BIOLOGY AND LARVAL TAXONOMY OF EUCELATORIA BRYANI SABROSKY AND E. RUBENTIS (COQUILLETT) (DIPTERA: TACHINIDAE)

STUART R. REITZ AND PETER H. ADLER

Department of Entomology, Clemson University, Clemson, SC 29634, U.S.A. Present address (SRR): Department of Entomology, University of California, Riverside, CA 92521, U.S.A.

Abstract.—The tachinid flies *Eucelatoria bryani* Sabrosky and *E. rubentis* (Coquillett) are similar in their reproductive behaviors and will mate with one another under laboratory conditions; however, sperm is not transferred. Both species parasitize noctuid caterpillars, with the host range of *E. rubentis* being about four times broader than that of *E. bryani*, which is essentially restricted to *Heliothis virescens, H. subflexa* and *Helicoverpa zea*. Larvae of the two species can be separated from one another as second and third instars primarily by the shape of the dorsal cornu of the tentoropharyngeal sclerite. Both tachinids offer great promise as biological control agents of noctuid pests.

Key Words: Diptera, Tachinidae, *Eucelatoria*, *Heliothis*, *Helicoverpa*, host-parasite relations

The Tachinidae comprise the largest family of parasitic Diptera and have great potential economic importance as biological control agents. However, of the approximately 8000 described species of Tachinidae in the world, most are only known on the basis of adult morphology. Often, the characters used for distinguishing species or genera are subtle and of uncertain biological importance (Wood 1987). This lack of information constrains the use of tachinids as biological control agents, a problem that could be alleviated by information on other life stages and biological traits.

Eucelatoria bryani Sabrosky and *E. rubentis* (Coquillett) are two potentially important biological control agents (Knipling 1992). These two tachinids are sympatric across the south-central USA and northeastern Mexico. The geographic range of *E. bryani* extends from western Arkansas and eastern Oklahoma, south and west to Arizona and Mexico (Jackson et al. 1969, Young and Price 1975, Sabrosky 1981, Steward et al. 1990). *Eucelatoria rubentis* occurs across the southeastern USA from Delaware south through Florida, and west to Arkansas, Texas and Tamaulipas, Mexico (Sabrosky 1981). *Eucelatoria bryani* and *E. rubentis* can be differentiated on the basis of adult characters (Sabrosky 1981). Here we provide further diagnostic information by presenting the larval taxonomy and a synopsis of biological characters for both species.

Materials and Methods

Our colony of *E. bryani* was derived from material originally collected from corn (*Zea mays* L.) in Arizona and later cultured in USDA laboratories in College Station and Weslaco, Texas. The colony of *Eucelatoria rubentis* was derived from material collected and maintained in culture at the USDA laboratory in Tifton, Georgia. Both colonies were reared at Clemson University.
in *Helicoverpa* *zea* (Boddie) and *Heliothis* *virescens* (F), according to methods described by Nettles et al. (1980) and Reitz and Adler (1991).

Larvae for taxonomic study were dissected from singly-parasitized hosts (*H. zea*), boiled in lactic acid, slide-mounted (cephalopharyngeal skeletons in lateral view) in Euparal®, and examined with an Olympus BH-2 compound microscope fitted with an ocular micrometer. Voucher material is deposited in the Clemson University Arthropod Collection.

Methods for interspecific mating trials follow those of Reitz and Adler (1991). Briefly, 2-day old, virgin males were placed in a plexiglass arena (15 x 10 x 10 cm). Five minutes later, one newly eclosed heterospecific female was introduced into the arena and all interactions were recorded. Additional heterospecific groups were held together for up to 5 days, after which females were dissected in physiological saline and examined for the presence of sperm in the spermathecae and embryonated eggs in the common oviduct.

To determine the suitability of various species of Noctuidae as hosts, feeding-stage fifth instars (2:20) of each noctuid were presented to individual 2-wk old females, or larvae were placed in cages containing 50–100 adult flies for 30–120 min. Larvae were then returned individually to 31-ml plastic cups containing a suitable meridic diet and inspected daily for the presence of parasitoids.

RESULTS AND DISCUSSION

Larval taxonomy.—The three larval instars of each species can be distinguished on the basis of size and development of the cephalopharyngeal skeletons (Fig. 1). The posterior spiracles are well-developed, with three slits each, only in the third instar (Fig. 1). Instar 1 has three blunt hooks surrounding the posterior spiracles, whereas instar 2 has two pairs of hook plates around the posterior spiracles; hook plates are absent in third instars. All instars have 12 bands of microspines around the body, although the terminal (12th) band, surrounding the posterior spiracles, is weakly developed.

Second and third instars of the two species can be distinguished most readily by the development of the dorsal cornu of the tentoropharyngeal sclerite, which is significantly greater in height and more massive anteriorly in *E. rubentis* than *E. bryani* (Table 1, Fig. 1). Additionally, third instars of *E. bryani* have significantly more papillate openings (range: 3–5 each) at the apex of the anterior spiracles than do those of *E. rubentis* (2 or 3) (Table 1). The posterior spiracles of the third instar (Fig. 1D) are similar, although the sclerotization between spiracular slits tends to be darker in *E. rubentis*. First instars cannot be separated reliably.

