Transformations of nitrogen from animal manures and biofuel byproducts amended to a sandy soil

A.D. Moore, A.K. Alva, H.P. Collins, and R.A. Boydston

USDA ARS – Prosser, Washington

Introduction

- Animal manures as fertilizers in the Pacific Northwest
 - Poultry litter
 - Dairy manure compost
 - Widely available, much slower release of N
 - Recommendation of litter and compost
- Biofuel byproducts as fertilizers in the Pacific Northwest
 - Rises in number of ethanol and biodiesel plants
 - Seven new ethanol plants, twelve biodiesel plants, and two oilseed crushers

Methods and Materials

- Manure amendments
 - Poultry litter – Layer Hans
 - Dairy manure compost
 - Composting 3 months
 - 1/3 poultry, 2/3 compost
- Biofuel byproduct amendments
 - Mustard meal
 - Triple cold pressed white mustard seed
 - Dry distillers grains
 - Elbonard plant in Iowa
 - Aerobic incubations
 - Sealed polystyrene bags in dark growth chamber

Sampling scheme

- 200 mg N kg-1
- Determined NO3-N and NH4-N concentrations at 0, 1, 3, 7, 14, 21, 28, 42, 56, 70, 84, 98, 126, 154, and 210 days of incubation
- Determined soil pH monthly
- Temperature changed to simulate soil temperature at a 20 cm depth for a spring/summer growing season in eastern Washington

Discussion

- Dairy manure compost
 - No N mineralization from compost over 154 days
 - 2 to 14 % available N under similar conditions from dairy manure composts (Gale et al. 2006)
- Approximately 10 % from Van Kessel et al. 2002
- Compost would not provide any benefits in enhancing the rate or duration of N availability from litter.
- Poultry litter
 - Nitrification initiated after 28 days of incubation
 - Occurs at day = 0 for incubation studies at 25 degrees C
 - 13 degrees C during first month
- Biofuel byproducts as fertilizers in the

Conclusions and Future Work

- Organic N was rapidly mineralized for poultry litter and Perfect Blend 7-2-2, and relatively slow for biofuel byproducts
- Compounds in mustard meal and distillers grains likely delay the process of nitrification, thus causing varying degrees of NH4-N accumulation in the soil
- Nitrogen mineralization from dairy manure compost was rather negligible during the entire incubation period, therefore would not be an effective source of available N for annual plants for the first growing season
- Further investigation is necessary to evaluate the N mineralization, and plant availability from the above local and commonly available byproducts containing sources of organic nutrients.

Table 1. Predicted cumulative N mineralization using a first order equation for nitrogen mineralization, as percent of total N in the amendment, from various organic N sources applied to a Quincy fine sand at 200 mg total N kg-1.

<table>
<thead>
<tr>
<th>Soil</th>
<th>Incubation length (days)</th>
<th>DMC</th>
<th>PL</th>
<th>CL</th>
<th>NM</th>
<th>DG</th>
<th>ADF</th>
<th>PB</th>
</tr>
</thead>
<tbody>
<tr>
<td>13.0</td>
<td>0</td>
<td>3</td>
<td>12</td>
<td>10</td>
<td>7</td>
<td>4</td>
<td>12</td>
<td>7</td>
</tr>
<tr>
<td>13.8</td>
<td>14</td>
<td>28</td>
<td>17</td>
<td>17</td>
<td>9</td>
<td>42</td>
<td>11</td>
<td>3</td>
</tr>
<tr>
<td>15.6</td>
<td>28</td>
<td>35</td>
<td>19</td>
<td>33</td>
<td>31</td>
<td>6</td>
<td>54</td>
<td>0</td>
</tr>
<tr>
<td>17.1</td>
<td>42</td>
<td>20</td>
<td>41</td>
<td>21</td>
<td>43</td>
<td>40</td>
<td>59</td>
<td>0</td>
</tr>
<tr>
<td>19.2</td>
<td>56</td>
<td>2</td>
<td>42</td>
<td>23</td>
<td>49</td>
<td>46</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>20.3</td>
<td>70</td>
<td>2</td>
<td>43</td>
<td>25</td>
<td>53</td>
<td>50</td>
<td>1</td>
<td>61</td>
</tr>
<tr>
<td>22.0</td>
<td>84</td>
<td>2</td>
<td>43</td>
<td>26</td>
<td>56</td>
<td>52</td>
<td>1</td>
<td>61</td>
</tr>
<tr>
<td>22.2</td>
<td>126</td>
<td>2</td>
<td>44</td>
<td>28</td>
<td>60</td>
<td>55</td>
<td>-1</td>
<td>61</td>
</tr>
<tr>
<td>15.0</td>
<td>210</td>
<td>2</td>
<td>44</td>
<td>29</td>
<td>61</td>
<td>56</td>
<td>-2</td>
<td>61</td>
</tr>
</tbody>
</table>

Table 2. Chemical properties of soil amendments evaluated in this study.

<table>
<thead>
<tr>
<th>Nutrient</th>
<th>DMC</th>
<th>PL</th>
<th>NM</th>
<th>DG</th>
<th>PB</th>
<th>ADF</th>
<th>PB</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>14</td>
<td>45</td>
<td>58</td>
<td>41</td>
<td>70</td>
<td>22</td>
<td></td>
</tr>
<tr>
<td>P</td>
<td>1</td>
<td>11</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>K</td>
<td>4</td>
<td>5</td>
<td>3</td>
<td>4</td>
<td>6</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

References