
characterizing the nonlinear stress-strain relationship of
three beef products, i.e, bologna, salami, and smoked
sausage. These products are relatively uniform and
homogeneous in structure and highly elastic but
conspicuously nonlinear. The ultimate goal of this research
is to gain a better understanding of the relationship
between the mechanical properties of meat and its products
and tenderness measurements. The specific objectives of
this study were to:

1. Propose a constitutive equation to describe the
stress-strain relationship for the beef products under
large deformation;

2. Determine the parameters in the constitutive
equation for bologna, salami, and smoked sausage
using data obtained from uniaxial compression
tests; and

3. Vaidate the congtitutive relations using data from
confined two-dimensional loading tests.

NONLINEAR CONSTITUTIVE EQUATION

In studying the nonlinear mechanical properties of
biological materials, the first, also the most important step
is to select or develop an appropriate constitutive egquation
to describe the stress-strain relationship. Once the
congtitutive relationship is established, experiments can
then be performed to determine the parameters
characterizing the mechanical properties of a particular
material. For linear elastic or viscoelastic materials, there
exists a unique constitutive equation that can be derived
mathematically based on the principle of solid mechanics.
Most biological materials, however, are essentially
nonlinear, inelastic under finite deformation; their
mechanical behavior is not only dependent on the current
loading but also the past loading history. It is considerably
more difficult and complex to deal with nonlinear inelastic
materials, both theoretical and experimental. Further, there
is no unique congtitutive equation to describe the stress-
strain relationship for these materials. In many instances, a
specific constitutive equation must be developed to
describe a particular material or a class of materials.

In studying the nonlinear mechanical properties of
biologica materials, the concept of pseudo-elasticity is
often introduced to simplify the problem. The essential of

164

this concept is that for certain applications, inelastic
materials may be treated as if they were elastic. For
instance, if, after repeated loading and unloading (also
called preconditioning), there exists a unique stress-strain
relationship for the loading and unloading path, separately,
then the material can be treated as one elastic material in
loading, and another elastic material in unloading (Fung,
1993). Also in situations where only monotonic loading
paths are considered, an inelastic material may aso be
treated as elastic (Veronda and Westmann, 1970). In this
section, we propose a nonlinear constitutive equation,
based on the concept of pseudo-elasticity, to describe
multidimensional stress/strain states in the three beef
products.

In developing the congtitutive equation, it is assumed
that the beef products can be considered as isotropic,
incompressible pseudo-elastic materials. The isotropy
assumption seems justifiable since bologna is mainly
composed of finely comminuted and well commingled
beef; salami of ground beef; and smoked sausage of
minced beef. The three products studied were 100% beef,
of which about two-thirds is water with the rest being
protein, fat, carbohydrate, etc. No void spaces are present
in these products. Beef, as indicated in previous studies
(Lepetit and Culioli, 1994), is generally considered to be
incompressible. Therefore, it seems reasonable to use the
incompressibility assumption for these beef products. The
appropriateness of these two assumptions will be further
discussed in the “Results and Discussion” section in terms
of the ability of the constitutive model to predict the stress-
strain responses under a multidimensional loading state.

A survey of literature shows that several constitutive
equations have been proposed to characterize nonlinear
isotropic, incompressible materials. With the exception of
the well-known Mooney-Rivlin equation which is popular
for describing rubber-like materials, no effort was made to
test the validity or suitability of other reported constitutive
equations (e.g., Blatz et al., 1969; Veronda and Westmann,
1970). Preliminary analysis on the experimental data
(See the “Results and Discussion” section) showed that the
Mooney-Rivlin equation describes the force-deformation
behavior of the beef products well under compression. The
main problem with this equation is that the two parameters
in the Mooney-Rivlin equation determined from
experimental data showed no consistent pattern and had
large variations for each product, making it impossible to
differentiate different materials based on parameter values.
Further, the Mooney-Rivlin equation is not adeguate to
describe the nonlinear stress-strain relationship of many
biological materials under tensile loading conditions (Fung,
1993). For these reasons, the Mooney-Rivlin equation was
not chosen and a new constitutive equation was proposed to
characterize the three beef products.