Interspecific matings.—Under laboratory conditions, these two species are reproductively isolated. For both species, the emergence pattern is protandrous, females are monogamous, and males are polygamous. The courtship behaviors of *E. rubentis* are similar to those described for *E. bryani* (Reitz and Adler 1991). Males of both species mounted heterospecific females and initiated courtship. These interspecific courtships continued in a manner similar to that described for *E. bryani* by Reitz and Adler (1991), with males of both species attempting intromission with heterospecific females. However, based on examination of spermathecae after mating attempts, sperm transfer did not occur and these females did not produce embryonated eggs (n = 8 for *E. bryani* male x *E. rubentis* female; n = 6 for *E. rubentis* male x *E. bryani* female).

Host specificity.—We successfully reared *E. bryani* from *H. zea, H. virescens,* and *Heliothis subflexa* (Gueneé). Attempts to rear *E. bryani* from other Noctuidae including *Anticarsia gemmatalis* Hübner, *Pseudoplusia includens* (Walker), *Spodoptera ornithogalli* (Gueneé), and *Trichoplusia ni* (Hübner) were unsuccessful. *Eucelatoria bryani* has been reared from field-collected *A. gemmatalis,* Spodoptera frugiperda

(Smith) and *T. ni*, but these host records are rare compared with those from *H. zea* and *H. virescens* (Butler 1958, Sabrosky 1981).

In contrast, we successfully reared *E. rubentis* from *H. zea*, *H. virescens*, and *H. subflexa*, *A. gemmatalis*, and *P. includens*. Based on field collections, host species for *E. rubentis* include these species as well as 12 other species of Noctuidae and Pyralidae (Arnaud 1978, Sabrosky 1981). The basis for this interspecific difference in host range appears to be the failure of *E. bryani* females to oviposit in hosts. Nettles (1980) found *E. bryani* females were attracted to *H. virescens* but not to *Spodoptera eridania* (Cramer) or *Estigmene acrea* (Drury).

Females of both species deposit progeny in proportion to host size (Reitz 1996a), but progeny of *E. bryani* tend to be smaller and develop more rapidly than those of *E. rubentis*. Because of its more rapid development, *E. bryani* is a superior intrinsic competitor compared with *E. rubentis* when parasitizing *H. zea* (Reitz 1996b).
Table 1. Selected larval features, mean ± SE, n, of Eucelatoria bryani and E. rubenitis. Means with different letters are significantly different for each character within each instar (t-test; \(P < 0.005 \)); other values are not significantly different (\(P > 0.05 \)); n.o., not observed.

<table>
<thead>
<tr>
<th>Species</th>
<th>Instar</th>
<th>Cephalopharyngeal Skeleton Length(^1)</th>
<th>Dorsal Cornu Height(^2)</th>
<th>Number of Anterior Spiracular Openings</th>
</tr>
</thead>
<tbody>
<tr>
<td>E. bryani</td>
<td>1</td>
<td>0.16 ± 0.004 (10)a</td>
<td>0.02 ± 0.001 (10)a</td>
<td>n.o.</td>
</tr>
<tr>
<td>E. rubenitis</td>
<td>1</td>
<td>0.18 ± 0.011 (8)a</td>
<td>0.02 ± 0.002 (7)a</td>
<td>n.o.</td>
</tr>
<tr>
<td>E. bryani</td>
<td>2</td>
<td>0.33 ± 0.008 (10)a</td>
<td>0.07 ± 0.002 (10)a</td>
<td>n.o.</td>
</tr>
<tr>
<td>E. rubenitis</td>
<td>2</td>
<td>0.34 ± 0.007 (6)a</td>
<td>0.09 ± 0.002 (6)b</td>
<td>n.o.</td>
</tr>
<tr>
<td>E. bryani</td>
<td>3</td>
<td>0.67 ± 0.013 (11)a</td>
<td>0.16 ± 0.003 (11)a</td>
<td>3.7 ± 0.17 (11)a</td>
</tr>
<tr>
<td>E. rubenitis</td>
<td>3</td>
<td>0.76 ± 0.020 (10)b</td>
<td>0.19 ± 0.006 (10)b</td>
<td>2.6 ± 0.17 (10)b</td>
</tr>
</tbody>
</table>

\(^1\) Tip of mandible to posterior of dorsal cornu in mm.

\(^2\) Greatest height in mm.

Potential for biological control.—Given that both species are facultatively gregarious (Reitz 1996a) and have relatively high fecundities (Gross and Rogers 1995, Reitz and Adler 1995), both species could be important biological control agents. Knipling (1992) considered E. bryani to be one of the most important parasitoids of \(H. \) zea and \(H. \) virescens and proposed a plan for using E. bryani to suppress these host populations. The possibility exists for using E. rubenitis in a similar program against other pest noctuids. While host specificity is a desirable attribute of biological control agents (e.g. Greathead 1986), polyphagy is not necessarily a detrimental attribute, if a polyphagous parasitoid attacks several sympatric pest species (Ehler and van den Bosch 1974). The potential for using augmentative releases of E. bryani and E. rubenitis would be further enhanced with continued refinement of in vitro rearing methods (Bratti and Nettles 1992). No one biological control agent is likely to manage a pest population completely, but if used properly, E. bryani offers an excellent opportunity to help manage \(H. \) zea, and E. rubenitis offers a similar opportunity to help manage several other noctuid pests.

ACKNOWLEDGMENTS

We thank J. P. Norton for rendering the illustrations, and C. N. Watson for technical assistance. This is technical contribution No. 4177 of the South Carolina Agricultural Experiment Station, Clemson University.

LITERATURE CITED