From the theory of finite elasticity, it is known that the
stress-strain relationship for an elastic material may be
expressed as a function of the strain energy. Accordingly,
the constitutive equation for an isotropic and
incompressible elastic solid under finite deformations may
be expressed in the following form (Fung, 1993):

= Oxi 0%)
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where
i,j, R, S =indexes, taking values of 1, 2, or 3 (X, Y, or 2)
Ojj = Cauchy stress components
Jj; = the Kronecker delta; equal to one wheni =j,
and zerowheni # |

Ers =the Lagrangian (or Green’s) strain
components

p = hydrostatic pressure

w = strain energy function

Xj = spatial coordinates in a Cartesian coordinate

system with respect to the current (deformed)
configuration
X; = gpatial coordinates in a Cartesian coordinate
system with respect to the initial (or
undeformed) configuration.
In equation 1 and the following derivations, the
conventions commonly used in the tensor analysis are
implied. For instance, whenever an index is repeated once,
it is a dummy index indicating a summation through the
integral numbers 1, 2, and 3. The Lagrangian strains in
equation 1 are defined as:

(Cr:zs—éRs):l(axi oxi
2 \0XRr 0Xs

Ers =

- 6Rs) 2

N

in which Crg are the right Cauchy-Green deformation
components. Apparently, the key step to developing a
congtitutive equation is to find a strain energy function that
is capable of describing the nonlinear behavior of the beef
products. It has been shown (Spencer, 1980) that for
isotropic elastic materials, the strain energy function is a
function of the three strain invariants, 14, 15, and |3 for the
right Cauchy-Green deformation tensor C, i.e.:

W =W(ly, Iy, I3) ©)

These strain invariants can be expressed in terms of the
three principa stretches (or compressions), designated as
A1, Ao, and A5 (Spencer, 1980).

ls=AZ + A2 + 22 4

The principa stretches or compressions are defined as the
ratio of the length of lines in the three principal directions
in the deformed body divided by their length in the
undeformed body. When a uniaxial test is performed on a
cylindrical sample in the longitudinal direction, the stretch
or compression is simply the ratio of the instantaneous
gauge length (L) of the deformed sample to its origina
gauge length (Lg):

)\:L:1+¥ (5)
Lo Lo

where AL is the net change (positive in extension and
negative in compression) in the sample length.
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In the past, a variety of mathematical expressions have
been proposed to describe the strain energy function for
living biological tissues and some engineering materials.
There are essentially only two schools: one uses
polynomials, while the other uses exponential functions.
According to Fung (1993), the exponential functions are
more popularly used for describing living tissues. Gao et al.
(1989, 1993) and Tang et al. (1997) used the polynomials
to describe the strain energy function of plant tissues and
gels. Based on the observations of experimental datafor the
beef products (See the “Results and Discussion” section)
and the approach used by Fung (1993), this study uses an
exponential function to describe the strain energy function.
In proposing a constitutive equation for the beef products,
the following two conditions were considered: (1) the
strain energy function must satisfy the condition in
equation 3; and (2) the nonlinear constitutive equation
should be reduced to the exact form of the linear theory,
since the later is a special case for elastic materials under
small deformations. With these two considerations, the
following strain energy function was proposed:

w=1 B (guer ) ©
where a and (3 are the parameters to be determined from
experiments, and tr is the trace of a square matrix, i.e.:
trE® =Ejj Ej @
Substituting equation 7 into 6, equation 1 can be written as:

ojj = podij + OXi. ai Ers grE? (8)

R 0Xs
The strain energy function in equation 6 and the
constitutive equation 8 satisfy the two conditions stated
previously, because:

trE? =(trE)* =21, =1I'f = 21", ©)

inwhich 1’y and I, are the first and second strain invariants
of the Lagrangian strain tensor E, given by the following
equations:

I'n=tE=1tr(Cc-1)=1(,-3
1=iE=Lu(c-1)=1(h-3)

' =1[(trE)? —trE? =1 [(1.-3) - 2(1. - 3)](10)

N =
N

where | isthe unit isotropic tensor. Notice that the principal
stretches (or compressions) for the Lagrangian strain tensor
E are %(\2 — 1). The second equation of equation 10 can
be obtained by using the definitions of invariants. Hence
the strain energy function W is indeed a function of 1, and
I5 (I3 is equal to one for incompressible materials). The
second condition is also satisfied because, under small
deformations, the exponent in equation 8 will be close to
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zero, implying that the exponentia function approaches
one. The derivatives 0x;/0Xg are reduced to one when i =
R and zero when i # R and E;; are approximately the same
as the infinitesimal strains €;. Therefore, equation 8
becomes:

Oij = —PJij + Pei (11)

Equation 11 is the exact form of the constitutive equation for
linear incompressible elastic materials, in which the
parameter [3 is equivalent to two times the shear modulus G.

The two material parameters in equation 8 can be
obtained by performing uniaxial compression tests on
cylindrical samples. The undetermined hydrostatic pressure
p can be determined from the boundary condition, o,, = 0;
that is, the lateral or radia stresses in this case are zero.
After some mathematical derivations (See “Appendix”), the
axial stress T,, (the force divided by the cross-sectional
area of the undeformed sample) is given by the following
equation:

1/(33-1)%+2(2-1)2
%B(l—%)(?\f—)\z+ 1)¢e Gz J12)

4

in which P is the total applied force, Aj is the cross-
sectional area of the undeformed sample, and A, istheratio
of the height of the deformed sample to that of the original.
The parameter a is dimensionless and 3 has the same unit
as the stress T,. Equation 12 is useful for determining the
two material parameters from the force-deformation curve
of acylindrical sample subjected to uniaxial loading.

For the confined loading situation in figure 1 where the
cubic sample is loaded in one direction (z-axis) and can
move without restriction in the second direction (x-axis)
but its displacement in the y-axisis restricted, the following
equation can be obtained from equation 8 (See derivations
in “Appendix”):

P Loading
z Block
y
X
Sample -
Sample
Holder

Figure 1-A schematic of the loading device for performing confined
two-dimensional compression tests.
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Equation 13 was used to validate the constitutive equation
using the data acquired from confined compression tests
for the three beef products.

For nonlinear materials under large deformations, it is
often difficult, if not impossible, to interpret the physical
meanings of the materia parameters in the constitutive
equation. Figure 2 shows the overall patterns between the
stress and compression ratio, generated using equation 12
for various values of a and (. The compression ratio is
defined as AL/L, while the compression A, is equal to (1 —
AL/L), where L isthe original sample length and AL isthe
sample deformation. When deformations are small, stressis
linearly proportional to the strain, which is a basic feature
of the constitutive equation 12. The parameter a has little
effect on the slope of the curve for small deformations.
However, as deformation increases, the effect of the
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Figure 2-The stress vs compression ration (AL /L) curves for uniaxial
compression of cylindrical samples generated using the constitutive
equation 12 for different values of the parameters a and B. The
curves in (a) were generated with B = 100 and those in (b) were
generated with a = 1.
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parameter o on the overall pattern becomes increasingly
significant. The stress versus compression ratio curve
changes from concave to convex as o changes from
negetive to positive (fig. 2a). On the other hand, the
parameter (3 directly influences the dope of the stress
versus compression ratio curve over the entire range;
increasing the (3 value increases the curve slope (fig. 2b).
Under small deformations, the parameter 3 is equivalent to
two times the shear modulus G since equation 8 is reduced
to the form of the linear theory.

PROCEDURE AND METHODS

Three beef products, i.e., bologna, salami, and smoked
sausage, were used in this research. The beef products were
purchased from a local grocery store and were kept
refrigerated at 2°C prior to testing. Two sets of experiments
were performed on the beef products. The first set of
experiments was the uniaxial compression tests used to
determine the material parameters in equation 12. The
second set of experiments was the confined compression
tests that were used to validate the congtitutive equation
under a multiple stress/strain state. Since it took less than
two to three minutes to compl ete preparation and testing of
beef samples, the change in sample temperatures was
considered to be minimal during the entire test period.

CONSTITUTIVE PARAMETERS DETERMINATION

Uniaxial compression tests were performed on bologna,
salami, and smoked sausage to determine the materia
parameters in the constitutive equation 12. Twenty
cylinders of 15.9 mm diameter were taken for each product
and they were trimmed to a length of 15.0 mm.
Compression tests were performed on an Instron universal
testing machine (Model TM) equipped with a 50 kg
capacity load cell, with the crosshead speed set at
127 mm/min. The high loading rate was selected because it
is close to the one normally used in Warner-Bratzler shear
tests. All samples were compressed to a maximum
deformation of 10 mm (corresponding to 66% compression
ratio). Since the beef products had a considerable amount
of water and fat that served as a natural lubricant, no
lubricant was used in al uniaxial tests and the friction
between the |oading plate and the sample was considered to
be insignificant. The force-deformation curve for each
sample was recorded by a computer at an increment of
0.025 mm. Sample deformations were considered to be
equal to the crosshead's displacements since the deflection
of the load cell was negligible (< 0.1 mm at the full load
capacity).

Additional tests were conducted to observe the
mechanical properties of the beef products under cyclic
uniaxial loading and unloading. Samples were loaded and
unloaded four times (or cycles) between 0 and 33%
compression ratios.

Data from monotonic uniaxial compression tests were
analyzed using SAS (SAS, 1995). Nonlinear regressions
were performed to fit each force-deformation curve with
the constitutive equation 12 and the parameter values were
obtained by the modified Gauss-Newton method. In
determining the material parameters, only a portion of the
force-deformation curve with the compression ratios
(AL/L) between 0 and 38% was used for bologna and
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salami. For smoked sausage, the compression ratio range
was selected to be between 0 and 44%. These compression
ranges were determined to exclude the yielding and/or
failure portion of the curves and to ensure that the
congtitutive equation can be applied to a large range of
strains within the limit of pseudo-elasticity.

CONSTITUTIVE MODEL VALIDATION

To validate the constitutive equation for
multidimensional stress-strain states, confined compression
tests were performed with a specially designed loading
device (fig. 1). Cubes of 25.4 mm were cut from the same
beef samples from which cylinders were taken for uniaxial
compression tests. The cubes were placed in the slot of the
sample holder shown in figure 1. When loads were applied
through the loading block, the sample was only allowed to
move without restriction in one lateral direction (x-axis)
and was constrained in the other direction (y-axis); thus
creating the two-dimensiona strain status in the sample.
Prior to testing, all contacting surfaces were lubricated with
lubricant to reduce friction between the sample and the
sample holder, and the moving block and the holder.
However, according to Lepetit (1989), application of
[ubricant may not be necessary because the frictional forces
between the meat and the sample holder and the moving
block are negligible compared with the compressive forces
at any compression ratio. The loading rate used in the
confined compression was 127 mm/min, the same as the
one for uniaxial compression. Four tests were performed
for each product and the maximum compression ratio was
set at 25% so that the samples would not be ruptured.

Validation of the constitutive equation was performed by
comparing values of the measured stress (T,,) versus
compression (A,) with those predicted using equation 13.
Predicted stresses were calculated using the constitutive
parameter values obtained from uniaxial compression tests.

RESULTS AND DiscussiON

Figure 3 shows typical stress-strain responses of the
three beef products under monotonic uniaxial compression.
Nonlinearity was conspicuous for all three products under
uniaxial compression; the slope of the force-deformation

60
Salami

48
/ Sausage
36 /
24 // \_(
12 Bologna

0 t + t } + + + } + } +
0 2 4 6 8 10 12
Deformation (mm)

Load (N)

Figure 3-Typical force-deformation curves for bologna, salami, and
smoked sausage under monotonic uniaxial loading at a loading rate
of 127 mm/min (sample size: 15.9 mm in diameter and 15.0 mm in
height).
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curves increased monotonicaly until near the maximum
force was reached which corresponded to the rupture of the
samples. All three products could sustain large
deformations before they were ruptured (the corresponding
compression ratio, AL/L, was greater than 30%). Salami
had a much higher stress at failure than the other two
products. The change in the curvature of the force-
deformation curves was most pronounced for salami and
least for smoked sausage. Both salami and bol ogna showed
a dramatic drop in force with further compression after
reaching the maximum, while smoked sausage did not have
a distinctive peak force even when the samples were
ruptured.

Typical force-deformation curves for bologna and
smoked sausage under cyclic loading and unloading are
shown in figure 4 and similar curves were also obtained for
salami. A small loop in the force-deformation curves was
observed when the cycle was changed from loading to
unloading, which was caused by the accelerational or
deaccelerational forces in the sample resulting from the
rapid change in the crosshead speed. When the cycle was
changed from unloading to loading, no hysteresis loops
were observed. This is because when the crosshead was
changed from unloading to loading at zero deformation, the
sample was barely in touch with the loading plate.
Therefore, no accelerational and deaccelerational forces
induced in the sample would be transmitted to the load cell.

25
Bologna

; /
3
\615 1st Loading %
o
= o4

5 /

0 gty p—————+——+ }

0 1 2 3 4 5 6
Deformation (mm)
20
Smoked Sausage

16
Z12 .
o 1st Loading // /
S 8
) i

4

0 e+ ——§ t

0 1 2 3 4 5 6
Deformation (mm)

Figure 4-Typical force-deformation curves for bologna and smoked
sausage samples (15.9 mm in diameter and 15.0 mm in height)
subjected to four cycles of uniaxial loading and unloading at a
loading rate of 127 mm/min. Small loops occurred when the cycles
changed from loading to unloading, due to the accelerational (or
deaccelerational) forces caused by the rapid change in the crosshead
speed.
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For each cycle of loading and unloading, there always
existed a hysteresis loop that was smaller for bologna than
for smoked sausage. As shown, the force-deformation
curve for the first loading stroke was quite different from
those for the subsequent loading strokes. However, the
difference in the force-deformation curves for the
subsequent loading strokes became amost indiscernible.
There were no noticeable differences for al unloading
strokes including the first one. These results indicate that
the beef products exhibit a unique force-deformation
behavior in loading and unloading, respectively, for
compression ratios up to at least 33%.

Figure 5 shows comparisons of the measured and
regression-fitted (eq. 12) stress versus compression ratio
curves for bologna, salami, and smoked sausage under
uniaxial loading. There are two graphs for each product;
one represents the best fit of the constitutive equation to the
data and the other the worst fit. As shown in figure 5, the
constitutive equation 12 predicted the stress-strain
responses of the three products reasonably well even under
the worst cases. In the best cases, the differences between
the measured and model-fitted stress versus compression
ratio curves for bologna and smoked sausage were too
small to distinguish visually over the entire strain range.
The goodness of the constitutive equation for predicting the
stress-strain responses is by no meanstrivia. This indicates
that the basic assumptions made in this study are valid and
the materials closely follow the mechanical behavior
described by the constitutive equation 12.

Table 1 summarizes the parameter values and their
statistics for the three products. The parameter a for
bologna and salami is not significantly different at the 0.05
level but is significantly different for smoked sausage. The
parameter 3 is statistically different at the 0.05 level for all
three products. Salami showed highest values for the
parameters a and 3 among the three products, which is
consistent with the fact that nonlinearity, measured by the
change of the curve slope, was greater for salami than for
the other products (fig. 3). Smoked sausage had a negative
o value for all twenty test samples and its nonlinearity was
less severe than the other two products. The average RMSE
(root mean squared error) for the three products was
1.90 kPafor bologna, 2.98 kPafor salami, and 1.88 kPa for
smoked sausage. These results show that the proposed
congtitutive equation is capable of describing the stress-
strain responses of beef products under uniaxial loading.

The capability of the congtitutive equation to predict the
stress-strain responses of beef products under
multidimensional loading situations is demonstrated in
figure 6. Predicted stresses were calculated using
equation 13 with the parameters given in table 1 and
compared favorably with experimental measurements. The
congtitutive model predicted stresses well for bologna
samples. Predicted stresses were not significantly different
from the measured at the 0.05 level (t-test) when the
compression ratio was greater than 3.5%, even though the
difference tended to increase with compression ratio. For
the salami samples, model predictions also compared well
with measured values; the differences were not significant
at the 0.05 level for the compression ratios greater than 3%.
For smoked sausage, model predictions were not
significantly different from the measured except when the
compression ratio was less than 2%, between 5% and 13%,
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Figure 5-Comparison of measured (thick line) and model-fitted (thin line) stress vs compression ratio (AL/L) curves for bologna, salami, and
smoked sausage samples under uniaxial compression. Two graphs are presented for each product, representing the best (a) and worst (b) fit of
the constitutive equation to the experimental data, as measured by the RM SE (root mean squared error).

Table 1. Parameter values and their statisticsin the constitutive
equation 12 for bologna, salami, and smoked sausage
obtained from uniaxial compression data*

at Bt RMSE

Bologna 0.36340 97.202 1.90
(0.1960) (10.13) (0.46)

Salami 0.4340b 134.79¢ 2.98
(0.1756) (13.69) (0.79)

Smoked —-0.68292 114.33p 1.88
sausage (0.1390) (13.32) (0.42)

* Each value in the table represents the average of 20 replications.
Values in the parentheses are the standard deviations. The parameter
is dimensionless, and the parameter B and the RMSE (root mean
squared error) arein kPa.

T The values for each parameter with the same superscript letter are not
significantly different (LSD) at the 0.05 level.

and greater than 22%. The significant, but relatively small
prediction errors were obtained for the intermediate range
of compression ratios partly because the sample standard
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deviation was much smaller than it would have been
expected. The significant difference for large deformations
(> 22%) is likely attributed to the fact that stress yielding
may have occurred in the test samples at large
deformations, resulting in lower stresses than predicted.
The increasing sensitivity of the stress to the compression
ratio at higher deformation levels could also be a factor
affecting prediction accuracy. Considering the inherent
variability of the mechanical properties of beef products,
the congtitutive equation appears to predict their stress-
strain responses with a reasonable accuracy.

Comparing the stress versus compression ratio curves
for beef samples from the uniaxial and confined
compression tests, it was found that the beef samples often
yielded at a lower compression ratio in the confined
compression tests than in uniaxial compression. This could
be due to the fact that the stresses in the sample were multi-
axial (or two-axial) under the confined compression. The
yield condition for foods and biological materials normally
depends on the stress/strain status or loading conditions
(Holt and Schoorl, 1982).
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Figure 6-Comparison of measured (thick line) and predicted (thin
line) stresses vs compression ratio (AL/L) for bologna, salami, and
smoked sausage samples under confined two-dimensional
compression at a loading rate of 127 mm/min. Each thick curve
represents the average of four measurements. The vertical bars
represent values of (2 x std).

SUMMARY AND CONCLUSIONS

A three-dimensional constitutive equation, based on the
theory of finite elasticity, was developed to describe the
nonlinear mechanical properties of beef products under
finite deformation. Uniaxial compression and confined
two-dimensional compression tests were conducted on
bologna, salami, and smoked sausage to determine the
material parameters and to validate the constitutive
equation. Three beef products showed conspicuously
nonlinear behavior under large deformations; this
nonlinearity was characterized by the monotonic increase
in the slope of the force-deformation curves. Nonlinearity
was greatest for salami and least for smoked sausage. The
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proposed constitutive equation was found to fit the stress-
strain curves under uniaxial compression well, with an
average RMSE of 1.90 kPa for bologna, 2.98 kPa for
salami, and 1.88 kPafor smoked sausage. The values of the
material parameters were consistent for each beef product
and clearly reflected the difference in the mechanica
properties of bologna, salami, and smoked sausage. The
congtitutive equation predicted the stress-strain responses
of the beef products well under confined two-dimensional
compression; the differences were mostly not significant at
the 0.05 level.
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APPENDIX DERIVATION OF EQUATIONS 12
AND 13

DERIVATION OF EQUATION 12

In deriving equation 12, the cylindrical polar coordinate
system is used, in which the radial, circumferential, and
axial coordinates are designated asr, ¢, and z, respectively.
When a cylindrical sample is subjected to uniaxial
compression, the radial stress, o,,, is zero. Hence, the
undetermined hydrostatic pressure p can be determined
from equation 8, which gives:

p :BErr)\rz eC(tI‘EZ (Al)
Notice that the following relationship:
oXi zf)\iwheni:R A2)

Xr |0 wheni#R

has been used in obtaining equation A1 from equation 8.
From equation 2, we have:

Err:EW:%(Arz—l) and Ez=1(A2-1) (A3

N [

and from eguation 7:
trE® =EZ + E(f,q,+ EZ =

1(A2-1)2+1(a2-1)? (Ad)
2 4

where E,, E,, and E,, are the strain components in the

radial, circumferential, and axial directions, respectively.
The axial stress in the z-direction can be obtained by

substituting equation A1 into equation 8, which gives:

GZZ:BemrEZ()\zzEzz—)\rzErr) (A5)

The incompressibility assumption implies that the volume
of the deformed body is equal to that of the undeformed.
Hence, we have:

2_1

r ==

(é)z :IL_O or 3 (A6)
z
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where r and R denote the radius of the deformed and
undeformed cylindrical sample, respectively, and L and L
are the height of the deformed and undeformed sample,
respectively. Substituting equations A3, A4, and A6 into
equation A5 gives equation 12.

DERIVATION OF EQUATION 13

Equation 13 can be obtained by following the procedure
outlined above for equation 12. For the confined loading
under the rectangular coordinate system shown in figure 1,
the stress in the x-direction is zero. In view of eguation 8,

the underdetermined hydrostatic pressure p can be
expressed in the following form:

0X 0X
=g % E
PP X ox =

eortrE2 - B)\XZ Ex e(xtrE2 (A7)
From equation 2, we have:

En=L(M-1), Ey=0, Ez=1(7-1)(9)

and from equation 7:

trE? =E2 + Ezzz:i()\xz_l)z +%(>\z2 -1)* (A9

The incompressibility assumption requires that:

(A10)

Hence, in view of equations 8 and A7, the axial stress in
the confined loading is:

0z =B E (AP Ez-MEx)  (AlD)

Substituting equations A8, A9, and A10 into A1l gives the
relationship of equation 13.
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